矩阵论 第一章 线性空间和线性映射

合集下载

矩阵论- 线性空间

矩阵论- 线性空间
Q[ x] {an x a1 x a0 a0 , a1 ,, an F , an 0}
n
不是线性空间
例5 [a , b]区间上连续实函数全体所构成的集合C a, b 对通常函数的加法和数乘运算构成相应实数域 R 上 的线性空间,称为实函数空间,记为 C a, b ( R)
(1)幂等律:A∪A=A
(2)交换律:A∪B=B∪A
(3)结合律:(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C) (4)分配律:(A∩B)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(A∩C)∪(B∩C) (5)DeMongan 律: A ( B C ) ( A B) ( A C )
(3)称既单且满的映射为双射或者一一映射。
定理 3 设 A, B, C 是三个集合,f:A B 是由 A 到 B 的映射, g:B C 是由 B 到 C 的映射,对于 A 中的 每一个元素 x ,有 C 中唯一确定的元素 z 满足:
g ( f ( x)) z 。 即存在一个 A C 的映射, 记为:g f ;
1)若数集F中任意两个数作某一运算的结果仍在F 中,则说数集F对这个运算是封闭的. 2)数域的等价定义:如果一个包含0,1在内的数 集F 对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集 F为一个数域.
例1.证明:数集 是一个数域.
Q( 2 ) a b 2 | a , b Q
类似可证 Q( i ) a bi a , b Q , i 1 是数域.


定理5 任意数域F都包括有理数域Q. 即:有理数域为最小数域.
证明: 设F为任意一个数域.由定义可知,
0 F, 1 F . 于是有 m Z , m 1 1 1 F

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

矩阵理论课件 第一章 线性空间与线性变换

矩阵理论课件  第一章 线性空间与线性变换

x x1 x2 x y1 y2
k1
xn
k2
kn
k1 t1
k2
A
t2kn tn t1 源自ynt2x1
x2
t1
xn
A
t2
tn
tn
不同基之间过渡矩阵的求法:
已知两组基 (I )x1, x2 , , xn ( II ) y1, y2 , , yn
基 (III )到基 (I ) 的过渡矩阵 C1 为:
1 1 1 1
C1
0 0
1 0
1 1
1 1
0 0 0 1
基 (III )到基 (II )的过渡矩阵 C2 为:
1 0 1 1
C2
0 1
1 1
1 1
1
0
1 1 0 1
则由基 (I ) 到基 (II ) 的过渡矩阵 C 为:
1 1 1 11 1 0 1 1
③求V1 的V基2 与维数。
分析: 设V的两个子空间为
求 x1, x2, , xm , y1, y2, , yn
的最大无关组: 的基。
V1
V2
V1 L( x1, x2 , , xm ) V2 L( y1, y2 , , yn )
解: ⑴先将 V表1 示成生成子空间 x1 x2 x3 x4 0 的基础解系为
k1x1 k2 x2 kn xn 构成的集合形成V 的一个子空间,称之为由该向量组生 成的子空间。记为 W L( x1, x2 , , xn )
定义3 (子空间的和)
设 W1,W2 是 V L(P) 的两个子空间,称集合
W W1 W2 x y x W1, y W2
为子空间 W1 和 W2 的和。

矩阵论第一章线性空间和线性变换

矩阵论第一章线性空间和线性变换
而开方运算则不是,因为显然有
∃x∈R, x ∉ R
(采用这种观点来读数学,你不觉得别有情致吗?)每一种作用都有 其特性,因而每种运算都有它所服从的规律——运算律,所以在定义 运算时,需要讨论或说明它的运算律。
既然如此,是否有某种方式来描述我们的物质世界呢?就宏观现 象而论,涉及到各式各样的物质,自然的作用使物质产生互变,而且 我们认为物质世界是“完备”的,这句话意味着人类的向往,例如“点 石成金”等这类愿望。从这些粗糙的认识出发,我们来探讨描述它的
§6.1 K 积……………………………………………………(258) §6.2 拉伸算子Vec ……………………………………………(264)
§6.3 几个常见的矩阵方程…………………………………(271) 参考目录……………………………………………………………(275)
第一章 线性空间和线性变换
§1.1 引言
12121212nnnnnxxyyxxyyxyfxyxyxy?????12????????????????????????????????定义数乘12nnnxxaxaxafxfaxaxax??????????????????????????????容易验证这些运算满足公理系的要求nff是线性空间
目录
第二章 特征值和特征向量………………………………………(86) §2.1 引言………………………………………………………(86) §2.2 特征值、特征多项式和最小多项式……………………(87) §2.3 特征矢量和特征子空间………………………………(103) §2.4 约当标准型……………………………………………(113) §2.5 特征值的分布…………………………………………(128) §2.6 几个例子………………………………………………(138)

课件 矩阵论

课件 矩阵论

6

对于数组
k 1
,L ,
km
,
因为
k 1
y 1
+L+
km
ym
=
(
x 1
,L,
x
n
)(
k1α
1
+L+
kmα m
)

等价于 k1α1 + L + kmα m = θ , 所以结论成立.
四、基变换与坐标变换
1.基变换:设线性空间V
n
的基(Ⅰ)为
x 1
,L,
xn
,
基(Ⅱ)为
y 1
,L,
yn
,

y 1
=
cx 11 1

S 2
∀b ∈
S 2

b∈
S 1
,
即S 2

S 1
交:
S 1
I
S 2
=
{a
a

S 1

a∈
S2 }
并:
S 1
U
S 2
=
{a
a

S 1

a

S 2
}
和: S 1
+
S 2
=
{a
=
a 1
+
a 2
a 1

S 1
,
a 2

S 2
}
例1
S 1
=
{A
=
a 11
a21
0
a
22
ai j ∈ R}
S 2
=
{A

矩阵分析 第一章

矩阵分析 第一章

矩阵的代数性质1.矩阵是线性映射的表示:线性映射的相加表示为矩阵的相加线性映射的复合表示为矩阵的相乘2.矩阵是一种语言,它是表示复杂系统的有力工具。

学习矩阵理论的重要用途之一就是学会用矩阵表示复杂系统的关系,培养根据矩阵推演公式的能力是学习矩阵论的目的之一。

定义一个矩阵有几种方式:可以通过定义矩阵的每一个元素来定义一个矩阵,也可以通过矩阵具有的性质来定义一个矩阵。

如:对称矩阵可以定义为:a ij =a ji也可以定义为: (x, Ay)=(Ax,y),还可以定义为: Ax=∇f(x), 其中f(x)=x T Ax/2,即它对向量x 的作用相当于函数f(x)在x 处的梯度。

3. 矩阵可以表示为图像矩阵的大小可以表示为图像。

反之,一幅灰度图像本身就是矩阵。

图像压缩就是矩阵的表示问题.这时矩阵相邻元素间有局部连续性,既相邻的元素的值大都差别不大。

4. 矩阵是二维的(几何性质)矩阵能够在二维的纸张和屏幕等平面媒体上表示,使得用矩阵表示的问题显得简单清楚,直观,易于理解和交流。

很多二元关系很直观的就表示为矩阵,如关系数据库中的属性和属性值,随机马尔科夫链的状态转移概率矩阵,图论中的有向图或无向图的矩阵表示等。

第一章:线性空间和线性变换1. 线性空间集合与映射集合是现代数学最重要的概念,但没有严格的定义。

集合与其说是一个数学概念,还不如说是一种思维方式,即用集合(整体)的观点思考问题。

整个数学发展的历史就是从特殊到一般,从个体到整体的发展历程。

集合的运算及规则,两个集合的并、交运算以及一个集合的补;集合中元素没有重合,子集,元素设S ,S'为集合映射:为一个规则σ:S → S', 使得S 中元素a 和S'中元素对应,记为 a'=σ(a),或σ:a →a'. 映射最本质的特征在于对于S 中的任意一个元素在S'中仅有唯一的一个元素和它对应。

映射的原象,象;映射的复合。

矩阵论第一章

矩阵论第一章

定义 1. 具有某种特定性质的事物的总体称为 集合. 组成集合的事物称为元素. 不含任何元素的集合称为空集 , 记作 .
元素 a 属于集合 M , 记作 a M .
元素 a 不属于集合 M , 记作
a M
(或
a M ) .
表示法:
(1) 列举法: 按某种方式列出集合中的全体元素 .
例: 有限集合 A a1 , a2 , , an
实质:二元关系是描述两个集合之间元素与元素 的关系或者是一个集合内部两个元素之间的关系, 它是满足某种规律的有序对全体。
例 1:
A与B之间是一个住宿关系。
设A {甲,乙,丙,丁}(四个人),B {1, 2,3} (三套房间),
显然,R {(甲,1),(乙,3),(丁,3),(丙,2)} A B
逆映射与复合映射
1.1.8 逆映射的定义
定义: 设有映射 使 称此映射 g为 f 的逆映射 , 习惯上 计为 f 1. 若f有逆映射,则称f可逆. 例如, 映射
A
f
f 1
若存在一新映射
B
其逆映射为
机动
目录
上页
下页
返回
结束
定理1.1.4 设映射f :A→B是可逆的,则f 的逆 映射 f 1 是唯一的。
实数集合
R x x 为有理数或无理数
机动 目录 上页 下页 返回 结束
2. 集合之间的关系及运算
定义2 . 设有集合 A , B , 若 x A 必有 x B , 则称 A 是 B 的子集 , 或称 B 包含 A , 记作 A B
若 A B 且 B A 则称 A 与 B 相等, 记作 A B . 例如 , , ,

矩阵论——讲稿

矩阵论——讲稿

(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22

R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j

R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 映射的乘积(复合):若 f : S1 → S2 和 g: S 2→ S3,则映射的 乘积 g○ f 定义为: g○ f(a)=g(f(a))。
在不至混淆的情况下,简记 g○ f 为 gf
映射的例子
❖ 例子1:设集合S是数域F上所有阶方阵的集合,则
f(A)=det(A) 为S到F的映射。 ❖ 例2:设S为次数不超过n的多项式构成的集合,则求导运 算:
例 6 在 R 中满足Cauchy条件的无限序列组成的
子集合也构成 R上的线性空间。Cauchy条件是:
0,N0, 使得对于 m,nN都有
am an
例7 在 R 中满足Hilbert条件的无限序列组成的
ห้องสมุดไป่ตู้
子集合构成 R 上的线性空间。
Hilbert条件是:级数
a n 2 收敛
n 1
线性空间的基本概念及其性质
R { a 1 ,a [ 2 ,a 3 , ]|a i R ,i 1 ,2 ,3 , }
在R∞中定义加法与数乘:
[a1,a2,a3,][b1,b2,b3,] [a1 b1,a2 b2,a3 b3,] k[a1,a2,a3,][ka1,ka2,ka3,]
则 R∞ 为实数域 R上的一个线性空间。
线性空间的例子(续)
则称 1,2,,n 为 V 的一个基底;(k1,k2,,kn)T为
向量 在基底 1,2,,n 下的坐标。此时我们称
V 为一个 n 维线性空间,记为 dimV=n。
基底的例子
例1 实数域 R 上的线性空间 R3 中向量组
(1 ,0,0),(1 ,1 ,0),(1 ,1 ,1 )
与向量组
(0,1 ,1 ),(1 ,0,1 ),(1 ,1 ,0)
sinx,cosx,sin2x,cos2x,, sinnx,cosnx, n4.
都是线性相关的函数组。
线性空间的基底与维数
定义:设 V 为数域 F上的一个线性空间。如果在
V 中存在 n 个线性无关的向量 1,2,,n,使得
V 中的任意一个向量 都可以由 1,2,,n 线性
表出:
k 11 k 22 k nn
集合
❖ 集合
元素、子集、集合相等、运算(交、并、补)
❖ 例:数域是一个集合含有加法+和乘法*
含有元素0,满足对任何元素a,有 a+0=a; 含有1,满足对任何元素a,有 a*1=a; 任何元素 a 存在负元素 b,满足a+b=0; 非零元素a存在逆元素b,满足a*b=1; 对加法和乘法封闭
❖ 常用数域有:有理数域、实数域、复数域
唯一; (5)如果向量组(I)可以由向量组(II)线性表出,那
么向量组(I)的秩小于等于向量组(II)的秩; (6)等价的向量组秩相同。
例1 实数域 R上的线性空间 RR 中,函数组
e1x,e2x,,enx
是一组线性无关的函数,其中 1,2,,n 为一组互不相同
的实数。
例2 实数域 R 上的线性空间 RR 中,函数组
映射
❖ 映射:集合S到集合S‘的一个映射是指一个法则(规则) f : S → S’,对S中任何元素a,都有S’中的元素a‘与之对应,记为: f(a)=a’ 或 a→a’。一般称a’为a的像,a为a’的原像。
❖ 变换:若S=S‘,则称映射为变换。
❖ 映射的相等:设有两个映射 f : S → S’和 g: S → S’,若对任 何元素 a∈S 都有 f(a)=g(a) 则称 f 与 g 相等。
第一章
线性空间和线性映射
本章知识要点
❖ 线性空间:维数、基、坐标、基变换、坐标变换; ❖ 线性空间的分解:子空间、值域(像空间)与核空间
(零空间)、秩与零度、子空间的交、和与直和; ❖ 线性变换及其矩阵表示:定义、运算、值域与核空
间、秩与零度、相似类、特征值与特征向量、不变 子空间、Jordan标准形; ❖ 欧氏空间和酉空间:内积、度量矩阵、正交、标准 正交基、正交分解与正交补、正交变换与正交矩阵、 对称变换与对称矩阵、Hermite变换与Hermite矩阵、 正规矩阵与可对角化、谱分解。 ❖ Hibert空间:平方可积空间和平方可和空间。
基本概念:线性组合;线性表示;线性相关;线性无关; 向量组的极大线性无关组;向量组的秩。
❖ 基本性质:
(1)含有零向量的向量组一定线性相关; (2)整体无关则部分无关;部分相关则整体相关; (3)如果含有向量多的向量组可以由含有向量少的向量
组线性表出,那么含有向量多的向量组一定线性相关; (4)向量组的秩是唯一的,但是其极大线性无关组并不
上的线性空间。 例3:实数域 R 上全体次数小于或等于 n 的多项式集合 R[x]n
构成实数域 R 上的线性空间。 例4:全体正的实数 R+ 在下面的加法与数乘的定义下构成实数
域上的线性空间:对任意 k∈R, a,b∈R+
加法运a算 b: ab 数乘运k算 a: ak
线性空间的例子(续)
例5:R∞表示实数域 R 上的全体无限序列组成的的 集合。即
x1,x2,,xn
是一组线性无关的函数,其中 1,2,,n 为一组互不相同
的实数。
例3 实数域 R 上的线性空间 RR 中,函数组
1 ,c o s x ,c o s 2 x ,,c o s n x
也是线性无关的。
例4 实数域 R 上的线性空间空间 R R 中,函数组 1,cos2x,cos2x
与函数组
δ(f(t))=f’(t) 为S到S的变换。 ❖ 例3:S为平方可积函数构成的集合,则傅里叶变换:
F(f) () f(t)ejtdt
为S到S上的一个变换。
线性空间的定义
定义:设 V 是一个非空的集合,F 是一个数域,在集合 V 中定 义两种代数运算, 一种是加法运算,用 + 来表示,另一种是 数乘运算, 用 ∙ 来表示, 并且这两种运算满足下列八条运算律:
(1)加法交换律:α+β= β + α (2)加法结合律: (α+β)+ γ= α+(β+γ) (3)零元素:在 V 中存在一个元素0,使得对于任意的α∈V
都有
α+ 0 =α (4)对于V中的任意元素α都存在一个元素 β使得:α+β= 0
线性空间的例子
例1:全体实函数集合 RR构成实数域 R 上的线性空间。 例2:复数域 C上的全体 m×n 阶 矩阵构成的集合Cm×n 为 C
相关文档
最新文档