Factorization--公式法
数学词汇中英文对照(初中部分)方程与代数

数学词汇中英文对照(初中部分)方程与代数数学词汇中英文对照(初中部分)二、方程与代数代数(学):algebra字母表示数:Use letters to indicate numbers代数式:algebraic expression单项式:monomial系数:coefficient次数:degree多项式:polynomial二项式:binomial三项式:trinomial二次三项式:second degree trinomial项:term常数项:constant term整式:integral expression升幂:in ascending order of the power降幂:in descending order of the power同类项:like terms合并:combine等式:equality, equation等号:sign of equality二次方:(x)squared三次方:(x)cubedn次方:(x)to the power of n/to the n-th power乘法公式:multiplication formula平方差:difference of squares平方差公式:formula for the difference of squares 完全平方:perfect square完全平方公式:formula for the perfect square分解因式:factorizing公因式:common factor提公因式法:method of extracting common factors 十字相乘法:method of cross multiplication分组分解法:method of regrouping长除法:long division分离系数法:method of detached coefficients分式:algebraic fraction无意义:illegal有意义:legal有理式:rational expression约分:reduction of a fraction最简分式:simplest fraction通分:turn fractions to a common denominator最简公分母:simplest common denominator根式:radical根指数:radical exponent被开方数:radicand二次根式:quadratic surd最简二次根式:simplest quadratic surd同类二次根式:similar quadratic surds分母有理化:rationalize a denominator有理化因式:rationalizing factor根:root增根:extraneous root已知数:given number未知数:unknown number方程:equation列方程:form an equation等量关系:equality检验:check根:root解方程:solving equation解法、解:solution一元一次方程:linear equation in one variable方程的解:solution of equation移项:transposition of terms去括号:remove brackes去分母:remove denominator化简:simplify不成立:false不等式:inequality一元一次不等式:linear inequality in one unknown一元一次不等式组:system of linear inequalities in one variable不等号:non-equal sign含绝对值的不等式:inequality with absolute value大于:greater than小于:less than大于等于:greater than or equal to小于等于:less than or equal to不等式性质:property of inequality解集:solution set解不等式:solve inequality公共部分:common part无解:no solution二元一次方程:linear equation in two unknowns二元一次方程组:system of linear equations in two unknowns 代入(消元)法:elimination by substitution加减(消元)法:elimination by addition and subtraction三元一次方程:linear equation in three unknowns三元一次方程组:system of linear equations in three unknowns一元二次方程:quadratic equation in one unknown一般式:general form二次项:quadratic term一次项:linear term常数项:constant term开平方法:radication因式分解法:factorization配方法:complete a perfect squae求根公式法: formula method一元二次方程根的判别式:discriminant of quadratic equation in one variable整式方程:integral equation一元整式方程:linear integral eqution一元高次方程:linear high-order equation二项方程:binomial equation双二次方程:biquadratic equation分式方程:fractional equation无理方程:irrational equation二元二次方程:quadratic equation in two variables一元二次不等式:quadratic inequality in one variable。
《公式法》因式分解

汇报人: 2023-12-26
目录
• 公式法因式分解简介 • 公式法因式分解的基本步骤 • 公式法因式分解的常见类型 • 公式法因式分解的实例解析 • 公式法因式分解的注意事项
01
公式法因式分解简介
因式分解的定义
01
02
03
因式分解的定义
将一个多项式表示为几个 整式的积的形式,这种变 形叫做把这个多项式因式 分解,也叫做分解因式。
在化简过程中,需要注意消除项和合 并同类项。
简化多项式可以使其更容易理解和计 算。
03
公式法因式分解的常见类型
二次多项式的因式分解
01
02
03
04
总结词
利用完全平方公式和平方差公 式进行因式分解
公式法
$ax^2+2abx+b^2=(ax+b) ^2$
公式法
$ax^2-b^2=(ax+b)(ax-b)$
二次多项式的实例解析
总结词
二次多项式是多项式中最简单的一类, 其因式分解方法相对固定,公式法是其 中最常用的方法之一。
VS
详细描述
对于形如ax^2+bx+c的二次多项式,我 们可以使用公式法进行因式分解。首先计 算判别式b^2-4ac的值,然后根据判别式 的值选择合适的公式进行因式分解。当判 别式大于0时,二次多项式有两个实根, 可以使用公式法分解为两个一次多项式的 乘积;当判别式等于0时,二次多项式有 一个重根,可以分解为一个一次多项式的 平方;当判别式小于0时,二次多项式没 有实根,无法使用公式法进行因式分解。
因式分解的步骤
提取公因式、公式法、十 字相乘法、分组分解法等 。
因式分解的作用
数学因式分解公式法

数学因式分解公式法因式分解是数学中的一种基本运算,也是解决代数表达式的一种重要方法。
它可以将一个多项式或者整式分解成一个或多个乘积的形式。
因式分解在代数中有着广泛的应用,是其他许多数学概念和理论的基础。
在进行因式分解之前,我们首先需要了解一些基本的因式分解公式和方法。
接下来,我将详细介绍一些常用的因式分解公式和方法。
1.提取公因式法:这是因式分解中最基本也是最常用的方法之一、具体步骤如下:a)找出所有项中的最大公因式;b)将每一项除以最大公因式,并把最大公因式提取到括号外。
例如,对于多项式6x^2 + 12xy,我们可以找到最大公因式为6,然后将每一项除以6,可以得到因式分解结果为6(x^2 + 2xy)。
2.公式法:公式法是利用一些特定的公式进行因式分解。
这里列举一些常见的公式:a)平方差公式:(a+b)(a-b)=a^2-b^2;b) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2;c) 二次平方差公式:a^2 - 2ab + b^2 = (a - b)^2;d)差平方公式:a^2-b^2=(a+b)(a-b)。
通过运用这些公式,可以将一个多项式因式分解成更简单的形式。
3.短除法:短除法是用来分解整式的一种常用方法。
它的步骤如下:a)找到多项式的首项和首项的系数;b)将首项的系数与待分解整式每一项的系数做除法运算;c)将所得商作为因式分解结果并乘以首项的系数;d)将结果与原整式做减法,得到一个新的多项式,重复上述步骤直到不能再进行短除。
例如,对于整式12x^4-8x^3+6x^2-4x,可以先找到首项为12x^4,然后将12x^4的系数12分别除以其他项的系数,得到商为x和-2x^2、将商与首项的系数相乘得到12x^3和-24x^4,将结果与原整式做减法,得到新的多项式-16x^3+6x^2-4x,重复上述步骤直到不能再进行短除。
4.公因式提取法:公因式提取法是利用多项式中的公共因子进行因式分解的方法。
公式法配方法因式分解法

公式法配方法因式分解法1. 引言在数学中,因式分解是一种将多项式表达式表示为多个乘积的形式的方法。
分解多项式的目的是为了简化计算、化简表达式、寻找方程的解等。
公式法配方法因式分解法是一种基于公式和配方法相结合的因式分解方法,它能够有效地分解各种类型的多项式。
2. 回顾因式分解基础知识在介绍公式法配方法因式分解法之前,我们先回顾一些因式分解的基础知识。
2.1 因式分解的概念因式分解是将一个多项式表达式表示为多个乘积的形式。
例如,将多项式表达式x^2 + 2x + 1进行因式分解,可以得到(x + 1)(x + 1)。
2.2 因式分解的要求进行因式分解时,我们希望得到的乘积形式具有以下几个要求:•乘积形式的各个项之间没有公因子;•乘积形式的各个项的次数和与原多项式相同。
3. 公式法公式法是一种通过使用预先给定的公式来寻找因式分解的方法。
使用公式法时,我们需要熟记一些常见的因式分解公式,例如二次方差式、差二次方平方差式等。
通过将多项式与这些公式进行匹配,并运用一些变换和推导,就可以得到因式分解的结果。
3.1 二次方差式二次方差式是具有形式a^2 - b^2的多项式。
我们可以使用二次方差的公式进行因式分解,公式为:a^2 - b^2 = (a + b)(a - b)例如,将多项式表达式x^2 - 9进行因式分解,可以使用二次方差式的公式得到(x + 3)(x - 3)。
3.2 差二次方平方差式差二次方平方差式是具有形式a^2 - b2c2的多项式。
我们可以使用差二次方平方差的公式进行因式分解,公式为:a^2 - b2c2 = (a - bc)(a + bc)例如,将多项式表达式x^2 - 4y^2进行因式分解,可以使用差二次方平方差式的公式得到(x - 2y)(x + 2y)。
4. 配方法配方法是一种通过将多项式进行合并、分配、变换等运算,再进行因式分解的方法。
使用配方法时,我们需要将多项式进行一系列变形,使得其中某些项能够进行合并或分配运算,从而方便进行因式分解。
2.2分解因式(1)

类型三:用平方差公式分解因式
例3.对下列多项式进行因式分解:
(1)x2-16 (2)1-25b2 4 2 m 0.01n 2 (4) 9
(3)x2y2-z2
举一反三
(4) x4-y4
【变式】把下列各式分解因式:
(1)-49+x2 (2)4(x+m)2 -(x-m)2 (3) x3-x
类型四:用完全平方公式分解因式
类型三、配方法分解因式
例4.分解因式 4a 2 9b 2 12a 6b 8
举一反三
【变式1】分解因式 m 4 m 2 n 2 n 4
举一反三
【变式2】分解因式 t 2 2(m n)t mn(m 2)(n 2)
类型四、添、拆项法分解因式
例5.分解因式:x4+4
判断出分解因式的形式很重要,然后才能设出相应整式的字母系数, 最后要对照原式才能求出字母系数,从而把多项式因式分解。
举一反三
☆☆【变式1】因式分解2x -13x +3
3 2
举一反三
☆【变式2】分解因式:x +3xy+2y +4x+5y+3.
2 2
作业
四中网校首页
“高清视频体验”——―初二数学重 难点拓展”《因式分解综合例题分 析》
m
P
j
n
q
k
综合练习 #328973
综合练习 #328973
练一练
重、难点归纳
重点:
1.熟练的运用十字相乘法、分组分解法、配方法进行多项式的 因式分解;
2.了解使用配方法、添项(拆项)法、待定系数法来分解因式; 3.会利用因式分解解决有关的综合题目
难点:
利用因式分解解决有关的综合题目
类型一:十字相乘法
初数数学中的复变函数公式详解

初数数学中的复变函数公式详解在初等数学中,我们学习了很多关于实数的运算和函数的概念。
然而,在高等数学中,我们会遇到更加复杂且抽象的数学对象,其中之一就是复变函数。
复变函数是定义在复数域上的函数,它既包含了实变函数的性质,又有一些独特的特点。
在本文中,我们将详细解析一些与复变函数相关的重要公式。
1. 欧拉公式欧拉公式是复变函数中最为著名的公式之一。
它将自然对数的底e、圆周率π、虚数单位i以及三角函数之间建立了一个重要的数学关系。
欧拉公式的表达式如下:e^(iπ) + 1 = 0这个公式将复数的指数函数、三角函数和虚数单位统一了起来,展现了复数的神奇和优雅之处。
2. 复变函数的导数公式在实变函数中,我们学习了导数的概念和求导法则。
同样地,对于复变函数,我们也可以定义导数。
对于一般的复变函数f(z),其导数f'(z)的定义如下:f'(z) = lim(Δz→0) [f(z+Δz) - f(z)] / Δz其中Δz是一个无穷小的复数。
利用导数的定义,我们可以推导出复变函数导数的一些重要公式,如幂函数、指数函数、三角函数等的导数公式。
这些公式在复变函数的研究中起到了非常重要的作用。
3. 柯西-黎曼方程柯西-黎曼方程是复变函数理论中的基本方程之一。
它描述了复变函数的解析性质,是判断复变函数是否可导的重要依据。
假设有一个复变函数f(z) = u(x,y) + iv(x,y),其中z = x + iy为复变数,u(x,y)和v(x,y)为它的实部和虚部。
根据柯西-黎曼方程的定义,当函数f(z)可导时,其满足以下两个偏导数条件:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x这两个方程可以判断函数f(z)是否具有解析性,即在某个区域内是否可导。
4. 柯西积分公式柯西积分公式是复变函数中的重要定理之一。
它描述了函数在某个闭合曲线内的积分与曲线所围成的区域内的函数值之间的关系。
假设有一个复变函数f(z)在某个区域内解析,且有一条闭合的简单曲线C,围成的区域为D。
复变函数公式及常用方法总结

复变函数公式及常用方法总结复变函数是指在复平面上定义域为复数集的函数。
复变函数与实变函数不同,其定义域和值域都是复数集合,因此需要引入复数的运算和性质来研究这类函数。
复变函数在数学以及物理、工程学等领域有广泛的应用,如电路分析、信号处理、流体力学等。
1.复变函数的定义与性质:复变函数可以用以下形式表示:f(z) = u(x, y) + iv(x, y),其中z = x + iy;u(x, y)和v(x, y)为实变量x和y的实函数。
复变函数的一些性质如下:(1)复变函数可以进行加减、乘法和除法运算;(2)复变函数的连续性:若f(z)在特定点z0处连续,则其实部和虚部在该点均连续;(3)复变函数的解析性:若f(z)在特定点z0处可导,则其在该点解析;若f(z)在定义域内每一点都解析,则称其为全纯函数;(4)复变函数的实部和虚部都满足拉普拉斯方程式:∂^2u/∂x^2+∂^2u/∂y^2=0和∂^2v/∂x^2+∂^2v/∂y^2=0。
2.常用的复变函数:(1)幂函数:f(z)=z^n,其中n为整数;(2) 指数函数:f(z) = e^z = e^(x+iy) = e^x * e^(iy) = e^x * (cosy + isiny);(3) 对数函数:f(z) = ln(z);(4) 三角函数:正弦函数f(z) = sin(z),余弦函数f(z) = cos(z),正切函数f(z) = tan(z)等;(5) 双曲函数:双曲正弦函数f(z) = sinh(z),双曲余弦函数f(z)= cosh(z),双曲正切函数f(z) = tanh(z)等。
3.复变函数的常用方法:(1)极坐标表示法:将复数z表示为模长r和辐角θ的形式:z=r*e^(iθ)。
在极坐标下,复变函数的运算更加方便,例如可以用欧拉公式将指数函数表示为e^(iθ)的形式。
(2) 复变函数的导数:复变函数的导数可以用极限的形式表示,即f'(z) = lim(h→0) [f(z+h) - f(z)] / h。
公式法ppt课件

05
公式法的优缺点分析
优点分析
简洁明了
公式法通过简洁的公式和图表, 能够直观地展示复杂的概念和数
据,使观众更容易理解。
易于比较
公式法可以清晰地展示不同数据之 间的比例和差异,方便观众进行比 较。
易于记忆
公式法通常采用简洁的形式,方便 观众记忆,同时也有助于提高信息 传递效率。
缺点分析
过于抽象
公式法可能过于抽象,对于没有相关背景知识的 观众来说可能难以理解。
在公式法PPT中增加相 关的背景信息,帮助观 众更好地理解内容。
结合其他表现形式
除了公式和图表外,还 可以结合文字、图片、 动画等多种表现形式, 提高PPT的表现力和吸 引力。
06
公式法的未来发展与展望
公式法的发展趋势
1 2
公式法将不断优化
随着科学技术的进步,公式法将不断得到优化, 提高精度和效率,以满足更广泛的应用需求。
适用范围有限
公式法主要适用于可以量化的数据和概念,对于 一些难以量化的内容可能不太适用。
制作难度大
制作公式法的PPT需要较高的技术水平,如公式编 辑和图表设计等,需要花费较多时间和精力。
如何扬长避短
针对不同受众
针对不同受众,可以采 用不同的公式法PPT设 计,以更好地满足他们 的需求。
增加背景信息
公式法将与其他方法相互借鉴
公式法将与其他数值计算方法相互借鉴,取长补 短,形成更加完善和高效的计算方法。
3
公式法将促进学科交叉融合
公式法作为一种通用的数值计算方法,将促进不 同学科之间的交叉融合,推动多学科协同发展。
公式法与其他方法的融合
公式法与有限元法融合
通过将公式法的简洁性和有限元法的适应性相结合,可以形成一 种更加高效和灵活的计算方法。