50题数量关系

合集下载

数量关系练习题及答案

数量关系练习题及答案

1.某天办公桌上台历显示的是一周前的日期,将台历的日期翻到今天,正好所翻页的日期加起来是168,那么今天是几号:A.20B.21C.27D.282.某单位向希望工程捐款,其中部门领导每人捐50元,普通员工每人捐20元,某部门所有人员共捐款320元。

已知该部门总人数超过10人,问该部门可能有几名部门领导:A.1B.2C.3D.43.箱子中有编号1~10的10个小球,每次从中抽出一个记下编号后放回,如果重复3次,则3次记下的小球编号乘积是5的倍数的概率是多少:A.43.2%B.48.8%C.51.2%D.56.8%4. 2台大型收割机和4台小型收割机在一天内可收完全部小麦的3/10,8台大型收割机和10台小型收割机在一天内可收完全部小麦,如果单独用大型收割机和单独用小型收割机进行比较,要在一天内收完小麦,小型收割机要比大型收割机多用多少台:A.8B.10C.18D.205.加油站有150吨汽油和102吨柴油,每天销售12吨汽油和7吨柴油。

问多少天后,剩下的柴油是剩下的汽油的3倍:A.9B.10C.11D.126.服装店买进一批童装,按每套获利50%定价卖出这批童装的80%后,按定价的八折将剩下的童装全部卖出,总利润比预期减少了390元,问服装店买进这批童装总共花了多少元:A.5500B.6000C.6500D.70007.某人要从A市经B市到C市,从A市到B市的列车从早上8点起每30分钟一班,全程行驶一小时;从B市到C市的列车从早上9点起每40分钟一班,全程行驶1小时30分钟;在B市火车站换乘需用时15分钟。

如果想在出发当天中午12点前到达C市,问他有几种不同的乘车方式:A.3B.2C.5D.48.某单位举办围棋联赛,所有选手的排名都没有出现并列名次。

小周发现除自己以外,其他所有人排名数字之和正好是70。

问小周排名第几:A.7B.8C.9D.109.甲、乙、丙三人匀速行驶在某条道路上。

某一时刻时,丙在甲之前,而乙刚好在甲、丙两人的正中间。

数量关系试题及答案

数量关系试题及答案

一、相遇问题要点提示:甲从A地到B地,乙从B地到A地,甲,乙在AB途中相遇。

A、B两地的路程=甲的速度×相遇时间+乙的速度×相遇时间=速度和×相遇时间1、同时出发例1:两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车的旅客发现第一列车在旁边开过时用了6秒,则第一列车的长度为多少米?A.60米B.75米C.80米D.135米解析:D。

A、B两地的距离为第一列车的长度,那么第一列车的长度为(10+12.5)×6=135米。

2、不同时出发例2:每天早上李刚定时离家上班,张大爷定时出家门散步,他们每天都相向而行且准时在途中相遇。

有一天李刚因有事提早离家出门,所以他比平时早7分钟与张大爷相遇。

已知李刚每分钟行70米,张大爷每分钟行40米,那么这一天李刚比平时早出门()分钟A.7B.9C.10D.11解析:D。

设每天李刚走X分钟,张大爷走Y分钟相遇,李刚今天提前Z分钟离家出门,可列方程为70X+40Y=70×(X+Z-7)+40×(Y-7),解得Z=11,故应选择D。

3、二次相遇问题要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

第二次相遇时走的路程是第一次相遇时路程的两倍。

例3:两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距()千米A.200B.150C.120 D100解析:D。

第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A 城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

4、绕圈问题例4:在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?A.24分钟B.26分钟C.28分钟D.30分钟答案:C。

数量关系的测试题及答案

数量关系的测试题及答案

数量关系的测试题及答案一、选择题1. 一个班级有40名学生,如果每名学生需要2本练习册,那么总共需要多少本练习册?A. 60B. 80C. 100D. 120答案:C2. 一个工厂每天生产100个零件,一周(7天)可以生产多少个零件?A. 500B. 600C. 700D. 800答案:B3. 一个长方形的长是10米,宽是5米,它的面积是多少?A. 25平方米B. 50平方米C. 100平方米D. 200平方米答案:B二、填空题1. 一个数的3倍是90,这个数是______。

答案:302. 5个苹果的总价是25元,那么一个苹果的价格是______元。

答案:53. 一个班级有50名学生,如果每名学生需要3本练习册,那么总共需要______本练习册。

答案:150三、计算题1. 一个农场有200只鸡,每只鸡每天下1个蛋,那么一周(7天)总共可以收获多少个鸡蛋?答案:1400个2. 一个学校有3个班级,每个班级有40名学生,如果学校要为每名学生准备2支铅笔,那么总共需要准备多少支铅笔?答案:240支四、应用题1. 一个超市在促销活动时,每购买满100元的商品,可以享受10元的优惠。

如果一个顾客购买了300元的商品,那么他实际需要支付多少元?答案:280元2. 一个班级有45名学生,如果每名学生需要2本练习册,那么总共需要多少本练习册?如果每本练习册的价格是10元,那么总共需要多少钱?答案:总共需要90本练习册,总共需要900元。

五、逻辑推理题1. 一个班级有40名学生,其中有20名男生和20名女生。

如果班级里有一个学生是班长,班长是男生的概率是多少?答案:50%2. 一个工厂有100名员工,其中80名是男性,20名是女性。

如果随机选出一名员工作为代表,选出的员工是女性的概率是多少?答案:20%。

数量关系题库及答案详解

数量关系题库及答案详解

数量关系题库及答案详解1. 某班级有40名学生,其中男生人数是女生人数的2倍。

问女生有多少人?答案:设女生人数为x,则男生人数为2x。

根据题意,x + 2x = 40,解得x = 40 / 3。

因为人数必须是整数,所以题目有误。

2. 一个长方形的长是宽的3倍,周长是40米。

求长方形的长和宽。

答案:设宽为x,则长为3x。

根据周长公式2(x + 3x) = 40,解得x = 5米,长为3x = 15米。

3. 一个数的3倍加上5等于这个数的5倍减去7,求这个数。

答案:设这个数为x,根据题意,3x + 5 = 5x - 7,解得x = 6。

4. 一个工厂每天生产零件的个数是前一天的2倍,如果第一天生产了10个零件,问第5天生产了多少个零件?答案:第一天生产10个,第二天生产20个,第三天生产40个,第四天生产80个,第五天生产160个。

5. 一个数的一半加上10等于这个数的两倍减去20,求这个数。

答案:设这个数为x,根据题意,0.5x + 10 = 2x - 20,解得x = 40。

6. 一个水池,如果打开一个水龙头,5小时可以注满;如果打开两个水龙头,3小时可以注满。

问如果打开三个水龙头,需要多少小时注满?答案:设水池的容量为C,一个水龙头每小时的注水量为R。

根据题意,5R = C,2R * 3 = C,解得R = C/15。

三个水龙头的总注水量为3R,所以需要的时间为C / (3R) = 5 / 2 = 2.5小时。

7. 一个班级有学生50人,其中会游泳的人数是会打篮球人数的4倍。

问会打篮球的有多少人?答案:设会打篮球的人数为x,则会游泳的人数为4x。

根据题意,x + 4x = 50,解得x = 10。

8. 一个数的平方加上这个数等于2015,求这个数。

答案:设这个数为x,根据题意,x^2 + x = 2015,即x(x + 1) = 2015。

通过因式分解,得x = 43或x = -45。

9. 一个数的4倍与这个数的6倍之差是12,求这个数。

刷题组——数量关系套题汇总(50套)

刷题组——数量关系套题汇总(50套)
微信公众号:腰果公考齐麟
新浪微博:腰果公考ቤተ መጻሕፍቲ ባይዱ麟
目录
练习须知:................................................................................................................................. 4 2017 国考数量关系....................................................................................................................5 2016 国考数量关系....................................................................................................................9 2015 国考数量关系..................................................................................................................13 2014 国考数量关系..................................................................................................................16 2013 国考数量关系....................................................................................................

数量关系专题练习及讲解

数量关系专题练习及讲解

1.某市出租车运费计算方式如下:起步价2公里6元,2公里之后每增加1公里收费1.7元,6公里之后每增加1公里收费2.0元,不足1元按四舍五入计算。

某乘客乘坐了31公里,应该付多少元车费:( )A.63B.64C.65D.661.A【解析】根据题意,该乘客应付车费。

故正确答案为A。

2.将25台笔记本电脑奖励给不同的单位,每个单位奖励的电脑数量均不等,最多可以奖励几个单位:( )A.5B.6C.7D.82.B【解析】解析1:从1台开始算起,,还多4台,不能再单独奖励给一个单位,只能分到后4个单位,因此最多可以奖励6个单位。

解析2:把握难题实质为等差数列的计算问题,各单位分得电脑数量不等,可设为分别分得1、2、3,根据等差数列的求和公式可得:,即求使得不等式成立的最大正整数的值,解得。

故正确答案为B。

3. 现在是下午三点半,那么20万秒之后你能听到的第一声整点报时是几点钟的:( )A.凌晨0点B.凌晨4点C.下午2点D.下午6点3.A【解析】1小时合3600秒,因此20万秒合:,合计55小时又小时。

每24小时为一天,因此从55小时中去除2天后还剩7小时。

从下午三点半再过7小时为晚上十点半,再过小时,为晚上11点之后。

因此接下来听到的第一声整点报时为凌晨0点。

4.10个连续偶数之和为2030,则第一个偶数为:( )A.190B.192C.194D.1964.C【解析】此题为数列题,根据数列前N项求和公式,即,解得平均数为203,即,由此可得;由通项公式,解。

5.某市规定,出租车合乘部分的车费向每位乘客收取显示费用的60%,燃油附加费由合乘客人平摊。

现有从同一地方出发的三位客人合乘,分别在D、E、F 点下车,显示的费用分别为10元、20元、40元,那么在这样的合乘中,司机的营利比正常(三位客人是一起的,只是分别在上述三个地方下车)多:( )A.1元B.2元C.10元D.12元5.C【解析】第一位下车客人为合乘,涉及金额为10元;第二位下车客人为合乘,涉及金额为20元;第三位下车客人合乘部分涉及金额20元,独乘部分涉及金额为20元;所以实际营利为10×60%+20×60%+20×60%+20=50元,正常情况下应为40元,故比正常多50–40=10元。

数量关系模拟考试题及答案

数量关系模拟考试题及答案

数量关系模拟考试题及答案一、选择题(每题2分,共20分)1. 如果一个班级有40名学生,其中20名学生是男生,那么女生的比例是多少?A. 30%B. 40%C. 50%D. 60%答案:C2. 一个长方形的长是20米,宽是10米,它的面积是多少平方米?A. 50B. 100C. 200D. 300答案:C3. 一个数的3倍是45,这个数是多少?A. 10B. 15C. 20D. 5答案:B4. 一个班级有60名学生,其中男生占2/3,女生有多少人?A. 20B. 30C. 40D. 50答案:A5. 一个数的一半加上10等于30,这个数是多少?A. 50B. 40C. 30D. 20答案:B6. 一个圆的半径是5厘米,它的周长是多少厘米?(π取3.14)A. 15.7B. 31.4C. 62.8D. 94.2答案:B7. 一个数的75%等于60,这个数是多少?A. 80B. 100C. 120D. 160答案:B8. 一个班级有50名学生,其中女生占40%,男生有多少人?A. 20B. 30C. 40D. 50答案:B9. 如果一个数的1/4是5,那么这个数是多少?A. 20B. 15C. 10D. 25答案:A10. 一个数的平方是36,这个数是多少?A. 6B. 8C. 9D. 12答案:A二、填空题(每题2分,共20分)1. 如果一个班级有50名学生,其中女生占45%,那么女生有________人。

答案:22.5(注:实际班级人数应为整数,此处答案应为23)2. 一个数的3/4是27,这个数是________。

答案:363. 一个长方形的长是15米,宽是10米,它的面积是________平方米。

答案:1504. 一个数的平方根是9,这个数是________。

答案:815. 如果一个数的1/5是4,那么这个数是________。

答案:206. 一个圆的直径是14厘米,它的周长是________厘米。

(完整版)公务员考试行测数量关系50个常见问题公式法巧解

(完整版)公务员考试行测数量关系50个常见问题公式法巧解

公务员考试行测数量关系50个常见问题公式法巧解一、页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。

依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二、握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2 例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。

按照排列组合假设总数为X人则Cx取3=152 但是在计算X 时却是相当的麻烦。

我们仔细来分析该题目。

以某个人为研究对象。

则这个人需要握x-3次手。

每个人都是这样。

则总共握了x×(x-3)次手。

但是没2个人之间的握手都重复计算了1次。

则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

50题数量关系精解41、甲跑11米所用的时间,乙只能跑9米,在400米标准田径场上,两人同时出发依同一方向,以上速度匀速跑离起点A,当甲第三次追及乙时,乙离起点还有()米A、360B、240C、200D、180E、100分析:两人同时出发,无论第几次追及,二人用时相同,所距距离之差为400米的整数倍,二人第一次追及,甲跑的距离:乙跑的距离=2200:1800,乙离起点尚有200米,实际上偶数次追及于起点,奇数次追及位置在中点(即离A点200米处),选C42、长途汽车从A站出发,匀速行驶,1小时后突然发生故障,车速降低了40%,到B站终点延误达3小时,若汽车能多跑50公里后,才发生故障,坚持行驶到B站能少延误1小时20分钟,那么A、B两地相距()公里A、412.5B、125.5C、146.5D、152.5E、137.5分析:设原来车速为V公里/小时,则有:50/V(1-40%)-50/V=1+1/3;V=25(公里/小时)再设原来需要T小时到达,由已知有:25T=25+(T+3-1)*25*(1-40%);得到:T=5.5小时,所以:25*5.5=137.5公里,选E43、某人在双轨铁路旁的公路上骑自行车,他注意到每隔12分钟就有一列火车从后面追上他,每隔4分钟就有一列火车从对面开来与他相遇,如果火车的间隔与速度、某人骑车的速度都是匀速的,且所有火车的速度都相同,则某人后面火车站开出火车的间隔时间为:()A、2分钟B、3分钟C、5分钟D、6分钟E、4分钟分析:设某人的速度为V1,火车的速度为V2,车站开出的火车间隔时间为T分钟。

4(V1+V2)=V2T;12(V2-V1)=V2T;所以得:24V2=4V2T,T=6分钟,选D44、甲乙两人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离开后5分钟与乙相遇,用了7秒钟开过乙身边,从乙与火车相遇开始,甲乙两人相遇要再用()A、75分钟B、55分钟C、45分钟D、35分钟E、25分钟分析:若设火车速度为V1,人的速度为V2,火车长为X米,则有:X/(V1-V2)=8;X/(V1+V2)=7;可知V1=15V2。

火车与乙相遇时,甲乙两人相距300V1-300V2=300*14V2,从而知两人相遇要用300*14V2/2V2=35分钟,选D45、1009年元旦是星期四,那么1999年元旦是星期几?A.四B.五C.六D.七解析:有240个闰年(1100,1300,1400,1500,1700,1800,1900不是闰年)。

每个元旦比上一年的星期数后推一天,闰年的话就后推两个星期数990/7余3,240/7余23+2=546、5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶?解析:大致上可以这样想:先买161瓶汽水,喝完以后用这161个空瓶还可以换回32瓶(161÷5=32…1)汽水,然后再把这32瓶汽水退掉,这样一算,就发现实际上只需要买161-32=129瓶汽水。

可以检验一下:先买129瓶,喝完后用其中125个空瓶(还剩4个空瓶)去换25瓶汽水,喝完后用25个空瓶可以换5瓶汽水,再喝完后用5个空瓶去换1瓶汽水,最后用这个空瓶和最开始剩下的4个空瓶去再换一瓶汽水,这样总共喝了:129+25+5+1+1=161瓶汽水.47、甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

解析:甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

48、科学家进行一项实验,每隔五小时做一次记录.已知做第十二次记录时,挂钟的时针恰好指向9,那么做第一次记录时,时针指向___.??时间间隔为12-1=11,每次5小时,共计5*11=55。

55/12=4余7,9-7=2小时49、在一场象棋循环赛中,每位棋手必须和其他棋手对奕一局,且同一对棋手只奕一次。

这次比赛共弈了36局棋,问棋手共有几位?A.6 B. 7C. 8D. 9解析:设共有X人那么所有的对局数为(X-1)+(X-2)+...+1=36根据数学公式(X-1)×<(X-1)+1>/2=36X=9关于这个公式也就是说连续的自然数的和等于首项加上末项去除以2,然后乘以项数。

50、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组。

现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。

如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(建议用图形来做)A.15人B.16人C.17人D.18人解析:利用三交集公式A+B+C=AUBUC+AnB+BnC+AnC-AnBnC(AnBnC是指语文,数学,英语三个都参加的人,AUBUC是只总人数)A+B+C=17+30+13AnBnC=5AUBUC=35所求为AUBUC-(AnB+BnC+AnC)+AnBnC方便解法:参加一个小组的为x人,两个小组的为y人x+y+5=35x+2y+3*5=17+30+13x=1551、某校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?A.272人B.256人C.240人D.225人解析:选b方阵是四个"角"所以,方阵的每一边: (60+4)/4=16总人数是: 16×16=25652、在一工厂,40%的工人有至少5年的工龄,16个工人有至少10年的工龄。

如果90%的工人的工龄不足10年,问工龄至少5年但不足10年的工人有多少个?解析:"90%的工人的工龄不足10年"则至少10工龄的占10%又因"16个工人有至少10年的工龄"则总工人数:16/(10%)=160人"40%的工人有至少5年的工龄"则至少5年的工龄的人有:160X40%=64又因"16个工人有至少10年的工龄"则工龄至少5年但不足10年的工人---------64-16=48人53、有一条一米长的绳子,第一次减掉一半,第二次减掉剩下的一半,那么连续减掉6次之后,减掉的部分长度的总和?解析:一共是6次截半,所以最后剩下的是(1/2)^6=1/64减掉的就是1-1/64=63/6454、如果2斤油可换5斤肉,7斤肉可换12斤鱼,10斤鱼可换21斤豆,那么27斤豆可换()油。

解析:14斤油=35斤肉=60斤鱼=126斤豆所以14/X=126/27解得X=355、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的—个课外活动小组。

现已知参加英语小组的有17人。

参加语文小组的有30人,参加数学小组的有1 3人。

如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(容斥问题)17+30+13-2*5-35=1556、一艘游轮逆流而行,从A地到B地需6天;顺流而行,从B地到A地需4天。

问若不考虑其他因素,一块塑料漂浮物从B地漂流到A地需要多少天?(水流问题)A.12天B.16天C.18天D.24天解析:设静水速度是X,水流速度是Y,那么可以列出方程组:1/(X-Y)=6,1/(X+Y)=4;可解得1/Y=24,即为水流速度漂到的时间57、有砖26块,兄弟二人争着去挑。

弟弟抢在前面,刚摆好砖,哥哥赶到了。

哥哥看弟弟挑的太多,就抢过一半。

弟弟不肯,又从哥哥那儿抢走一半。

哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。

问最初弟弟准备挑多少块?解析:先算出最后各挑几块:(还原问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块.58、甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。

如果他们三人共有81元,那么三人原来的钱分别是多少元?(还原问题)解析:三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1. 甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2. 甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3. 最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元.59、全家4口人,父亲比母亲大3岁,姐姐比弟弟大2岁。

四年前他们全家的年龄和为58岁,而现在是73岁。

问:现在各人的年龄是多少?(年龄问题)解答:73-58=15≠4×4,我们知道四个人四年应该增长了4×4=16岁,但实际上只增长了15岁,为什么呢?是因为在4年前,弟弟还没有出生,那么弟弟今年应该是几岁呢?我们可以这样想:父亲、母亲、姐姐三个人4年增长了12岁,15-12=3,3就是弟弟的年龄!那么很快能得到姐姐是3+2=5岁,父母今年的年龄和是73-3-5=65岁,根据和差问题,就可以得到父亲是(65+3)÷2=34岁,母亲是65-34=31岁.60、一种商品,按期望得到50%的利润来定价。

结果只销售掉70%商品,为尽早销掉剩下的商品,商店决定按定价打折出售。

这样获得的全部利润,是原来所期望利润的82%问打了几折?(百分比问题)解析:假设成本为x,打折a,则定价为1.5x,期望利润为0.5x,所以(0.7×0.5x+(1.5ax-x)×30%)/0.5x=0.82,求得a=0.861、A、B两人从同一起跑线上绕300米环形跑道跑步,A每秒钟跑6米,B每秒钟跑4米,问第二次追上B时A跑了多少圈?(相遇问题)A.9B.8C.7D.6解析:因为是环形跑道,当A第一次追上B时,实际上A比B多跑了一圈(300米),当第二次追上B时,A比B则需多跑两圈,共600米。

相关文档
最新文档