向量数量积PPT课件

合集下载

空间向量的数量积运算完整版课件

空间向量的数量积运算完整版课件
O→M、O→N、B→C,最后证O→G·B→C=0 即可. [规范解答]连结 ON,
设∠AOB=∠BOC=∠AOC=θ,
又设O→A=a,O→B=b,O→C=c,
则|a|=|b|=|c|.
2分
又O→G=12(O→M+O→N)=12[12O→A+12(O→B+O→C)]
=14(a+b+c),
B→C=c-b. ∴O→G·B→C=14(a+b+c)·(c-b)
数量 特别地:a·a=|a|2或|a|= a·a
积的 性质
(3)若θ为a,b的夹角,则cos θ=
a·b |a||b|
.
(4)|a·b|≤|a|·|b|.
想一想:类比平面向量,你能说出a·b的几何意义吗? 提示 数量积a·b等于a的长度|a|与b在a的方向上的投影 |b|·cos θ的乘积.
名师点睛
所以O→A·B→C=O→A·A→C-O→A·A→B
=|O→A||A→C|cos〈O→A,A→C〉-|O→A||A→B|cos〈O→A,A→B〉
=8×4×cos 135°-8×6×cos 120°
=-16 2+24.
所以 cos〈O→A,B→C〉=O|→O→AA·||B→B→CC|=24-8×165
2=3-52
1.空间向量夹角的理解 (1)任意两个空间向量均是共面的,故空间向量夹角范围 同两平面向量夹角范围一样,即[0,π]; (2)空间向量的夹角在[0,π]之间,但空间两异面直线夹角
π 在(0, 2 ]内,利用向量求两异面直线夹角时注意转化,两
异面直线的夹角余弦值一定为非负数.
2.平面向量与空间向量数量积的关系 由于空间任意两个向量都可以转化为共面向量,所以空间 两个向量的夹角的定义和取值范围、两个向量垂直的定义 和表示符号、向量的模的概念和表示符号、以及运算律等 都与平面向量相同.

向量数量积的坐标运算与度量公式PPT课件

向量数量积的坐标运算与度量公式PPT课件

k t3 3t 4
k t2 1 t2 4t 3 1 t 22 7
t4
4
4
当t 2时,k t 2 有最小值 7 .
t
4
说明:本题考查平面的数量积及相关知识,与函数联 系在一起,具有综合性。要注意观察揭示题中的隐含 条件,然后根据垂直条件列出方程得出k与t的关系, 利用二次函数求最值。
2 2 ≤ cos ≤1
3
课堂小结:
这节课我们主要学习了平面向量数量积 的坐标表示以及运用平面向量数量积性质的坐 标表示解决有关垂直、平行、长度、角度等几
何问题。 设a (x1,y1),b (x2,y2)
a b x1 x2 y1 y2
(1)两向量垂直条件的坐标表示
a b x1 x2 y1 y2 0
解: (Ⅰ) OP OQ 2 cos x , OP OQ 1 cos2 x ,
cos
OP OQ OP OQ
2cos x 1 cos2 x
,∴
f
(x)
2cos x 1 cos2 x
(x
4
, 4
)
第20页/共24页
变形 2:平面直角坐标系有点 P(1, cosx) , Q(cos x,1) ,
(2)两向量平行条件的坐标表示
a / /b x1y2 x2 y1 0
第22页/共24页
设a (x1,y1),b (x2,y2)
(3)向量的长度(模)
a
2
2
a
x2 1
y2 1
或a
x2 1
y2 1
(4)两向量的夹角
cos a b
ab
= x1x2 + y1y2 x12 + y12 x22 + y22

6.1.2空间向量的数量积课件(苏教版)

6.1.2空间向量的数量积课件(苏教版)
=CA2+CC1 2+CB2=12+22+12=6,
形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.求证:PA⊥BD.
证明 在△ADB中,∠DAB=60°,AB=2AD,
由余弦定理得,BD= 3AD,
所以AD2 +BD2 =AB2 ,
→ →
所以 DA⊥BD,则BD·DA=0.
→ →
由 PD⊥底面 ABCD,知 PD⊥BD,则BD·PD=0.
→ →
(2)AM 在直线 BC上的投影向量 BC
C
D
0
A
B
D1
C1
2
AM BC BC BC BC | BC |2 1
B1
A1
(问)AM BC还有没有其他方法?
M
C
D
A
B
典型例题
例3.量a,
b,
c均为单位向量, 它们的夹角均为600,求 | a 2b c |
2
2
2
解:
| a 2b c | (a 2b c) a 4b c 4a b 2a c 4b c


4
4

所以|BN|=

|BN|2= 3.
典型例题
—→ —→ → → —→ →
(2)因为 BA1 = CA1 -CB=CA+CC1 -CB,
—→ → —→
CB1 =CB+CC1 ,
—→
—→
→ → →
所以| BA1 |2= BA1 2=(CA+CC1-CB)2
—→
→ —→ →
| BA1 |= 6,
| m|| n |
典型例题
一、数量积的计算
例4

数学人教A版(2019)必修第二册6.2.4平面向量数量积(共15张ppt)

数学人教A版(2019)必修第二册6.2.4平面向量数量积(共15张ppt)


,求

∙ .
设 =12, =9, ∙ =-54 ,求与的夹角
向量的数量积的几何意义是什么?
B
a
A
b
C A1
B2
D
两个非零向量、,他们的夹角为,
探究向量在上的投影向量的情况.
两个非零向量、,他们的夹角为,是与方向相同的单位
向量.
(1) ∙ = , = .(求向量长度的工具)
如何规定向量的乘法.
向量的乘法的结果是什么量?这个值由那些量决定?符号
由什,我们把数量
cos量叫做、的数量积,记作 ∙
即 ∙ = cos
规定零向量与任一非零向量的数量积为0.
已知 = , = , 与的夹角 =
6.2.4向量的数量积
学习目标
1、向量数量积的运算.
2、向量投影及投影向量的概念
重点、难点 向量数量积的概念与运算律.
向量的概念源自哪一门学科?我们已经研究了向量的哪些
运算?这些向量的运算表运算结果是什么?
前面学习了向量的加,减,数乘(线性运算).
其运算结果是向量.
向量能否相乘?如何规定向量的乘法?我们该怎样研究?
(2) ⊥ ⟺ ∙ =0.(直线垂直的重要条件)
(3) ∙ = ∙ = cos.
已知 = , = , 与的夹角 = °,求 ∙ ,
( + )2 , + .
1、本节课学习了哪些知识和内容.
2、结合实例说明向量数量积的几何意义.
感谢聆听!

向量的数量积课件(共17张PPT)

向量的数量积课件(共17张PPT)
则AOB (0 )叫a与b 的夹角.
A
O
B
三、 抽象概念,建构新知
特殊的夹角
0
O
B
2
A
O
B
A
O
a与b 方向相同
a与b垂直 记作a b
B a与b 方向相反
三、 抽象概念,建构新知
2、向量数量积的定义:
已知两个非零向量a与b ,它们的夹角为,
我们把数量积 a b cos 叫做向量a与b 的数量积(或内积),
记作a b ,即a b a b cos.
A
规定:零向量与任一向量的数量积为0.
O
B
四、 小试牛刀,巩固落实
课本P17例9 已知 a 5, b 4, a与b 的夹角 2 ,求a b.
3
变式:已知 a 5, b 4, a b 10,求a与b 的夹角.
解:a b a b cos 分析:由a b a b cos
向量的数量积
册 别:必修第二册 学 科:高中数学(人教A版)
一、 温故知新,提出问题
问题1:前面我们学习了向 量的加、减运算,类比数 的运算,向量之间还可以
建立哪些运算?
二、 借助物理,创设情境
问题2:类比研究向量运算中 加法运算的基本路径, 怎样来研究向量的乘法?
物 理

力的合成
数 学
向 量
向量的加法
5 4 cos 2
3 5 4( 1)
2 10.
得到cos a b
ab
10 1 54 2
0, ,
2 .
3
五、 几何角度,深化理解
问题3:a b a b cos
其中 a cos,你能联想到其几何意义吗?
A b

《向量数量积》课件

《向量数量积》课件
适用于任何可以图形表示的向 量,如二维和三维空间中的向 量。
注意事项
需要确保向量的图形表示是准 确的,并且测量过程中没有出
现误差。
向量分解法
定义
步骤
向量分解法是将一个向量分解为其他两个 向量的和,然后利用这两个向量的数积 来计算原向量的数量积。
首先,将一个向量分解为两个其他向量的 和,然后分别计算这两个向量的数量积, 最后将结果相加。
几何意义
总结词
向量数量积的几何意义是表示一个向量在另一个向量上的投影长度。
详细描述
向量数量积的几何意义可以理解为第一个向量在第二个向量上的投影长度,这 个长度与两个向量的夹角有关,夹角越小,投影长度越大,反之则越小。
向量数量积的标量性
总结词
向量数量积的结果是一个标量,而不是向量。
详细描述
由于向量数量积的定义中对应坐标相乘后求和,其结果是一个标量,而不是向量。这个标量表示两个 向量的相似程度,其值越大表示两个向量越相似或方向越一致,反之则越不相似或方向越不一致。
02
CATALOGUE
向量数量积的性质
非负性
总结词
向量数量积的非负性是指两个非零向 量的数量积大于等于0,当且仅当两 向量共线且方向相同时取等号。
详细描述
非负性是向量数量积的一个重要性质 ,它反映了向量之间的角度关系。如 果两个非零向量的数量积为0,则这两 个向量垂直。
向量数量积与模的关系
总结词
向量数量积与向量点积的区别与联系
总结词
向量数量积和点积都是两个向量的内积 ,但计算方式不同。点积计算时考虑向 量的方向,而数量积不考虑方向只考虑 大小。
VS
详细描述
点积计算时,将两个向量的每一个分量相 乘后求和,得到的结果是一个标量。而数 量积则只考虑两个向量的模长和夹角的余 弦值,不考虑方向。因此,点积的结果不 仅与向量的模长和夹角有关,还与向量的 方向有关。而数量积的结果只与向量的模 长和夹角有关,与方向无关。

空间向量的数量积运算ppt课件


g
l
m
m
存在唯一的有序数对(, ),
= + .
∴ ∙ = ∙ + ∙ .
∵ ∙ = 0, ∙ = 0
∴ ∙ = 0.∴ ⊥ .
因此直线垂直于平面内的任意一条直线,所以 ⊥ .
n
n
g
∠AOB
OB =b,则_______=θ
范围:________
0≤θ≤π
B
b
b
特殊情况:

B
a
a
O
b B
O
b
a
A
B b
O
0
180
a 与 b 同向
a 与 b 反向
A
O
a
a
A
90
a 与 b 垂直,记作 a b
A
空间向量的夹角
定义:已知两个非零向量a,b,在空间任取一点O,作 OA =a,
空间向量的数量积运算
新课导入
平面向量及其线性运算

广
空间向量及线性运算
平面向量数量积运算

广
空间向量数量积运算
探 究
问题:回忆一下,我们当时是如何研究平面向量的数量积运算?
定义夹角
数量积定义
运算律
运用
知识回顾
定义:已知两个非零向量a,b,O是平面上的任意一点,作 OA =a,
<a,b>
叫做向量a与b的夹角.记作: ________
a

a
c
b
称为向
投影向量
向量a向直线l投影
a

a
c
l
投影向量

平面向量的数量积_图文_图文

平面向量的数量积_图文_图文.ppt
我们知道,数量之间可以进行加、 减、乘、除运算,运算的结果依然 是数量。那么向量呢?
前面,我们对向量进行了加减的运算, 发现它们运算的结果还是向量。那么向 量之间能否进行乘除运算呢?如果能的 话,运算的结果还是向量吗?
一 .引入
物理实例如图,一个物体在力F 的作用下产生位移S,那么力F 所做的功W=____________
特别地,a ·a (或写成 a 2)=| a |2或| a |=√a ·a .
(4)| a ·b |≤| a || b |.
向量a与b共线
| a ·b |=| a || 算律 (1) a ·b = b ·a (交换律); (2) ( a ) ·b=( a ·b )= a ·( b ); (3) ( a + b ) ·c= a ·c + b ·c(分配律);
2. 已知△ABC中, AB=a, AC=b, 当 a·b <0, a·b =0时 , △ ABC各是什么三角形.
钝角三角形
直角三角形
4、P108 Ex1
六、运算律
实数之间的乘法满足哪些运算律?你能类比得出向
量的数量积的运算律吗?
从力的做功来
(1) a ·b = b ·a (交换律);
看若力增大n倍
A 2
a
bB
1
O A1 c B1 C
例2 辨析题:
向量的数量积 不满足消去律
1.若a≠0,且a ·b=0,则b=0. ( X )
2.若a≠0,且a ·b=a ·c,则b=c.( X )
3.(a ·b) ·c=a ·(b ·c(). X )

4.若a2=0,则a=0( √ ) 5.若a2+b2= 0,则a=b= ( √ ) 6若 |a ·b|≥|a| ·|b|, 则a∥b.( √ )

1.1.2空间向量的数量积运算课件(人教版)


解:(1) AB AD | AB || AD | cos AB, AD 5 3 cos 60 7.5 . (2)| AC |2 ( AB AD AA)2 | AB |2 | AD |2 | AA |2 2( AB AD AB AA AD AA) 52 32 72 2(5 3 cos 60 5 7 cos 45 3 7 cos 45 ) 98 56 2 , 所以 AC 13.3 .
2
B. AB AC1 2a2 D. BC DA1 a2
解析:
AB
A1C1
AB (AB
AD)
2
AB
a2

AB AC1 AB
AB AD AA1
2
AB
a2

AB
AO
AB
1 2
AC1
1 2
AB
AC1
1 2
a2

BC DA1 BC
BB1 CB
2
BC
a2
.故选
C.
5.已知| a | 3 2 ,| b | 4 , m a b , n a b ,a, b 135 ,m n , 则 _____32_____.
这就证明了直线 l 垂直于平面 内的任意一条直线,所以l .
1.如图,空间四边形 ABCD 的每条边和对角线长都等于 1,点 E, F,G 分别
B 是 AB, AD,CD 的中点,则 FG AB ( )
3
1
1
3
A. 4
B. 4
C. 2
D. 2
解析:由题意得
FG
1 2
AC
,所以
FG
AB
1 2
(a) b (a b) , R ;

向量的数量积课件


详细描述
向量数量积在计算机图形学中也有着广可以用 来计算光照和阴影的方向和强度,或者用来 实现物理模拟和动画效果。此外,向量数量 积还可以用于实现碰撞检测和运动控制等算 法。
05
总结与展望
向量数量积的重要性和意义
数学基础
,数量积为ab。
几何意义
向量数量积的几何意义是表示一个向量在另一个向量上的投 影长度。
当两个向量的夹角为锐角时,数量积为正,表示两向量方向 相同;当夹角为钝角时,数量积为负,表示两向量方向相反 ;当夹角为直角时,数量积为0。
向量数量积的运算性质
向量数量积满足交换律和分配 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积的模的性质
总结词
两个向量的数量积的值等于它们的模的乘积与它们夹角的余弦值的乘积。
详细描述
向量的数量积的模的性质表明,两个向量的数量积等于它们的模的乘积与它们 夹角的余弦值的乘积。这个性质对于计算两个向量的数量积非常重要,因为它 提供了一个公式来直接计算数量积的值。
向量数量积的交换律和结合律
向量的数量积ppt课件
目录
• 向量数量积的定义 • 向量数量积的性质 • 向量数量积的运算 • 向量数量积的应用 • 总结与展望
01
向量数量积的定义
定义
向量数量积定义为两个向量的模 长之积与夹角的余弦值的乘积,
记作a·b=abcosθ。
其中,a和b分别为两个向量,θ 为两向量的夹角。
当两个向量的夹角为90°时,数 量积为0;当夹角为0°或180°时
理论价值
向量的数量积是向量代数中的基本概 念之一,是研究向量关系和进行数学 分析的重要工具。
向量数量积的概念是线性代数和解析 几何理论体系的重要组成部分,对于 理解空间几何和线性变换的本质具有 重要意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引入:物体在 F 作用下产生位移 S,那么F作功W=|F|
F
θ S
|S|cosθ
从力做的功出发,类比引入向量数量积概念
一、两个非零向量的夹角
已知非零向量 a b b 作OA = a,OB = b 那么∠AOB=θ(0≤ θ≤π) 叫做 a 与 b 的夹角 注意: (1)夹角θ=0 夹角θ=π (2) θ=π/2时 a,b 同向 a,b 反向 a⊥b O B b O a A a b B a A
3、你能由数量积定义提出下列性质吗?( a ≠0,b ≠0 )
① e 单位向量 e· a=|a|cosθ |a| |b|
② a,b同向,a · b =
a,b反向,a · b= ﹣|a| |b| a· a= a 2=| a |2 ③cosθ =a ·b/|a||b| ④a⊥b a ·b=0 向量平方等于模的平方 夹角余弦等于数量积除以模的积, 非零向量垂直的充要条件是数量积为0
· 注意: (1)不能省略; (2)规定 0 与任一向量数量积等于0;
(3)a · b是一数量。
2、向量数量积几何意义
(1)向量b在a上的投影 B b B1 θ B1 O B θ O(B1) b
B
b
O
θ
a
A
a
A
a
A
OB1 = |b|cosθ ,叫b在a上投影 (数量)
|b|cosθ 的值可正、可负、也可为0。由θ 决定 (2)a· b=|a| |b| cosθ 的意义是:a 的模| a |与另一向量 b 在 a 上 投影 | b |cosθ 之积
练习:
①由 a · b =0,能得出 a =0或 b =0? ② e1,e2 是两个单位向量,e1 2= e2 2吗? ③| p |=2,| q |=3,夹角θ=450,p q= ·?
④a ·b =0 ( a ≠0,b ≠0), a,b的夹角是多少?
小结:
1、两向量夹角:两向量共起点后构成的角 2、数量积:模的积与夹角余弦积(是一实数)
3、性质:
① a 2=| a |2 ② a⊥b (向量平方等于模的平方) a·b=0(非零向量垂直的充要条件是数量积为零)
③cosθ =a · b/|a||b| (夹角余弦等于数量积除以模的积)
作业:P121 练习中2、3、4
习题中3。
θ
a∥b
(3)向量夹角是共起点后形成的角
例如:在三角形ABC中,∠ABC=450,BA 与 BC 夹角是多少? A BA 与 CB 夹角呢? 1350 D B 1350
E
450
C
二、数量积的定义
1、两非零向量 a 和 b ,夹角为θ,把|a| |b|cos θ, 叫a 与 b 的数量积
记作:a · b=|a| |b|cosθ
⑤| a ·b |≤| a | | b |
三、数量积运用
例1:已知| a |=3,| b |=6,当① a ∥ b ; ② a ⊥ b;③ a 与 b 夹角为600时, 分别求 a ·b 分析:数量积定义是什么?夹角余弦与模 的积。由此知只要找出它们夹角,代入即可
解:①若 a 、b 同向,夹角θ=00, a b= · | a || b |coห้องสมุดไป่ตู้00=18
若 a 、 b 反向,夹角θ=1800 a b= · | a || b |cosθ=-18
②∵a ⊥ b ∴a · b=0
③ a ·b =| a || b |cos600=9
例2:在△ABC中,AB· CA>0, △ABC是什么△? 分析:画出图形弄清AB,CA夹角
C
A π-A B D
解:AB,CA夹角为π-A 由cos(π-A)=AB CA/|AB||CA|>0 · 得cosA<0,又0<A<π ∴A为钝角,故△ABC为钝角三角形。
相关文档
最新文档