给定下述系统的差分方程

给定下述系统的差分方程
给定下述系统的差分方程

第四套

1. 给定下述系统的差分方程,试判定系统是否是因果、稳定系统,并说明理

由。 (1) 1

1()()N k y n x n k N

-==

-∑

(2) ()()(1)y n x n x n =++ (3) ()

()x n y n e =

解:

(1)只要N ≥1,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果|()|x n M ≤,则|()|y n M ≤,因此系统是稳定系统。

(2)该系统是非因果系统,因为n 时刻的输出还和n 时刻以后((n+1)时间)的输入有关。如果|()|x n M ≤,则|()||()||(1)|2y n x n x n M ≤++≤,因此系统是稳定的。

(3)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果

|()|x n M

≤,则()

|()|

|()|||x n x n M

y n e

e

e =≤≤,因此系统是稳定的。

2. 工程实际中,经常采用数字滤波器对模拟信号进行滤波处理,处理系统框

图如图所示。图中T 为采样周期,假设T 满足采样定理(无频率混叠失真)。把从()a x t 到y(t)的整个系统等效成一个模拟滤波器。

(a)如果数字滤波器h(n)的截止频率为8

c w ra d

π

=

1T

=10 kHz ,求整个等

效系统的截止频率c Ω。 (b)对于1T

=20 kHz ,重复(a)。

解:

(a) 对采样数字滤波器,w T =Ω,所以

8

c c w T π

=Ω= 8c c w T T

π

Ω=

=

最后一级理想低通滤波器的截止频率为T

π

rad/s ,因此整个系统截止频

率由8c T

π

Ω=

rad/s 确定。

110000625

21616

c c f T

πΩ=

=

== Hz

(b) 当1/T=20 Hz 时,与(a)同样道理得: 1200001250

1616

c f T

=

== Hz

3. 求以下序列x(n)的频谱()jw X e

(1)1()()|1jw

jw a

jw

z e X e X z e e

--===

-

(2) ()an e u n - 解:

(1)0

0()[()][()]n X z Z x n Z n n z δ-==-=

()()|jw

jn w jw z e X e X z e -===

(2)1

1()[()]1an a

X z Z e u n e

z

---==- 1()()|1jw

jw a

jw

z e X e X z e e

--===

-

4. 设h(n)为一个LSI 系统的单位采样响应,h(n)= 21

()(2)3

n u n +-,求其频

率响应。

解:其频率响应为:

2

2

1

()()()

3n jw jnw

jnw

n H e h n e

e

+∞

--=-∞

=

=

改变这个和的下限以使其开始于n=0,得:

4

(2)4

20

1

1

1

()()

()()

33

3n n

jw j n w

jw

jw

n n H e e

e

e

+∞

-+--====∑∑

利用几何级数,得

24

1

()()

13

13

jw

jw

jw

e H e e

--=-

5. 已知X(k) ,2,

20,j j N e k m N

e k N m k

θθ-?=???==-?????

其它,其中,m 为正整数,02

N m <<

,N

为变换区间长度,求x(n)=IDFT[X(k)]。 解:

1

1()[()]()N kn

N

k x n ID FT X k X k W N

--===

22()1[]2

2

j m n

j N m n

j j N

N

N N e e

e

e

N ππθ

θ

--=+

22()

(

)

1[]2j m n j m n N

N

e

e

ππθθ+-+=+

2cos(

)m n N

πθ=+ n=0,1,1N -

6. 已知两个有限长序列为1,03()0,

46

n n x n n +≤≤?=?

≤≤?,1,04()1,

56

n y n n -≤≤?=?

≤≤?,试

用作图表示想x(n),y(n)以及f(n),f(n)为x(n)与y(n)的七点圆周卷积。 解:

利用圆周卷积公式求解得:

7. 已知调幅信号的载波频率1c f kH z =,调制信号频率100m f H z =,用FFT 对

其进行谱分析,试问:

(1)最小记录时间m in p T =? (2)最低采样频率m in s f =? (3)最少采样点数m in N =?

解:由已知条件得知,已调AM 信号的最高频率m ax 1.1f kH z =,频率分辨率

100F H z

≤。所以,

(1)m in 110.0110100

p T s m s

F =

=

==

(2)min max 2 2.2s f f kH z == (3)3

3

m in m in m ax

1010

2.21022

p p s T N T f T -=

==???=

8. N =16时,画出基2按频率抽取法的FFT 流图(采用输入自然顺序,输出

倒位序)

解:图略,课本上有。

9. 已知X (k ),Y(k)是两个N 点实序列x(n),y(n)的DFT 值,今需要从X (k ),Y(k)

求x(n),y(n)的值,为了提高运算效率,试用一个N 点IFFT 运算一次完成。 解:依据题意

x(n) ()X k ?,()()y n Y k ? 取序列

()()()Z k X k jY k =+

对()Z k 作N 点的IFFT 可得序列z(n). 又根据DFT 性质

x(n) y(n) z -1

-0.59

0.9 z

-4

()()()()IDFT X K jIDFT Y k x n jy n +=+????????

由原题可知,x(n),y(n)都是实序列。再根据z (n )=x(n)+jy(n),可得

x(n)=Re[z(n)] y(n)=Im[z(n)]

10. 已知滤波器的单位脉冲响应5()0.9()n h n R n =,求出该滤波器的系统函数,并

画出期直接型结构。 解:

5()0.9()n h n R n =

4

50

()0.9()0.9

n n

n

n

n n H z R n z

z

--=-∞

==

=

∑5

1

10.5904910.9z z

---=

-

画出其直接型结构图。

11. 设计一模拟滤波器 2

1()1

a H s s s =

++

抽样周期T =2,试用双线性变换法将它转换成数字系统函数H (z )。 解: 由变换公式

1

1

11z s c z

---=+ 及2c T

=

,T=2,可得

11

11z s z

---=+

所以

11

11()()|

a z s z

H z H s ---=

+=

112

11

1

2

2

1

11()(

)1

11(1)3z z z

z

z z

------=

--+++++=

+

12. 设计第一类线性相位FIR 高通数字滤波器,3dB 截止频率c ω=

34

16

rad

ππ

±

阻带最小衰减50s dB α=,过渡带宽度/16ωπ?=。用窗函数法设计。 解:根据设计要求,N 必须取奇数。按照设计流程进行设计。 (1)确定逼近理想高通频响函数()jw d H e : ,||()0,0||j j c d c

e H e

ωαω

ωωπωω-?≤≤=?≤≤? (2)求()d h n : ()d h n =1()2jw

j n

d

H

e

e

d π

ωπω

π

-

?

=

1[]2c c

jw j n

jw j n

e

e

d e

e

d ωπ

α

ωα

ωπ

ω

ωωπ

----+

?

?

= ()[]{}

1

sin sin ()()

c

n n n παω

απα---????-

其中1

2

N α-=

(3) 选择窗函数类型,估计窗函数长度N ,根据阻带最小衰减50s dB α=,

查表,可选择汉明窗。表中给出汉明窗设计的滤波器过渡带宽度为8π/N ,本题要求过渡带宽度/16ωπ?=,所以应满足π/16=8π/N ,N =128。但N 必须取奇数,故取N =129。

(4) 加窗设计()()()d h n h n n ω= :汉明窗的表达式为 ()()20.540.46cos 1H m N n n R n N πω?

?

??=-

???-????

代入N =129,12

N α-==64,c ω=

34

π,得到

()h n =

()1

3sin 64sin (64)(64)4n n n πππ??

??---????????-????

()12820.540.46cos 128n R n π?

?

??-

??????

?

实验3离散系统的差分方程、冲激响应和卷积分析

实验3离散系统的差分方程、冲激响应和卷积分析 一 一、实验目的 1 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统 ] [n x ] [n y Discrete-time systme 其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 0 ][][ 输入信号分解为冲激信号 ∑-=∞ -∞=m m n m x n x ][][][δ 记系统单位冲激响应 ] [][n h n →δ 则系统响应为如下的卷积计算式 ∑∞ -∞ =-= *=m m n h m x n h n x n y ][][][][][ 当 N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为 FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。 二、实验内容 编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。 ] 1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y ]}4[]3[]2[]1[{25.0][-+-+-+-=n x n x n x n x n y 程序1: A=[1,0.75,0.125];B=[1,-1]; x2n=ones(1,65); x1n=[1,zeros(1,30)]; y1n=filter(B,A,x1n); subplot(2,1,1);y='y1(n)'; stem(y1n,'g','.'); title('单位冲击响应') 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

设系统分别用下面的差分方程描述

因为x(n)以N 为周期,所以: x(n 中kN —m) =x(n -m) 第三套 1.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性时不变的。 (1) y(n)=2x( n)+3 n y(n)= Z x(m) m 鱼 解: (1 ) 令:输入为x(n- n o ),输出为y '(n) =2x(n-山)+3,因为 y(n- n o ) =2x( n- n o )+3= y '(n) 故该系统是时不变的。又因为 T[ax 1 (n) + bx 2( n)] = 2ax 1 (n) + 2bx 2( n) + 3 T[ax i (n)] =2ax i (n)+3,T[bx 2(n)] =2bx 2(n) + 3 T[ax 1(n) + bx 2(n)] h aTIxJn)] +bT[x 2(n)] 故该系统是非线性系统。 n 令:输入为x(n- n o ),输出为y(n)=2: x(m-r t ),因为 m=0 n 』0 I y(n - n 。)= S x(m)北 y (n) m zzO 故系统是时变系统。又因为 n T[ax 1 (n) + bx 2(n)]=送(ax 1 (m) + bx 2(m)^ aT[x 1(n)] +bT[x 2(n)] m =0 2. 故系统是线性系统。 如果时域离散线性时不变系统的单位脉冲响应为 为周期的周期序列, 证明: h(n),输入x(n)是以N 试证明其输出 y(n)亦是以N 为周期的周期序列。 y( n)=h( n)*x( n)= □C y( n+kN)= Z m z=-oc h(m)x(n+kN - m) , k 为整数

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

离散序列的卷积和系统差分方程的MATLAB实现

信息工程学院实验报告 课程名称:数字信号处理 实验项目名称:离散序列的卷积和系统差分方程的MATLAB 实现 实验时间: 班级:电信131 姓名: 学号:201311404113 一、 实 验 目 的: 熟悉序列的卷积运算及其MATLAB 实现;熟悉离散序列的傅里叶变换理论及其MATLAB 实现;加深对离散系统的差分方程和系统频率响应的理解。 二、实 验 原 理 1、MA TLAB 提供了一个内部函数conv(x,h)来计算两个有限长序列之间的卷积。 2、对于时域离散系统,可用差分方程描述或研究输入、输出之间的关系。对于线性时不变系统,经常用的是线性常系数差分方程。一个N 阶线性常系数差分方程用下式表示: ()() N M i i i i b y n i a x n i ==-=-∑∑ 当 0,1,2,,i b i N == 时,[]h n 是有限长度的,称系统为FIR 系统;反之,称系统为IIR 系统。 在MA TLAB 中,可以用函数filter(a,b,x)求解差分方程,其中参数a,b 分别系统函数的分子和分母多项式的系数。 三、实 验 内 容 与 步 骤 实验内容: 1、已知 1(){1,1,1,1,1}x n =,2(){1,1,1,1,1,1,1}x n =,计算12()()*()y n x n x n =。 2、在0到π区间画出矩形序列 10()R n (其定义见例1-3)的离散时间傅里叶变换(含幅度和相位)。 3、求系统:()0.5((1)(2)(3)(4))y n x n x n x n x n =-+-+-+-的单位冲激响应和阶跃响应。 实验步骤: 1、

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

差分方程

差分方程

第九节差分方程 迄今为止,我们所研究的变量基本上是属于连续变化的类型. 但在经济管理或其它实际问题中,大多数变量是以定义在整数集上的数列形式变化的,银行中的定期存款按所设定的时间等间隔计息,国家财政预算按年制定等等. 通常称这类变量为离散型变量. 对这类变量,我们可以得到在不同取值点上的各离散变量之间的关系,如递推关系等. 描述各离散变量之间关系的数学模型称为离散型模型. 求解这类模型就可以得到各离散型变量的运行规律. 本节将介绍在经济学和管理科学中最常见的一种离散型数学模型—差分方程. 内容分布图示 ★引言★差分的概念★例1-5 ★差分方程的概念★例6 ★例7 ★一阶常系数线性齐次差分方程 ★一阶常系数线性非齐次差分方程 ★例9-14 ★例15 ★例16 ★二阶常系数线性差分方程

★ 二阶常系数线性齐次差分方程的通解 ★ 例17 ★ 例18 ★ 例19 ★ 二阶常系数线性非齐次差分方程的特解 ★ 例20-23 差分方程在经济学中的应用 ★ 模型1 ★ 模型2 ★模型3 ★ 内容小结 ★ 课堂练习 ★ 习题8-9 ★ 返回 内容要点: 一、 差分的概念与性质 一般地,在连续变化的时间范围内,变量y 关于时间t 的变化率是用dt dy 来刻画的;对离散型的变量y ,我们常取在规定的时间区间上的差商 t y ??来刻画变量y 的变化率. 如果 选择1=?t ,则 )()1(t y t y y -+=? 可以近似表示变量y 的变化率. 由此我们给出差分的定义. 定义 1 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分, 也称为函数t y 的一阶差分, 记为t y ?, 即 t t t y y y -=?+1 或 )()1()(t y t y t y -+=?. 一阶差分的差分称为二阶差分t y 2?, 即 t t t t y y y y ?-?=??=?+12)(

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

离散系统的差分方程、冲激响应和卷积分析

实验2 离散系统的差分方程、冲激响应和卷积分析 一、实验目的 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统可表示为 其输入、输出关系可用以下差分方程描述: ∑∑==-=-M k m N k k m n x b k n y a 00][][ 输入信号分解为冲激信号, ∑∞ -∞=-= m m n m x n x ][][][δ。 记系统单位冲激响应 ][][n h n →δ, 则系统响应为如下的卷积计算式: ∑∞ -∞=-= *=m m n h m x n h n x n y ][][][][][ 当N k a k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(b,a,N)求系统的冲激响应。 对于N 阶差分方程∑∑==-=-M k m N k k m n x b k n y a 00][][, 1) 当给定函数的系数和输入序列时,差分方程的递推过程在MA TLAB 中用函数y=filter(b,a,x)来实现,其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。求得的输出序列y 和输入序列x 的长度相等。若x 的长度太短,需要补零。用conv 函数计算能在输入序列后自动补零,而filter 函数不能。 2) MATLAB 中有一个求离散系统脉冲响应的专门函数y=impz(b,a,N),其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。N 为要求的点数。键入impz(b,a),程序将自动给出脉冲响应的曲线。 3) 当输入序列和脉冲响应序列都是以数值方式给出时,可以用MATLAB 中的卷积函数y=conv(x,h)来计算。

差分方程的基本知识(3)

差分方程模型的理论和方法 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

实验 离散系统的差分方程单位脉冲响应和卷积分析

实验2 离散系统的差分方程、单位脉冲响应和卷积分析 一、 实验目的 1、 熟悉并掌握离散系统的差分方程表示法; 2、 加深对单位脉冲响应和卷积分析方法的理解。 二、 实验原理 (一), 1. 单位采样序列 ???=01 )(n δ 0 0≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01 )(k n δ 0≠=n k n 2.单位阶跃序列 1()=0 u n ??? 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3.正弦序列 )/2sin()(?π+=Fs fn A n x 在MATLAB 中 ) /***2sin(*1:0fai Fs n f pi A x N n +=-=

4.复指数序列 n j e n x ?=)( 在MATLAB 中 ) **exp(1:0n w j x N n =-= 5.实指数序列 n a n x =)( 在MATLAB 中 n a x N n .^1:0=-= (二) 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 00()()N M i i i i a y n i b x n i ==-=-∑∑ 输入信号分解为单位采样序列的移位加权和,即: ()()()m x n x m n m δ∞ =-∞= -∑ 记系统单位脉冲响应 ()()n h n δ→ 则系统响应为如下的卷积计算式:

分歧理论及其应用

现代电路理论 -------分歧理论及其应用

分歧理论及其应用 引言:近二、三十年来,分歧现象(bifurcation phenomena)及理论(bifurcation theory)在数学及自然科学上受到格外的重视及研究。随着科学技术的迅速发展,非线性问题大量出现于自然科学、工程技术乃至社会科学的许多领域,成为当前科学研究的热点。分歧现象是普遍存在的,是非线性系统的重要特点之一,它普遍地存在于数学、物理学、化学、经济学、社会学、生态学等各个领域,像数学中的解不唯一、物理学中的相变、工程中的静力与动力失稳、经济学中的马太效应、电子学中的周期振荡等等,都可以从分歧的角度去研究[1]。 1.分歧理论概述 分歧理论是近半个世纪以来逐步形成的有重要应用价值的数学分支,它反映的是流的拓扑结构随参数的变化而引起的质的变异,不论在数学理论上还是在现实应用中都具有极为重要的意义。近半个世纪以来,分歧理论的研究一直受到人们的广泛关注,也得到了很大的发展。国际电力界从20世纪80年代开始研究和应用分歧理论,在电压稳定、轴系扭振以及低频振荡的研究中均取得了新的突破。在上个世纪七十年代初,Crandall和Rabinowitz的两个基本分歧定理是由隐函数定理证明的,至今在数学,生物,工程上广为应用[2]。 分歧的含义是:对于含参数的系统,当参数发生变动并经过某些临界值时,系统的定性性态(即其拓扑结构,例如平衡状态、解的数目、周期运动的数目以及稳定性等)发生突然变化的现象。从数学角度而言,分歧理论主要是研究非线性代数方程(微分方程、积分方程、差分方程等)中参数对解的定性性质的影响,其中参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究重点。 2. 分歧的定义 首先我们来看看一个经常可见到的现象。拿一根细长的金属棒。在棒的两头向内稍稍用力,此时棒不会弯曲。当力量够大时,则棒会弯起来。再继续加大压力,棒可能会弯了两弯。其变化如下图:

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

差分方程及其应用

差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数 )(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+, 则等式两端就是相邻两月库存量的改变量。若记 ))()1()(t R t R t R -+=?, 并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。 按一阶差分的定义方式,我们可以定义函数的高阶差分。函数)(t f y t =在t 的一阶差

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

差分方程求解

例题:已知差分方程51 (2)(1)()(+1)+0.5()66 x k x k x k r k r k +-++=,其中r (k )=1,k ≥0,x (0)=1, x (1)=2。 (1) 试由迭代法求其全解的前5项; (2) 分别由古典法求其零输入解、零状态解,以及全解; (3) 用Z 变换法求解差分方程。 解:注:解题过程中出现的下标“zi ”和“zs ”分别表示零输入条件和零状态条件。 1. 迭代法 题目中给出的条件仅仅是零输入初始条件,进行迭代求解时的初始条件应该是全解初始条件。 (1) 零输入初始条件 本题已给出零输入时的两个初始条件x zi (0)=1,x zi (1)=2。 (2) 零状态初始条件 取k =-2时,则51 (0)(1)(2)(1)0.5(2)66x x x r r --+-=-+-,得x zs (0)=0; 取k =-1 时,则51 (1)(0)(1)(0)0.5(1)66 x x x r r -+-=+-,求得x zs (1)=1。 (3) 全解初始条件 x (0)= x zi (0)+ x zs (0)=1; x (1)= x zi (1)+ x zs (1)=3。 (4) 根据求出的全解x (0)和x (1),利用迭代法求解 取k =0时,则51(2)(1)(0)(1)0.5(0)66x x x r r -+=+,求得23(2)6x =; 取k =1时,则51(3)(2)(1)(2)0.5(1)66x x x r r -+=+,求得151 (3)36x =; 取k =2时,则51(4)(3)(2)(3)0.5(2)66x x x r r -+=+,求得941 (4)216 x =。 2. 古典法 (1) 零输入解 令输入为零,则得齐次方程 51 (2)(1)()066 x k x k x k +-++= (a) 根据差分方程定义的算子()()n d x k x k n =+,可得它的特征方程251 066 d d -+= 求得特征根为: 112d = ,21 3 d =

差分方程在经济学中的应用应用数学

本科毕业论文(设计) 论文题目:差分方程在经济学中的应用 学生姓名:雷晶 学号: 1004970226 专业:数学与应用数学 班级:数学1002班 指导老师:舒蕊艳 完成日期:2014年5月20日

差分方程在经济学中的应用 内容摘要 本文叙述了研究差分方程的意义和背景、差分方程的定义、常见的解法以及差分方程相关模型,重点介绍差分方程经济学中的应用模型—筹措教育经费模型,包括问题的提出、模型举例和分析、提出假设、模型建立、模型求解、结果分析等等步骤对模型进行了更深层次的分析,做了进一步的推广. 本文所介绍的筹措教育经费模型主要研究的是子女的教育费用,假定某家庭从孩子m岁起,每月拿出一部分钱存进银行,用于投资子女的大学教育,并计划n年后支出一些,直到孩子大学毕业,全部用完账户中的资金. 差分方程的理论研究近十年来发展十分迅速,尤其是在经济领域,帮助人们解决了很多实际问题,筹措教育经费模型的建立为广大中国家庭子女教育的费用问题提供了明确的解决方法,是差分方程理论最贴近实际的模型之一. 关键词:差分方程存款模型经济增长模型筹措教育经费模型

, . . , , , , . a . ’s . , ’s ’s m n , . , . a . a ’s . 目录 一、绪论 (1) (一)研究差分方程在经济学中的应用的目的意义 (1) (二)研究背景 (2) 二、研究的理论基础 (2) (一)差分 (2) (二)差分方程 (3) (三)差分方程的解 (4) (四)特征根法 (4)

三、差分方程的经济应用模型简介 (5) (一)贷款模型 (5) (二)存款模型 (6) (三)乘数-加速数模型 (7) (四)哈罗德-多马经济增长模型 (10) (五)投入产出模型 (11) (六)筹措教育经费模型 (12) 四、总结 (14) 参考文献 (16)

给定下述系统的差分方程

第四套 1. 给定下述系统的差分方程,试判定系统是否是因果、稳定系统,并说明理 由。 (1) 1 1()()N k y n x n k N -== -∑ (2) ()()(1)y n x n x n =++ (3) () ()x n y n e = 解: (1)只要N ≥1,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果|()|x n M ≤,则|()|y n M ≤,因此系统是稳定系统。 (2)该系统是非因果系统,因为n 时刻的输出还和n 时刻以后((n+1)时间)的输入有关。如果|()|x n M ≤,则|()||()||(1)|2y n x n x n M ≤++≤,因此系统是稳定的。 (3)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果 |()|x n M ≤,则() |()| |()|||x n x n M y n e e e =≤≤,因此系统是稳定的。 2. 工程实际中,经常采用数字滤波器对模拟信号进行滤波处理,处理系统框 图如图所示。图中T 为采样周期,假设T 满足采样定理(无频率混叠失真)。把从()a x t 到y(t)的整个系统等效成一个模拟滤波器。 (a)如果数字滤波器h(n)的截止频率为8 c w ra d π = , 1T =10 kHz ,求整个等 效系统的截止频率c Ω。 (b)对于1T =20 kHz ,重复(a)。 解: (a) 对采样数字滤波器,w T =Ω,所以

8 c c w T π =Ω= 8c c w T T π Ω= = 最后一级理想低通滤波器的截止频率为T π rad/s ,因此整个系统截止频 率由8c T π Ω= rad/s 确定。 110000625 21616 c c f T πΩ= = == Hz (b) 当1/T=20 Hz 时,与(a)同样道理得: 1200001250 1616 c f T = == Hz 3. 求以下序列x(n)的频谱()jw X e (1)1()()|1jw jw a jw z e X e X z e e --=== - (2) ()an e u n - 解: (1)0 0()[()][()]n X z Z x n Z n n z δ-==-= ()()|jw jn w jw z e X e X z e -=== (2)1 1()[()]1an a X z Z e u n e z ---==- 1()()|1jw jw a jw z e X e X z e e --=== - 4. 设h(n)为一个LSI 系统的单位采样响应,h(n)= 21 ()(2)3 n u n +-,求其频 率响应。 解:其频率响应为: 2 2 1 ()()() 3n jw jnw jnw n H e h n e e +∞ ∞ --=-∞ = = ∑ ∑ 改变这个和的下限以使其开始于n=0,得: 4 (2)4 20 1 1 1 ()() ()() 33 3n n jw j n w jw jw n n H e e e e +∞ ∞ -+--====∑∑ 利用几何级数,得

差分方程基本概念和方法

差分方程基本概念和方法 考察定义在整数集上的函数,(),,2,1,0,1,2, n x f n n ==-- 函数()n x f n =在n 时刻的一阶差分定义为: 1(1)()n n n x x x f n f n ?+=-=+- 函数()n x f n =在n 时刻的二阶差分定义为一阶差分的差分: 21212n n n n n n x x x x x x ???+++=-=-+ 同理可依次定义k 阶差分 k n x ? 定义1.含有自变量n ,未知函数n x 以及n x 的差分2,, n n x x ??的函数方程, 称为常 差分方程,简称为差分方程。出现在差分方程中的差分的最高阶数,称为差分方 程的阶。 k 阶差分方程的一般形式为 (,,, ,)0k n n n F n x x x ??= 其中(,,,,)k n n n F n x x x ??为,,, k n n n n x x x ??的已知函数,且至少k n x ?要在式中出 现。 定义2.含有自变量n 和两个或两个以上函数值1,, n n x x +的函数方程,称为(常) 差分方程,出现在差分方程中的未知函数下标的最大差,称为差分方程的阶。 k 阶差分方程的一般形式为 1(,,, ,)0n n n k F n x x x ++= 其中1(,,,,)n n n k F n x x x ++为1,,, n n n k n x x x ++的已知函数,且n x 和n k x +要在式中一定 要出现。 定义3.如果将已知函数()n x n ?=代入上述差分方程,使其对0,1,2, n =成为恒 等式,则称()n x n ?=为差分方程的解。如果差分方程的解中含有k 个独立的任意

相关文档
最新文档