向量与矩阵的基本运算
向量与矩阵的基本运算与性质

向量与矩阵的基本运算与性质向量与矩阵是线性代数的基础概念,它们在数学和物理领域中扮演着重要的角色。
本文将介绍向量与矩阵的基本运算以及它们的性质。
一、向量向量是具有大小和方向的量,通常表示为一个有序的实数列表或箭头。
向量可以用于表示力、速度、加速度等概念。
在线性代数中,向量通常表示为一个列向量或行向量。
1. 向量的表示向量可以用单个变量加上一个箭头表示,例如a→。
在文本中,向量通常以粗体字母表示,例如a。
2. 向量的加法向量的加法是指对应位置上的元素相加得到新的向量。
设有两个n 维向量a=(a1,a2,...,aa)和a=(a1,a2,...,aa),则它们的和为:a+a=(a1+a1,a2+a2,...,aa+aa)3. 向量的数量乘法向量的数量乘法是指将向量的每个元素与一个实数相乘得到新的向量。
设有一个n维向量a=(a1,a2,...,aa)和实数a,则其数量乘积为:aa=(aa1,aa2,...,aaa)4. 向量的点积向量的点积,也称为内积或数量积,是两个向量对应位置上的元素相乘再相加的结果。
设有两个n维向量a=(a1,a2,...,aa)和a=(a1,a2,...,aa),则它们的点积为:a·a=a1a1+a2a2+...+aaaa二、矩阵矩阵是一个二维数组,通常用于表示一组数据或线性变换。
矩阵由行和列组成,行表示矩阵的水平方向,列表示矩阵的垂直方向。
1. 矩阵的表示矩阵通常以大写字母表示,例如a、a。
一个m行n列的矩阵可以表示为:a=⎡⎢⎢⎢⎢⎢⎣a11 a12 ⋯a1a a21 a22 ⋯a2a⋮⋮⋱⋮aa1 aa2 ⋯aaa⎤⎥⎥⎥⎥⎥⎦2. 矩阵的加法矩阵的加法是指对应位置上的元素相加得到新的矩阵。
设有两个m 行n列的矩阵a和a,则它们的和为:a+a=⎡⎢⎢⎢⎢⎢⎣a11+a11 a12+a12 ⋯a1a+a1a a21+a21a22+a22 ⋯a2a+a2a⋮⋮⋱⋮aa1+aa1 aa2+aa2 ⋯aaa+aaa⎤⎥⎥⎥⎥⎥⎦3. 矩阵的数量乘法矩阵的数量乘法是指将矩阵的每个元素与一个实数相乘得到新的矩阵。
线性代数中的矩阵与向量之运算技巧

线性代数中的矩阵与向量之运算技巧矩阵和向量是线性代数中最基础的概念之一。
了解它们的运算技巧是学好线性代数的前提。
本文将介绍一些常用的矩阵和向量运算技巧。
一、矩阵基本运算1. 加减法运算对于两个相同大小的矩阵A和B,它们的和(A+B)和差(A-B)分别对应位置上的元素相加减得到。
例如:A = [[1,2],[3,4]]B = [[-1,3],[4,-2]]则 A+B = [[0,5],[7,2]],A-B = [[2,-1],[-1,6]]2. 数乘运算对于数k和一个矩阵A,它们的积(kA)就是把A的每个元素都乘以k得到。
例如:A = [[1,2],[3,4]]k = 2则 kA = [[2,4],[6,8]]3. 矩阵乘法对于两个矩阵A和B,若A的列数等于B的行数,则它们可以相乘得到一个新的矩阵C。
C的每个元素都是A的一行与B的一列对应元素的乘积之和。
例如:A = [[1,2,3],[4,5,6]]B = [[-1,3],[2,-4],[5,1]]则 AB = [[18,-8],[39,9]]注意:矩阵乘法不满足交换律,即A×B ≠ B×A。
二、向量基本运算1. 加减法运算对于两个相同长度的向量v和w,它们的和(v+w)和差(v-w)分别对应位上的元素相加减得到。
例如:v = [1,2,3]w = [-1,4,2]则 v+w = [0,6,5],v-w = [2,-2,1]2. 数乘运算对于数k和一个向量v,它们的积(kv)就是把v的每个元素都乘以k得到。
例如:v = [1,2,3]k = 2则 kv = [2,4,6]3. 点积运算对于两个长度相同的向量v和w,它们的点积(v·w)是将两个向量对应位置元素的乘积相加得到的一个数。
例如:v = [1,2,3]w = [-1,4,2]则 v·w = 9本文介绍的是矩阵和向量的基本运算技巧,仅是线性代数的冰山一角,线性代数是一门内涵丰富的课程,需要大家认真研究,深入理解。
向量与矩阵的定义及运算学习资料

α 1 (2α) 2
(1 5,1 1,1 6,1 ( 1),1 4)
2 22 2
2
2.5, 0.5, 3, 0.5, 2 ,
β1(2 β ) ( 0 .5 ,0 .5 ,2 ,1 .5 , 2 ). 2
12
二 矩阵
定义3 设P是复数集C的一个子集合,其中包含 0与1。如果P中的任意两个数a,( b这两个数也可 以相同)的和、差、积、商(除数不为零)仍 在P中,则称P是一个数域(number field).
向量与矩阵的定义及运算
n维行向量和n维列向量都可称为n维向量
(vector), n维向量常用小写黑体希腊字母,, ,L 表示。
例: =(1,3,8);
(10, 23,45, 2);
x
= y
z
2
定 义 2 设 两 个 n维 向 量 =(a1, a2 ,L , an ), (b1 , b2 ,L , bn )
定义5 设A(aij)sn和B(bij)sn是(数域P上) 两个sn(同型)矩阵,则 (1)如果它们对应的元素分别相等,即aij bij, (i 1,2,L,s;j 1,2,L,n),则称A与B相等,记作 AB.
注意:和要简写成 必须满足:每项形式完全一样,不一样
的只是求和指标,而且求和指标连续从小到大增加一。 9
例 2 证 明 : 任 意 n维 向 量 (k1,k2,L,kn)是 向 量 组 1(1,0,L,0),2(0,1,L,0),L,n(0,L,0,1)的
一 个 线 性 组 合 。 证明:由向量的线性运算,得
(k1, k2 ,L , kn ) (k1, 0,L , 0) (0, k2, 0,L , 0) L (0,L , 0, kn )
向量与矩阵运算

向量与矩阵运算在高中数学学科中,向量与矩阵运算是一项重要的内容。
向量与矩阵的概念与运算规则不仅在数学中有广泛的应用,而且在物理、工程、计算机科学等领域也有着重要的地位。
本文将详细介绍向量与矩阵的定义、基本运算以及一些常见应用。
一、向量的定义与基本运算向量是有方向和大小的量,通常用箭头表示。
向量可表示为一个有序的数字组成的列,也可以视为从原点指向某一点的箭头。
例如,向量A可以表示为(A1, A2, ..., An)。
向量的基本运算包括加法和数乘。
向量的加法是对应元素相加,即A +B = (A1 + B1, A2 + B2, ..., An + Bn),其中A和B为同维数的向量。
数乘是将向量的每个元素都乘以一个实数,即kA = (kA1, kA2, ..., kAn),其中k为实数。
二、矩阵的定义与基本运算矩阵是一个按照矩形排列的数表,通常用大写字母表示。
矩阵有行与列组成,用m×n表示,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵的基本运算包括矩阵加法、矩阵数乘和矩阵乘法。
矩阵的加法是对应元素相加,即A + B = [aij + bij],其中A和B为同维数的矩阵。
矩阵的数乘是将矩阵的每个元素都乘以一个实数,即kA = [kaij]。
矩阵的乘法是一种复合运算,需要满足乘法的规则。
若A为m×n 的矩阵,B为n×p的矩阵,则AB为m×p的矩阵。
矩阵AB的第i行第j列元素可以表示为:ABij = aij * bij,其中aij表示A矩阵的第i行第j 列元素,bij表示B矩阵的第i行第j列元素。
三、向量与矩阵的应用向量与矩阵运算在许多实际问题中有着广泛的应用。
以下是一些常见的应用领域:1. 物理学:在物理学中,向量和矩阵可以用来描述物体的运动和力的作用。
例如,位移向量可以用来描述物体的位置变化,力矩矩阵可以用来描述物体受到的力的作用。
2. 工程学:向量和矩阵可以用来描述工程中的各种变量和关系。
高等数学基础版教材答案

高等数学基础版教材答案---第一章线性代数1.1 向量与空间1. 向量与向量的线性组合:- 若向量组V1,V2,...,Vn,满足对于任意的实数k1,k2,...,kn,有k1V1 + k2V2 + ... + knVn 属于 V,则称向量组 V1,V2, (V)是线性相关的。
- 若向量组 V1,V2,...,Vn 是线性相关的,且不存在非零实数k1,k2,...,kn,使得 k1V1 + k2V2 + ... + knVn = 0,则称向量组 V1,V2,...,Vn 是线性无关的。
2. 向量与矩阵的基本运算:- 向量的加法:设有向量 A 和 B,A = (a1, a2, ..., an),B = (b1,b2, ..., bn),则有 A + B = (a1+b1, a2+b2, ..., an+bn)。
- 向量的数乘:设有向量 A = (a1, a2, ..., an),k 是实数,则有 kA = (ka1, ka2, ..., kan)。
- 矩阵的加法:设有矩阵 A 和 B,A = (aij),B = (bij),则有 A + B = (aij+bij)。
- 矩阵的数乘:设有矩阵 A = (aij),k 是实数,则有 kA = (kaij)。
3. 解线性方程组:- 齐次线性方程组:设有 n 元线性方程组 A·X = 0,其中 A 是一个m×n 矩阵,X 是 n 维列向量,则该方程组的解空间是由 A 的零解及所有非零解构成的。
- 非齐次线性方程组:设有 n 元线性方程组 A·X = B,其中 A 是一个 m×n 矩阵,X 和 B 是 n 维列向量,则该方程组存在解的充要条件是:B 可以由 A 的列向量线性表示。
---第二章微积分2.1 导数与微分1. 导数的定义与性质:- 定义:若函数 f(x) 在点 x0 处有定义,则称 f(x) 在点 x0 处可导,记为 f'(x0) 或 dy/dx |_(x=x0)。
向量与矩阵的定义及运算

a11 a12
a
21
a22
a
s
1
as2
a1n
a
2
n
a
sn
称 为 数 域 P上 的 s n矩 阵 (m atrix ), 通 常 用 一 个 大 写
黑 体 字 母 如 A或 Asn表 示 , 有 时 也 记 作 A (aij )sn , 其
中 aij (i 1, 2, , s; j 1, 2, , n)称 为 矩 阵 A的 第 i行 第 j列
注意:和要简写成 必须满足:每项形式完全一样,不一样
的只是求和指标,而且求和指标连续从小到大增加一。 10
例 2证 明 : 任 意 n维 向 量 (k1,k2, ,kn)是 向 量 组 1(1,0, ,0),2(0,1, ,0), ,n(0, ,0,1)的
一 个 线 性 组 合 。 证明:由向量的线性运算,得
例 子 : 有 理 数 集 Q 、 实 数 集 R 、 复 数 集 C都 是 数 域 , 分 别 称 为 有 理 数 域 、 实 数 域 、 复 数 域 。 而 整 数 集 Z不 是 数 域 。 我 们 主 要 用 到 的 是 实 数 域 和 复 数 域 。
14
定 义 4 数 域 P中 s n个 数 排 成 的 s行 n列 的 长 方 表 ,
k与 的 数 乘 , 记 作 k (ka1, ka2 , , kan ).
注 意 : 同 型 向 量 才 能 进 行 加 法 以 及 比 较 是 否 相 等
4
(4)分 量 全 为 零 的 向 量 (0 ,0 , ,0)称 为 零 向 量 , 记 作 0 (应 注 意 区 别 数 零 和 零 向 量 );
元 素(entry )。
15
§1.1-向量与矩阵的定义及运算

(10)若kA 0,则k 0,或者A 0.
28
例 设矩阵A、B、C满足等式 3(A+C)=2(B-C),其中
A
2 1
3 3
6 5
,
B
3 1
2 3
4 5
,
求C.
解:由等式可得 5C 2B 3A
23 21
22 2 (3)
b1 j
(ai1
ai 2
L
ain
)
b2 M
j
= A的第i行乘 B的第j列
bnj
故可以把乘法规则总结为:左行乘右列.
36
注意:(1) 只有当第一个矩阵的列数等 于第二个矩阵的行数时,两个矩阵才 能相乘.
例如
1 3 5
2 2 8
3 1 9
1 6
6 0
8 1
不存在.
(2) 乘积矩阵C的行数=左矩阵的行数, 乘积矩阵C的列数=右矩阵的列数.
ka11
(kaij )sn
ka21
M
kas1
ka12 ka22
M
ka s 2
L ka1n
L
ka2n
M M
L
kasn
为数k与A的数乘,记作kA.
25
(4) 负矩阵:将矩阵A=(aij)s×n的各元 素取相反符号,得到的矩阵称为矩阵A
的负矩阵,记为-A. 即
a11 a12 L a1n
(aij )sn
a21 M
a22 M
L M
a2n
M
as1
as2
L
asn
26
矩阵的线性运算性质
(1) A B B A;
向量矩阵运算原理

向量矩阵运算原理向量矩阵运算是线性代数中的重要概念,它描述了向量和矩阵在数学上的运算规则和性质。
在机器学习、统计学、物理学等领域中,向量矩阵运算被广泛应用于数据处理、模型建立和问题求解等方面。
下面将介绍向量矩阵运算的原理和相关参考内容。
一、向量向量是有序的一组数值,可以用于表示空间中的点、方向和大小等。
假设向量v有n个元素,可以表示为v=(v1,v2,...,vn),其中每个元素均为实数。
向量的运算包括加法、标量乘法和内积三类。
1. 向量加法:向量加法是指将两个向量逐个对应元素相加,得到一个新的向量。
假设有两个向量a=(a1,a2,...,an)和b=(b1,b2,...,bn),它们的加法表示为c=a+b=(a1+b1,a2+b2,...,an+bn)。
2. 标量乘法:标量乘法是指将一个标量与向量的每个元素相乘,得到一个新的向量。
假设有一个向量a=(a1,a2,...,an)和一个标量k,它们的标量乘法表示为c=k*a=(k*a1,k*a2,...,k*an)。
3. 内积:内积是指两个向量对应元素相乘后再求和的结果。
假设有两个向量a=(a1,a2,...,an)和b=(b1,b2,...,bn),它们的内积表示为c=a·b=a1*b1+a2*b2+...+an*bn。
二、矩阵矩阵是由若干个数排成的矩形阵列,是向量的推广形式。
矩阵可以用于表示多个向量或者多个方程所组成的线性系统。
假设矩阵A有m行n列,可以表示为A=[a_ij],其中a_ij表示第i行第j列的元素。
矩阵的运算包括加法、标量乘法和矩阵乘法三类。
1. 矩阵加法:矩阵加法是指将两个矩阵的对应元素相加,得到一个新的矩阵。
假设有两个矩阵A=[a_ij]和B=[b_ij],它们的加法表示为C=A+B=[a_ij+b_ij]。
2. 标量乘法:标量乘法是指将一个标量与矩阵的每个元素相乘,得到一个新的矩阵。
假设有一个矩阵A=[a_ij]和一个标量k,它们的标量乘法表示为C=k*A=[k*a_ij]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运行结果:
2、特征值分解
如果A是n×n矩阵,若Ax =λx则称λ为A的特征 值,x为相应的特征向量。 函数eig()为特征值分解函数,其调用格式为: [x,D]=eig(A) %x、D为输出变量(返回值),A为输入变量.D的 对角元素是特征值,x列是相应的特征向量 例 >> A=[1 2 3;4 5 6;7 8 9]; >> [x,D]=eig(A) 运行结果为:
f 作用在 x 的每个分量上 若 A 是矩阵,则 f(A) 是一个与 A 同形状的矩阵
函数取值
exp(a11) exp(a12 )
例:
exp(
A)
exp(a21
)
exp(a22 )
exp(am1) exp(am2 )
exp(a1n ) exp(a2n )
exp(amn )
例:>> x=[0:pi/4:pi]; A=[1 2 3; 4 5 6];
例:>> x=[1,2,3];y=[2,3,4];
>> A=[x,y], B=[x;y]
例:>> C=magic(3)
自动动手
1、使用函数生成8×10零矩阵、 5×5元素都 为1的矩阵、 5×5单位矩阵、 4×4魔术方阵。
常见矩阵生成函数
zeros(m,n) 生成一个 m 行 n 列的零矩阵,m=n 时可简写为 zeros(n)
数与数组的点幂
例:x=[1 2 3]; y=[4 5 6];
x.^y =[1^4,2^5,3^6]=[1,32,729] x.^2 =[1^2,2^2,3^2]=[1,4,9]
2 .^x = ? 2 .^[x;y]= ?
.^ 前面留个空格
Matlab中的所有 标点符号必须在 英文状态下输入
三 矩阵函数
例:a=[1:4] ==> a=[1, 2, 3, 4]
b=[0:pi/3:pi] ==> b=[0, 1.0472, 2.0944, 3.1416] c=[6:-2:0] ==> c = [6, 4, 2, 0]
向量与矩阵运算
向量与矩阵的生成(续)
矩阵的生成 ✓ 直接输入: A=[1, 2, 3; 4, 5, 6; 7, 8, 9] ✓ 由向量生成 ✓ 通过编写m文件生成 ✓ 由函数生成
ones(m,n)
eye(m,n)
diag(X)
tril(A) triu(A) rand(m,n) randn(m,n)
生成一个 m 行 n 列的元素全为 1 的矩阵, m=n 时可写为 ones(n) 生成一个主对角线全为 1 的 m 行 n 列矩阵, m=n 时可简写为 eye(n),即为 n 维单位矩阵 若 X 是矩阵,则 diag(X) 为 X 的主对角线向量 若 X 是向量,diag(X) 产生以 X 为主对角线的对角矩阵 提取一个矩阵的下三角部分
>> C=A*B
二 矩阵基本运算
矩阵的除法:/、\ 右除和左除
若 A 可逆方阵,则 B/A <==> A 的逆右乘 B <==> B*inv(A) A\B <==> A 的逆左乘 B <==> inv(A)*B
通常,矩阵除法可以理解为
X=A\B <==> A*X=B X=B/A <==> X*A=B 当 A 和 B 行数相等时即可进行左除 当 A 和 B 列数相等时即可进行右除
① log 是自然对数,即以 e 为底数 ② mod(x,y) 结果与 y 同号,rem(x,y) 则与 x 同号 ③ max 等函数的参数是矩阵时,是作用在矩阵各列上
上机作业
1. 试分别生成 5 阶的单位阵、8 阶均匀分布的随机矩阵及其 下三角矩阵
2. 生产列向量 x=[1, 3, 5, 7, 9, … , 29] 3. 生成以 x 的元素为对角线的矩阵 A,并输出 A 的行数 4. 生成一个与 A 同阶的正态分布的随机矩阵 B 5. 输出 A 与 B 的 kronecker 乘积矩阵 C 6. 生成由 A 与 B 点乘得到的矩阵 D 7. 生成一个由 D 的第 8、4、10、13 行和第 7、1、6、9、2
>> B=fliplr(A) >> C=flipud(A) >> D=rot90(A), E=rot90(A,-1)
矩阵操作
矩阵的转置与共轭转置
’ 共轭转置 .’ 转置,矩阵元素不取共轭
点与单引号之间不能有空格!
例:>> A=[1 2;2i 3i](动手验证)
>> B=A’ >> C=A.’
以三角分解函数lu()和特征值分解函数eig() 讲述矩阵函数的使用。
1、三角分解
最基本的分解“LU”分解,矩阵分解为两个 基本三角矩阵形成的方阵,一个为上三角矩阵 一个为下三角矩阵。计算的方法用高斯消去法。 函数格式[L,U]=lu(X)
%L,U为输出变量(返回值),A为输入变量, U为上三角阵,L为下三角阵或其变换形式, 满足LU=X 运行结果如下:
a11B a12B K
C
A
B
a21B
a22 B
K
L L L
an1
B
an 2 B
K
a1mB
a2
m
B
L
anm
B
Kronecker 乘积的性质
A B 是 np×mq 矩阵;通常 A B B A
任何两个矩阵都有 Kronecker 乘积
Matlab 中实现两个矩阵 Kronecker 相乘的函数为
列组成的子矩阵 E 8. 求出矩阵 E 的最大元素 9. 教材第 53 页,1(1),(3),(4)、2、3、4、5
提取一个矩阵的上三角部分
产生 0~1 间均匀分布的随机矩阵 m=n 时简写为 rand(n)
产生均值为0,方差为1的标准正态分布随机矩阵 m=n 时简写为 randn(n)
矩阵操作
提取矩阵的部分元素: 冒号运算符
A(:) A的所有元素 A(:,:) 二维矩阵A的所有元素 A(:,k) A的第 k 列, A(k,:) A的第 k 行 A(k:m) A的第 k 到第 m 个元素 A(:,k:m) A的第 k 到第 m 列组成的子矩阵
kron(A,B) Kronecker乘积有时也称张量积
矩阵的数组运算
数组运算:对应元素进行运算
数组运算包括:点乘、点除、点幂 相应的数组运算符为: “.* ” , “./ ” , “.\ ” 和 “ .^ ” 点与算术运算符之间不能有空格!
例:>> A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4];
数学实验
向量与矩阵运算
主要内容
Matlab能处理数、向量和矩阵.数实际上是 一个1×1维矩阵. 这节的主要内容:
➢矩阵的生成、操作; ➢矩阵的基本运算; ➢矩阵的函数.
一 向量与矩阵运算
向量与矩阵的生成
向量的生成 ✓ 直接输入: a=[1,2,3,4] ✓ 冒号运算符 ✓ 从矩阵中抽取行或列
矩阵基本运算
矩阵的加减:对应分量进行运算
要求参与加减运算的矩阵具有 相同的维数
例:>> A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4]
>> C=A+B; D=A-B;
矩阵的普通乘法
要求参与运算的矩阵满足线性代数中矩阵相乘的原则
例:>> A=[1 2 3; 4 5 6]; B=[2 1; 3 4];
>> C=A.*B; D=A./B; E=A.\B; F=A.^B;
参与运算的对象必须具有相同的形状!
函数取值
函数作用在矩阵上的取值
设 x 是变量, f 是一个函数
当 x = a 是标量时,f(x) = f(a)也是一个标量 当 x = [a, b, … , c] 是向量时,f(x)= [f(a), f(b), … , f(c)]
例:>> A=[1 2 3; 4 5 6]
>> size(A) >> size(A,1) >> size(A,2)
length(x) 返回向量 X 的长度 length(A) 等价于 max(size(A))
自己动手
1、用rand函数生成8×10矩阵A; 2、用length、size函数求出矩阵A的行数和 列数;
矩阵的乘方
A 是方阵,p 是正整数 A^p 表示 A 的 p 次幂,即 p 个 A 相乘。
若 A 是方阵,p 不是正整数 A^p 的计算涉及到 A 的特征值分解,即若 A = V*D*V-1 则 A^p=V*(D.^p)/V
矩阵的乘方
d1 0 0
若
a
是标量,
D
0
d2
0
0 0 dn
自己动手
A(:) 与 A(:,:) 的区别 ? 如何获得由 A 的第一、三行和第一、二列组成的子矩阵?
矩阵操作
矩阵的旋转
fliplr(A) 左右旋转 flipud(A) 上下旋转 rot90(A) 逆时针旋转 90 度;
rot90(A,k) 逆时针旋转 k×90 度
例:>> A=[1 2 3;4 5 6]
Matlab中常见数学函数
sin、cos、tan、cot、sec、csc、… asin、acos、atan、acot、asec、acsc、… exp、log、log2、log10、sqrt abs、conj、real、imag、sign fix、floor、ceil、round、mod、rem max、min、sum、mean、sort、fft norm、rank、det、inv、eig、lu、qr、svd ……