解析射影几何的不变计算
立体几何中的射影定理

立体几何中的射影定理
射影定理:立体几何中的射影定理是指,如果两个相交的平面构成一个空间图形,那么它们之间的射线交点和其他空间点的必然关系。
射影定理是数学家们在研究立体几何时证明的重要定理。
它可以在许多立体几何的地方有用,特别是在几何学、机械工程、制图等方面,经常使用它。
立体几何中的射影定理是由孟加拉诞生的法国数学家卢瓦尔在17th世纪发现的,他发现了如果两个无限远的相交的平面有一个共同的点,他们之间的任何射线必定过这个点。
这就是射影定理,可以用来分解和分析复杂的立体几何图形。
射影定理有两个基本条件:一是在几何图形中,两个相交的平面构成一个空间图形,就是说,它们不能是重叠的;二是它们之间必须有一个共同的点。
这两个条件是射影定理的基本条件,如果一个空间内有多个平面和物体,那么射影定理就可以确定它们的交点,以及它们之间相对应的关系。
射影定理的主要用途是帮助研究人员和技术人员在建立体几何图形时寻找最佳图形,同时为科学研究和工程设计提供参考。
射影定理可以帮助分析各种复杂的空间设计,并为它们提供最佳的解决方案。
此外,射影定理还可以用来在几何中作出正确的计算,比如可以用它来计算空间图形的定位和大小。
射影定理可以指导技术人员如何将空间设计放置在位置的最佳地点,以及当传输速度发生变化时,如何计算传输材料的重量和尺寸。
从以上内容可以看出,立体几何中的射影定理是一个极其重要的定理,它可以在多个不同领域有很多应用,对于科学家和技术人员来说,这是一个重要的分析和计算工具。
立体几何中的射影定理可以帮助人们正确地处理复杂空间图形,可以有效地应用于机械制图、几何图形和空间设计。
数学射影定理公式

数学射影定理公式数学射影定理是解析几何中的基本定理之一,它描述了一个点在一个几何体上的射影位置。
射影是一种将一个高维空间中的对象映射到一个低维空间中的技术,它在计算机图形学、计算机视觉和几何学中有广泛的应用。
射影定理的公式可以简单表示为:P' = P / Pz,其中P'表示点的射影位置,P表示点的三维坐标,Pz表示点在Z轴上的坐标。
这个公式可以用来计算点在三维空间中的射影位置,即将点投影到二维平面上。
在几何学中,射影定理主要用于计算点在投影平面上的坐标。
例如,我们可以使用射影定理来计算三维物体在投影平面上的阴影位置,从而实现逼真的渲染效果。
此外,在计算机视觉中,射影定理也可以用于计算相机在三维空间中的位置和姿态。
射影定理还有一些重要的性质。
首先,如果一个点在投影平面上的射影位置为P',那么该点的任意倍数在投影平面上的射影位置也为P'。
其次,如果两个点在三维空间中的连线与投影平面平行,那么它们在投影平面上的连线也与投影平面平行。
射影定理的应用不仅限于几何学和计算机图形学领域,它还可以用于计算机视觉中的物体识别和姿态估计。
例如,当我们在图像中检测到一个物体时,我们可以使用射影定理来计算该物体在三维空间中的位置和姿态,进而实现对物体的准确定位和识别。
射影定理的公式简洁明了,但在应用中需要注意一些细节。
首先,由于射影定理涉及到除法运算,因此需要确保点的Z坐标不为零,否则会导致除零错误。
其次,射影定理只能用于计算点在投影平面上的射影位置,而不能用于计算点在其他平面上的射影位置。
数学射影定理公式是解析几何中的重要工具,它可以用于计算点在三维空间中的射影位置。
射影定理在计算机图形学、计算机视觉和几何学等领域有着广泛的应用,对于实现逼真的渲染效果和准确定位物体位置具有重要意义。
在应用射影定理时,需要注意除零错误和射影平面的选择,以确保计算结果的准确性和可靠性。
通过深入理解和灵活应用射影定理,我们可以在相关领域取得更好的研究和应用成果。
射影几何几何运算

几何运算
1.引言
几何运算与点运算不同,它可改变图象中物体(像素)之间的空间关系。这种运算可以看成将各像素 在图像内移动的过程。 几何变换是图像处理和图像分析的重要内容,按照变换性质可以分为位置变换、形状变换以及复合变 换。图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。 几何变换常用于摄像机的几何校正过程,这对于利用图象进行几何测量的工作是十分重要的。在实际
3.几何变换基础
2.欧式几何是几何学的一门分科。又称欧几里德几何。公元前3世纪,古希腊数学家欧 几里德(英文Euclid,希腊文Ε'νκλειδη)把人们公认的一些几何知识作为定义和公理, 在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》, 形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认 识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何” 与“立体几何”。欧几里德几何指按照欧几里德的《几何原本》构造的几何学。欧式 几何有时就指平面上的几何,即平面几何。三维空间的欧式几何通常叫做立体几何。 数学上,欧式几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这 一术语表示具有相似性质的高维几何。
称为旋转变换矩阵(因子),θ 为旋转角度。
cos sin 0 sin cos 0 0 1 0
ห้องสมุดไป่ตู้
图像旋转变换程序
void RotIamge(const Mat &srcImage, Mat &dstImage, double angle) { //弧度 double sita = angle * CV_PI / 180; double a = (srcImage.cols - 1) / 2.0; double b = (srcImage.rows - 1) / 2.0; int srcRow = srcImage.rows; int srcCol = srcImage.cols; double x1 = -a * cos(sita) - b * sin(sita); double y1 = -a * sin(sita) + b * cos(sita); double x2 = a * cos(sita) - b * sin(sita); double y2 = a * sin(sita) + b * cos(sita); double x3 = a * cos(sita) + b * sin(sita); double y3 = a * sin(sita) - b * cos(sita); double x4 = -a * cos(sita) + b * sin(sita); double y4 = -a * sin(sita) - b * cos(sita); int w1 = cvRound(max(abs(x1 - x3), abs(x4 - x2))); int h1 = cvRound(max(abs(y1 - y3), abs(y4 - y2))); dstImage.create(h1, w1, srcImage.type()); ...... }
高中几何知识解析解析几何中的射影与投影

高中几何知识解析解析几何中的射影与投影高中几何知识解析: 解析几何中的射影与投影几何学是数学中的一个重要分支,研究空间和图形的性质和变换。
而解析几何则是几何学与代数学相结合的一种方法,通过代数符号和方程来研究几何问题。
在解析几何中,射影和投影是重要的概念,本文将对射影和投影在高中几何知识中的应用进行解析。
一、射影射影是解析几何中的基本概念之一,用于描述从一个空间向另一个空间的特定技术。
在几何中,射影是指一个物体通过某种技术在一个平面上生成的影子。
这里的影子是指在平面上的投影,也可以理解为从一个点到一个平面的垂直线段。
对于平面上的一点P(x,y),它在直线l : ax + by + c = 0上的射影记为P',射影的坐标为(x',y')。
根据射影的定义,可以得到射影的性质:1. 直线l上的任意一点P,它的射影P'始终在直线l上;2. 直线l上的每一个点都有对应的射影点;3. 如果两个点在直线l上的距离相等,那么它们的射影点在直线l 上的距离也相等。
通过射影的概念,我们可以在解析几何中进行一些具体的计算和推导,例如线段的长度、直线的交点等问题。
二、投影投影是另一个解析几何中常用的概念,它是指通过某种技术将一个物体投影到另一个平面或直线上的过程。
在几何中,投影可以是垂直的,也可以是斜的。
在解析几何中,常见的投影包括点的投影和线段的投影。
对于点的投影,我们通常将点投影到某个平面或直线上,得到它在投影平面上的坐标。
对于线段的投影,我们可以将线段的两个端点分别投影到投影平面上,然后用投影点连接起来。
投影的过程可以通过几何图形的相似性来描述。
例如,如果一个线段AB在一个平面上的投影为A'B',则线段AB与线段A'B'之间的比值等于线段的投影比。
这个比值可以帮助我们计算线段的长度、角度等几何性质。
在实际应用中,投影在建筑、航天等领域中起到重要的作用。
射影定理模型(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍1.射影定理定义①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.2.如图在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高,有射影定理如下: 注意:直角三角形斜边上有高时,才能用射影定理!例题精讲【例1】.在矩形ABCD 中,BE ⊥AC 交AD 于点E ,G 为垂足.若CG =CD =1,则AC 的长是.①AD 2=BD •DC ;②AB 2=BD •BC ;AC 2=CD •BC .解:∵四边形ABCD是矩形,∴AB=CD=1,∠ABC=90°,∵BE⊥AC,∴∠AGB=90°=∠ABC,∵∠BAG=∠CAB,∴△ABG∽△ACB,∴=,∴AG•AC=AB2(射影定理),即(AC﹣1)•AC=12,解得:AC=或AC=(不合题意舍去),即AC的长为,故答案为:.【例2】.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB(射影定理),即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【例3】.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8C.D.2解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.变式训练【变式1】.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是9.解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.(射影定理)故答案是:9.【变式2】.如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD交于O,且BE:ED=1:3,AD=6cm,则AE=cm.解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x(3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.【变式3】.如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为()A.﹣1B.﹣2C.D.解:设A(x1,0),B(x2,0),C(0,c),∵二次函数y=ax2+bx+c的图象过点C(0,c),∴OC=c,∵∠OAC=∠OCB,OC⊥AB,∴△OAC∽△OCB,∴,∴OC2=OA•OB(即射影定理)即|x1•x2|=c2=﹣x1•x2,令ax2+bx+c=0,根据根与系数的关系知x1•x2=,∴,故ac=﹣1,故选:A.【变式4】.如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=____________.解:连接CF、GF,如图:在正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,∴△AFD∽△EAD,∴=,又∵DF=5EF=5,∴AD====CD,在Rt△AFD中,AF===,∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC,∴=,∴=,∴AG=,∴DG=AD﹣AG=﹣【变式5】.如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC 交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为2.解:∵AC为⊙O的直径,∴∠ADC=90°,∵BG⊥AC,∴∠BGC=∠ADC=90°,∵∠BCG=∠ACD,∴△ADC∽△BGC,∴=,∴CG•AC=DC•BC=6×14=84,连接AE,∵AC为⊙O的直径,∴∠AEC=90°,∴∠AEC=∠EGC=90°,∵∠ACE=∠ECG,∴△CEG∽△CAE,∴=,∴CE2=CG•AC=84,∴CE=2.故答案为2.【变式6】.如图,四边形ABCD是平行四边形,过点A作AE⊥BC交BC于点E,点F在实战演练BC 的延长线上,且CF =BE ,连接DF .(1)求证:四边形AEFD 是矩形;(2)连接AC ,若∠ACD =90°,AE =4,CF =2,求EC 和AC的长.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵CF =BE ∴BE +CE =CF +CE ,即BC =EF ,∴AD =EF ,∵AD ∥EF ,∴四边形AEFD 是平行四边形,∵AE ⊥BC ,∴∠AEF =90°,∴平行四边形AEFD 是矩形;(2)解:如图,∵CF =BE ,CF =2,∴BE =2,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAC =∠ACD =90°,∵AE ⊥BC ,∴AE 2=BE •EC (射影定理),∴EC ===8,∴AC ===4.1.如图,在矩形ABCD 中,DE ⊥AC ,垂足为点E .若sin ∠ADE =,AD =4,则AB 的长为()A .1B .2C .3D .4解:∵DE ⊥AC ,∴∠ADE+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠ACD=∠ADE,∵矩形ABCD的对边AB∥CD,∴∠BAC=∠ACD,∵sin∠ADE=,BC=AD=4,∴=,∴=,∴AC=5,由勾股定理得,AB==3,故选:C.2.如图,在矩形ABCD中,BD=2.对角线AC与BD相交于点O,过点D作AC的垂线,交AC于点E,AE=3CE.则DE2的值为()A.4B.2C.D.4解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=2,∵AE=3CE,∴AE=AC=,CE=AC=,∵∠ADC=90°,∴∠DAC+∠ACD=90°,∵DE⊥AC,∴∠AED=∠CED=90°,∴∠ADE+∠DAC=90°,∴∠ADE=∠ACD,∴△ADE∽△DCE,∴=,∴DE2=AE•CE=×=,故选:C.3.如图,在正方形ABCD内,以D点为圆心,AD长为半径的弧与以BC为直径的半圆交于点P,延长CP、AP交AB、BC于点M、N.若AB=2,则AP等于()A.B.C.D.解:如图,设点S为BC的中点,连接DP,DS,DS与PC交于点W,作PE⊥BC于点E,PF⊥AB于点F,∴DP=CD=2,PS=CS=1,即DS是PC的中垂线,∴△DCS≌△DPS,∴∠DPS=∠DCB=90°,∴DS===,由三角形的面积公式可得PC=,∵BC为直径,∴∠CPB=90°,∴PB==,∴PE=FB==,∴PF=BE==,∴AF=AB﹣FB=,∴AP==故选:B.4.如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么下列结论中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP;④OA(CP﹣CD)=AP•CD,正确的结论有()个.A.1B.2C.3D.4解:①∵PC与⊙O相切于点C,∴∠PCB=∠A,∠P=∠P,∴△PBC∽△PCA,∴PC2=PA•PB;②∵OC⊥PC,∴PC•OC=OP•CD;③∵CD⊥AB,OC⊥PC,∴OC2=OD•OP,∵OA=OC,∴OA2=OD•OP;④∵AP•CD=OC•CP﹣OA•CD,OA=OC,∴OA(CP﹣CD)=AP•CD,所以正确的有①,②,③,④,共4个.故选:D.5.如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则CF长.解:作EH⊥BC于H,如图,∵∠A=90°,AB=AC=8,∴BC=AB=16,∠C=45°,∵点E为AC的中点,∴AE=CE=4,∵△CEH为等腰直角三角形,∴EH=CH==4,∴BH=12在Rt△ABE中,BE==4,在Rt△BEF中,∵EH⊥BF,∴BE2=BH•BF,即BF==,∴CF=BC﹣BF=16﹣=.故答案为.6.如图,在矩形ABCD中,点E在边AD上,把△ABE沿直线BE翻折,得到△GBE,BG 的延长线交CD于点F.F为CD的中点,连结CG,若点E,G,C在同一条直线上,FG=1,则CD的长为2+2,cos∠DEC的值为﹣1.解:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠BCD=∠A=∠D=90°,∴∠AEB=∠EBC,∠BCG=∠DEC,由折叠的性质得:BG=BA,∠EGB=∠A=90°,∠GEB=∠AEB,∴CD=BG,∴∠EBC=∠GEB,∴BC=EC,∵点E,G,C在同一条直线上,∴∠CGF=90°,∠CGB=180°﹣∠EGB=90°,∵F为CD的中点,∴CF=DF,设CF=DF=x,则BG=CD=2x,∵∠CFG=∠BFC,∴△CFG∽△BFC,∴=,∴CF2=FG•BF,即x2=1×(1+2x),解得:x=1+或x=1﹣(舍去),∴CD=2x=2+2,∵∠DEC+∠ECD=90°,∠GFC+∠ECD=90°,∴∠DEC=∠GFC,∴cos∠DEC=cos∠GFC===﹣1,故答案为:2+2,﹣1.7.如图,在平面直角坐标系中,直线y=kx+1分别交x轴,y轴于点A,B,过点B作BC ⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交x轴于点E,过点E作EF⊥DE交y轴于点F.已知点A恰好是线段EC的中点,那么线段EF的长是.解:因为AB的解析式为y=kx+1,所以B点坐标为(0,1),A点坐标为(﹣,0),由于图象过一、二、三象限,故k>0,又因为BC⊥AB,BO⊥AC,所以在Rt△ABC中,BO2=AO•CO,代入数值为:1=•CO,CO=k,同理,在Rt△BCD中,CO2=BO•DO,代入数值为:k2=1•DO,DO=k2又因为A恰好是线段EC的中点,所以B为FD的中点,OF=1+1+k2,Rt△FED中,根据射影定理,EO2=DO•OF,即(k++)2=k2•(1+k2+1),整理得(k﹣)(k+)(k2+2)(k2+1)=0,解得k=.根据中位线定理,EF=2GB=2DC,DC==,EF=2.8.如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.解:如图,连接BD交AC于点O,过点D作DK⊥BC于点K,延长DE交AB于点R,连接EP′并延长,延长线交AB于点J,作EJ关于AC的对称线段EJ′,则点P′的对应点P″在线段EJ′上.当点P是定点时,DQ﹣QP′=DQ﹣QP″,当D,P″,Q共线时,QD﹣QP′的值最大,最大值是线段DP″的长,当点P与B重合时,点P″与J′重合,此时DQ﹣QP′的值最大,最大值是线段DJ′的长,也就是线段BJ的长.∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,∵AE=14.EC=18,∴AC=32,AO=OC=16,∴OE=AO﹣AE=16﹣14=2,∵DE⊥CD,∴∠DOE=∠EDC=90°,∵∠DEO=∠DEC,∴△EDO∽△ECD,∴DE2=EO•EC=36,∴DE=EB=EJ=6,∴CD===12,∴OD===4,∴BD=8,=×OC×BD=BC•DK,∵S△DCB∴DK==,∵∠BER=∠DCK,∴sin∠BER=sin∠DCK===,∴RB=BE×=,∵EJ=EB,ER⊥BJ,∴JR=BR=,∴JB=DJ′=,∴DQ﹣P'Q的最大值为.解法二:DQ﹣P'Q=BQ﹣P'Q≤BP',显然P'的轨迹EJ,故最大值为BJ.勾股得CD,OD.△BDJ∽△BAD,BD2=BJ*BA,可得BJ=.故答案为:.9.在矩形ABCD中,点E为射线BC上一动点,连接AE.(1)当点E在BC边上时,将△ABE沿AE翻折,使点B恰好落在对角线BD上点F处,AE交BD于点G.①如图1,若BC=AB,求∠AFD的度数;②如图2,当AB=4,且EF=EC时,求BC的长.(2)在②所得矩形ABCD中,将矩形ABCD沿AE进行翻折,点C的对应点为C',当点E,C',D三点共线时,求BE的长.解:(1)①∵四边形ABCD是矩形,∴AD=BC,∠BAD=90°,∵BC=AB,∴AD=AB,∴tan∠ABD==,∴∠ABD=60°,由折叠的性质得:AF=AB,∴△ABF是等边三角形,∴∠AFB=60°,∴∠AFD=180°﹣∠AFB=120°;②由折叠的性质得:BF⊥AE,EF=EB,∵EF=EC,∴EF=EB=EC,∴BC=2BE,∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC=2BE,AD∥BC,∴△ADG∽△EBG,∴==2,∴AG=2EG,设EG=x,则AG=2x,∴AE=3x,在△ABE中,BG⊥AE,∴AB2=AG•AE(射影定理),即42=2x•3x,解得:x=(负值已舍去),∴AE=3x=2,∴BE===2,∴BC=2BE=4,即BC的长为4;(2)当点E,C',D三点共线时,如图3,由②可知,BC=4,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,AD=BC=4,CD=AB=4,AD∥BC,∴∠DCE=90°,∠CED=∠B'DA,由折叠的性质得:AB'=AB=4,∠B'=∠ABC=90°,∴∠DCE=∠B',DC=AB',∴△CDE≌△B'AD(AAS),∴DE=AD=4,∴CE===4,∴BE=BC+CE=4+4.10.如图,已知⊙O的半径为2,AB为直径,CD为弦,AB与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求证:PC是⊙O的切线;(2)点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交弧BC于点F(F与B、C不重合).问GE▪GF是否为定值?如果是,求出该定值;如果不是,请说明理由.解:(1)∵PA=OA=2,AM=OM=1,CM=,又∵∠CMP=∠OMC=90°,∴PC==2,∵OC=2,PO=4,∴PC2+OC2=PO2,∴∠PCO=90°,∴PC与⊙O相切;(2)GE•GF为定值,理由如下:如图2,连接GA、AF、GB,∵点G为弧ADB的中点,∴,∴∠BAG=∠AFG,∵∠AGE=∠FGA,∴△AGE∽△FGA,∴,∴GE•GF=AG2,∵AB为直径,AB=4,∴∠BAG=∠ABG=45°,∴AG=2,∴GE•GF=AG2=8.11.如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CHD=∠CGB=90°,∴△CHD≌△BGC(AAS),∴CH=BG=a,∴GH=CG﹣CH=a=CH,∵DH=DH,∠CHD=∠GHD=90°,∴△DGH≌△DCH(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=•DQ•CG=CH•DG,∴CH==a,在Rt△CQD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴=,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠CGH=∠CNG,∴△GHN∽△CHG,∴,∴HN==a,∴MN=HM﹣HN=a,∴=12.在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.解:(1)令二次函数y=ax2+bx+c,则,∴,∴过A,B,C三点的抛物线的解析式为y=﹣x2﹣x+2.(2)以AB为直径的圆的圆心坐标为O′(﹣,0),∴O′C=,OO′=;∵CD为⊙O′切线∴O′C⊥CD,∴∠O′CO+∠OCD=90°,∠CO'O+∠O'CO=90°,∴∠CO'O=∠DCO,∴△O'CO∽△CDO,∴=,即=,∴OD=,∴D坐标为(,0).(3)存在,抛物线对称轴为x=﹣,设满足条件的圆的半径为r,则E的坐标为(﹣+r,|r|)或F(﹣﹣r,|r|),而E点在抛物线y=﹣x2﹣x+2上,∴|r|=﹣(﹣+r)2﹣(﹣+r)+2;∴r1=﹣1+,r2=﹣1﹣(舍去),r3=1+,r4=1﹣(舍去);故以EF为直径的圆,恰好与x轴相切,该圆的半径为或1+.。
射影定理课件

射影定理的几何意义
射影定理的几何意义在于,它描述了直角三角形中斜边上的高与 其他边和角之间的关系。具体来说,它表明斜边上的高可以将直 角三角形分为两个相似的三角形。
在直角三角形ABC中,如果CD是斜边AB上的高,那么三角形 ACD与三角形CBD相似,它们的对应角相等,对应边成比例。
射影定理的应用场景
02
射影定理的证明
证明方法一:利用相似三角形
总结词
通过相似三角形的性质,利用相似比推导出射影定理。
详细描述
首先,选取两个相似三角形,并确定它们的对应边和对应角。然后,根据相似 三角形的性质,利用相似比来表示对应边和对应角之间的关系。最后,通过这 些关系推导出射影定理。
证明方法二:利用向量关系
总结词
射影定理在几何学中有着广泛的应用,特别是在解决与直角 三角形相关的问题时。例如,在解决与面积、周长、角度等 相关的几何问题时,可以利用射影定理来简化计算过程。
此外,射影定理还可以用于证明一些几何定理,如勾股定理 、毕达哥拉斯定理等。通过应用射影定理,可以推导出这些 定理的证明过程,从而加深对几何学的理解。
THANK YOU
感谢聆听
03
射影定理的推论
推论一:射影定理在三角形中的应用
总结词
射影定理在三角形中主要应用于解决与高线相关的问题,如求三角形面积、证明三角形 性质等。
详细描述
在三角形中,射影定理可以用来计算三角形面积,特别是当已知三角形两边及其夹角时 。此外,通过射影定理还可以证明一些重要的三角形性质,如塞瓦定理和梅纳劳斯定理
射影定理在相似形中的应 用
通过射影定理,我们可以研究相似形之间的 关系,进一步探索相似形中的性质和定理。
扩展三:射影定理与投影几何的关系
射影定理证明方法
射影定理证明方法1. 射影定理的定义射影定理是一个在几何学中的定理,它表明,如果将一个平面上的图形投射到另一个平面上,则投射图形的面积与原图形的面积相等。
射影定理也可以用来证明两个图形的面积是相等的,只要将其中一个图形投射到另一个图形上,并且保持其形状不变。
2. 射影定理的证明方法射影定理是指,如果两个平面相交,则它们的交线就是它们的射影。
射影定理的证明方法可以分为以下几步:1. 将两个平面投影到一个新的平面上,使得它们的法向量垂直。
2. 将投影后的两个平面的交线投影到原来的两个平面上,使得它们的交线在两个平面上的投影重合。
3. 将投影后的两个平面的交线投影到原来的两个平面上,使得它们的法向量垂直。
4. 证明原来的两个平面的交线就是它们的射影。
5. 将投影后的两个平面的交线投影到原来的两个平面上,使得它们的法向量垂直。
6. 证明原来的两个平面的交线就是它们的射影。
7. 将投影后的两个平面的交线投影到原来的两个平面上,使得它们的法向量垂直。
8. 证明原来的两个平面的交线就是它们的射影。
9. 将投影后的两个平面的交线投影到原来的两个平面上,使得它们的法向量垂直。
10. 证明原来的两个平面的交线就是它们的射影。
3. 射影定理的应用射影定理的应用包括几何学、物理学和工程学等多个领域。
在几何学中,射影定理可以用来求解平面几何图形的形状和位置,以及投影变换的参数。
在物理学中,射影定理可以用来求解光线的反射和折射,以及粒子在电磁场中的行为。
在工程学中,射影定理可以用来计算物体在不同视角下的投影,以及实现三维物体的投影变换。
4. 射影定理的定理证明:4. 射影定理的定理证明设置三角形ABC,以AD为边,延长AD至F,使得∠FAD=∠BAC,令E为AF与BC的交点,则有:(1)∠AED=∠BAC;(2)AD=AE;(3)AE=EC;(4)AF=FC。
由(1),(2),(3),(4)可知,AD是AE、EC、FC的公切线,即AE∥FC,证毕。
中考射影定理及其运用
中考射影定理及其运用射影定理(Projection Theorem)是解析几何中一个重要的定理,在中考中也经常会涉及到,下面将对射影定理以及其运用进行详细讲解。
射影定理是解析几何中的一个基本定理,它主要用来解决平面几何中的一些问题。
它的核心思想是将平面上的一个点,通过一个平行于另一个平面的直线(即射影线)投影到另一个平面上,找到被投影点在另一个平面上的对应点。
射影定理的表述如下:对于空间中的直线l和平面P,如果直线l与平面P平行,那么空间中任一点A与平面P所成的投影点B,都在直线l 上。
根据射影定理可以得到一个重要的结论:两个平行的平面在任意一条和它们平行的射影线上的投影点两两共线。
射影定理在中考中的运用主要有以下几个方面:1.证明直线与平面平行:通过使用射影定理,可以证明一个直线与一个平面平行。
具体方法是,通过给定的直线和平面,取直线上任意一点作为A点,求A点在平面上的投影点B,然后通过连接AB,再连接B点与平面外的任一点C,如果BC与给定的直线平行,则可证明该直线与平面平行。
2.求平面上的点关于另一平面的投影点:已知平面上的一个点A和一个平面P,直线l与平面P平行,要求点A关于平面P的投影点B。
通过连接A和l的交点C,然后连接B与C点,连接AC与PB的交点D,可以得到点A关于平面P的投影点B。
3.空间中的图形投影:对于空间中的一个几何图形,可以通过射影定理将其投影到另一个平面上,从而得到一个相似的平面图形。
这在中考中经常会遇到,通常要求学生在解题时利用射影定理将一个空间中的几何图形投影到平面上,进行计算。
需要注意的是,射影定理虽然在解析几何中十分有用,但在一些实际问题中的应用却是具有一定的局限性的。
因为射影定理只在平行的直线和平面之间才成立。
总结起来,射影定理作为解析几何中的重要定理,在中考中经常会涉及到。
通过深入理解其定义与应用,加强练习,掌握其运用方法,能够在中考中取得较好的成绩。
最新中考射影定理及其运用
2017中考射影定理及其运用相似三角形------射影定理的推广及应用射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。
一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。
一、射影定理射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。
如图(1):Rt△ABC中,若CD为高,则有CD2=BD•AD、BC2=BD•AB或AC2=AD•AB。
二、变式推广1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD•AD或AC2=AD•AB或BC2=BD•AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。
2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。
(后文简称:射影定理变式(2))如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可得BC2=BD•AB;反之,若△ABC中,D为AB上一点,且有BC2=BD•AB,则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DCB=∠A。
三、应用例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H,求证:4DH•DA=BC2分析:易证∠BAD=∠CAD=900-∠C=∠HBD,联想到射影定理变式(2),可得BD2=DH•DA,又BC=2BD,故有结论成立。
(证明略)例2 如图(4):已知⊙O中,D为弧AC中点,过点D的弦BD被弦AC分为4和12两部分,求DC。
分析:易得到∠DBC=∠ABD=∠DCE,满足射影定理变式(2)的条件,故有CD2=DE•DB,易求得DC=8(解略)例3 已知:如图(5),△ABC中,AD平分∠BAC,AD的垂直平分线交AB于点E,交AD于点H,交AC于点G,交BC的延长线于点F,求证:DF2=CF•BF。
射影几何三大入门定理
射影几何三大入门定理1. 定理一:射影平面的基本性质射影几何是研究投影关系的一门数学分支,它研究的对象是射影空间和射影平面。
在射影几何中,有三个重要的入门定理,这些定理对于理解和应用射影几何具有重要意义。
首先,我们来讨论第一个定理:射影平面的基本性质。
1.1 射影平面的定义在介绍定理之前,我们需要先了解什么是射影平面。
射影平面是指一个由点和直线构成的集合,满足以下条件:•任意两条直线有且只有一个交点;•任意两个不同的点确定一条直线。
1.2 定理一的表述定理一指出,在射影平面中,存在以下基本性质:•任意两个不同的直线交于唯一一点;•任意两个不同的点确定唯一一条直线。
1.3 定理一的证明第一个性质:任意两个不同的直线交于唯一一点假设在射影平面中存在两个不同的直线L1和L2,在L1上取两个不同的点A和B,在L2上取两个不同的点C和D。
我们需要证明线段AB和CD的交点是唯一的。
根据射影平面的定义,任意两个不同的点确定唯一一条直线,所以线段AB确定了一条直线L3,线段CD也确定了一条直线L4。
由于L3和L4都与L1和L2相交,所以它们一定有一个公共交点P。
假设还存在另一个不同于P的交点Q,那么根据射影平面的定义,线段PQ也应该与直线L1相交。
但是根据前面的假设,A、B、C、D四个点在射影平面中是不共面的,所以直线PQ与直线L1没有交点。
这与假设矛盾,因此我们得出结论:任意两个不同的直线在射影平面中交于唯一一点。
第二个性质:任意两个不同的点确定唯一一条直线假设在射影平面中存在两个不同的点A和B,在A上取两条不同的直线L1和L2,在B上取两条不同的直线L3和L4。
我们需要证明直线AB和CD(其中C为L1与L3的交点,D为L2与L4的交点)是唯一相交的。
根据射影平面的定义,任意两条直线有且只有一个交点,所以线段AB与L1和L2分别有唯一的交点C和D。
假设还存在另一条直线EF与A、B两点相交,并且E和F分别是直线EF与L1和L2的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析射影几何的不变计算
摘要:本文重点讨论射影几何符号计算的两个基本问题:①投影几何特性应
如何解析编写?用算法表示“射影几何属性”领域语言中的一阶公式,并转换为
方括号(或不变式)解析几何语言中的受限类公式。
这种特殊形式对应于合成射
影几何中的陈述,并且该算法是转换几何的基本步骤。
②解析几何定理如何证明?不变射影给出了解析射影几何定理。
希尔伯特零点定理派生的理论在证明中起着
核心作用。
为证明关于所有字段或有序字段上“几何特性”的开放定理,一种算
法会推导零点定理恒等式,从而在证明中提供最大的代数简单性和最大的信息。
最后结果支持这样的建议,即应使用不变语言中的标识直接执行计算分析投影几何。
一、介绍
在传统的解析射影几何[1]中,我们在一个域上用齐次坐标写出点,并在这些
坐标下用多项式方程证明定理。
一阶综合几何性质可以用这种语言转换成代数公式。
基本的合成射影几何陈
述传统上是用合成结构来表示的,合成结构使用点、线等的连接和相交操作,并
以定义点、线等的特殊关联来结束。
射影几何的经典协调定理中,如果Desargues定理和Pappus定理在几何中成立,那么点、线、面等可以在一个域中
指定坐标。
合成语句立即转化为交换域上的一阶代数公式,建立在坐标系中的多
项式方程上。
最后,用这种语言表达的所有几何定理在原理上都可以在场论中得
到证明。
然而,使用这些转换公式会产生几个基本问题:
并不是所有的代数公式都能表达“几何性质”,坐标系中的代数公式仅在其
真值为空间的基本几何变换“不变量”时才表示。
场论中的某些代数和计算机算法产生的代数边界条件显然不是“几何”的。
即使这个性质是“几何的”,把代数公式转化为综合的几何条件也是一个困难的任务,目前的算法还没有涉及到这个问题。
代数证明方法几乎没有“几何推理”的痕迹,其结果可能只有复杂的代数证明。
相反,简单的代数证明可能没有合理的综合推导。
借鉴经典恒定理论的现代发展,以及我们在应用射影几何方面的经验,我们解决了前三个问题。
我们提出了一种更适合于解析射影几何计算的语言:无坐标语言(n个向量的行列式)。
我们明确地选择了一类公式作为“解析射影几何语言”,并为这个选择总结了一些论点。
所有选定的公式都表示“几何特性”。
所有“合成几何特性”都转换为选定的类。
所有选定的公式经过简单的非简并条件相乘后,转化为合成几何条件。
使用整数系数多项式方程的通用公式表示的每个“几何性质”在算法上转换为选定的类。
关于这些性质的所有定理都可以在恒定语言和一些扩展中得到证明。
证明使用标准代数方法以及入侵理论,生成的任何边条件都是自动“几何”的。
二、解析射影几何的一种语言
在本文中,我们将使用代数语言处理场和积分域的一阶公式。
特别是,我们
处理场上向量的坐标。
这种语言以:变量{x
1,……,x
n
,y
l
,……,y
n
,……}。
对于域的元素,域中的常数0和1,以及运算+,-,×。
这些变量、常数和运算
的组合产生多项式s,t,……。
语言的原子公式是这些项之间的多项式方程:
这些方程构成了我们代数语言的基础,我们简称为LALG
n。
我们省略了除法,因为任何具有非零除数的方程都可以简化为等价的多项式方程。
还要注意,语言
中的项是变量中的多项式。
当然,我们使用2作为(1+1)等的简写,从而得到
具有整数系数的多项式。
几何是由一组模型和这些模型中的几何态射[2]指定的。
在射影几何中,点是
用齐次坐标表示的,因此射影d空间中的点是由(d+1)-元组(x
1,……,x
d
,
x
d+1
)记录的。
因此,在我们的几何范畴中,最终的模型将是场上的一个集维数n=d+1的向量空间。
一个没有括号的简单方程,如v
l -u
l
=O,在线性变换下是不变的。
尝试具有不
同第二坐标的向量,并应用T(v
l ,v
2
,v
3
)=(v
l
+v
2
,v
2
,v
3
)的变换。
然而,一
个更复杂形式的方程:
+
在射影几何中,v和λv(λ≠0)表示同一点(我们使用齐次坐标)。
因此,
对于射影几何,我们需要一个齐次乘子,它将一个名为v
j
的向量乘以一个非零标
量λ
j。
这不是模型中向量本身的态射,也不是语言中公式的态射,而这是两个
值之间的转换:模型中向量到语言中变量的符号。
三、同构不变量的射影
在合成射影几何学中,所有的“几何性质”都由一般的射影亚纯性[3]来保持:任何一种地图,它接受点到点、线到线、平面到平面等,并保持这些物体的所有
发生率。
在复平面的射影几何中,共轭映射:)→ ),应用于点的所有坐标,得到一个同构射影。
这意味着一个新的地图将被添加到我们的“几何
地图”类别中。
为了完成对射影几何性质的检验,我们需要考虑哪些公式是自同构的不变量。
由于整数是由所有域的自同构所固定的,我们得到了一个明显的结果。
LALG
n
中的一个开放公式是向量空间范畴的不变量。
在维数n中,去掉零向量,当且仅当
LALG
n
中有公式G,所有向量变量均为齐次时,非奇异线性变换、场自同构和齐次
乘法的复合,使得对于每一个具有有限的模型,G等价于F。
考虑复数的范畴,
显然,任何只使用有理系数的公式都是不变的,因为有理数在这样的态射下形成
固定场。
所有的合成结构都可以用有理数来表示,并且最好证明这些合成几何公
式与所有射影变换范畴的不变公式一致。
我们集中讨论了点的几何学。
一般几何
与点、线、平面等一起工作。
类似的结果适用于任何包含这些对象坐标的代数语
言。
除了包含简单的附加不变量,如(Px)=0(对于P l x
l -I-P2x
2
q-P3x
3
=0)来表
示“x点位于P线上”的语句外,没有重大变化。
四、有序域的不变量
我们提出了一个几何性质是组合的,只有当它在通过域扩展模型是不变的。
非正式地说,我们声称一个“组合”结构的完成并不是通过增加更多的点来改变的。
因此,这种组合性质在扩张的齐次乘法下是不变的。
在这个条件下,可以刻
画其他有序域的组合射影性质。
如果这个猜想被证实了,我们仍然会有一个算法。
这是所有计算的不变公式类中开始和剩余的另一个参数。
总之,它们相当于原始方程。
同样困难的是,在我们的语言中,我们可以将
任何具有实代数系数的方程或不等式转化为方程不等式。
因此,在原则上,我们
已经覆盖了用代数系数多项式表示的所有性质。
具有超越系数[4]的多项式需要二
阶语句(定义有理数中相应割集的无穷多个不等式的连接)才能翻译成我们的语言。
注意,像这样的数字转换取决于有理数中的顺序,并且不存在于诸如复
数这样的无序字段上。
综上所述,我们并不认为我们的恒定语言是从综合几何翻译的最佳语言。
实
际上,这样的翻译是用凯莱代数或格拉斯曼代数的相似变体来进行的。
在这种更
丰富的代数扩展语言中,所有完全齐次的公式都是射影变换的不变量。
我们在这
个方向上做一个小的移动,包括向量的加法和向量乘以标量。
这个扩展对于证明
一些量化的定理是必要的,对于实际的、自动化的定理证明,我们还需要实现程
序来将合成语句转换成凯莱代数。
总之,适当的恒等式可以用来表示几乎所有的定理。
这些恒等式比相应定理
的任何其他证明都携带更多的信息。
这些恒等式很容易从典型的一阶证明中导出,并且应该是未来解析射影几何计算机算法的输出。
参考文献:
[1]朱鼎勋. 射影几何简介[J]. 数学通报, 2016(11).
[2]王玲玲. 关联几何的若干问题研究[D]. 长沙理工大学, 2013.
[3]杨刘. 到复射影空间的全纯映射及亚纯映射的正规性和值分布[D]. 2016.
[4]余军扬. 关于超越系数的Riccati方程亚纯解的增长性%On the Growth of Meromorphic Solutions of Riccati Equations[J]. 数学物理学报, 1999, 019(001):113-120.。