缩合反应
常见的缩合反应类型

常见的缩合反应类型
常见的缩合反应类型
一、烃类的缩合反应
1、烷基氢化反应:烷基化合物与氢化试剂(如氢氧化钠、氢氧
化钾、硫酸钠等)反应,使烷炔类物质进行缩合,生成烷基化合物,这是最常见的缩合反应。
2、烷基碱化反应:烷基醇及其衍生物在碱性条件下可以发生烷
基碱化反应,生成烷基醛或烷基酮等有机物质,其逆反应为烷基氢化反应。
3、烷基加成反应:烷基溴、烷基硫代等试剂作用于烷烃时,使
烯烃(二环烃)缩合而生成烷烃(三环烃),这种反应称为烷基加成
反应。
4、烷基烃之间的缩合反应:乙烷、丙烷、甲醇、丙酮等分子中
的两个烷基之间可以直接发生缩合反应,称为烷基烃之间的缩合反应。
二、烯烃类的缩合反应
1、加氧烯烃缩合反应:一般烯烃可以在酸性或中性条件下,直
接加氧生成烃烃缩合物,也可以先将烯烃与过媒体(主要是铵类或过氧化氢等)反应,生成烯醛或烯酮,再经加氧反应生成烃烃缩合物。
2、烯烃缩合反应:烯烃之间可以直接缩合成饱和烃。
这种反应
可以在氧化条件下发生,也可以在非氧化条件下发生,可由亲核催化剂诱导,也可由异核催化剂诱导。
3、甲基烯烃的缩合反应:通常甲基烯烃(羟甲基烯烃和缩甲基
烯烃)的缩合反应是由异核催化剂诱导发生的。
同时,也可以用还原剂诱导,使甲基烯烃形成烯烃缩合物。
化学反应中的缩合反应机制

化学反应中的缩合反应机制化学反应是指两个或两个以上的物质接触并发生相互作用,形成新的物质。
在化学反应中,缩合反应是一个重要的类型。
它是一种将两个分子合并成一个较大的分子的反应。
缩合反应在有机合成中广泛应用,也在生物化学过程中起着重要作用。
下面将介绍化学反应中的缩合反应机制。
缩合反应的基本概念缩合反应指的是由两个或多个小分子反应生成一个较大的分子。
比如,两个氨基酸可以通过缩合反应形成一个二肽,多个葡萄糖分子也可以缩合为淀粉。
在有机合成中,缩合反应被广泛应用于合成杂环化合物、多肽和多糖等大分子。
缩合反应可以是加热反应、酸碱催化反应或酶催化反应。
不同的缩合反应机理不同,但它们都会生成由多个单体缩合而成的大分子。
缩合反应机理缩合反应的机理可以分为几个步骤。
首先,两个或多个小分子彼此接触并发生反应,形成中间体。
中间体可以是一个化学物种或是一个活性复合体。
其次,中间体发生进一步反应,使得分子间的键产生重新排布,最终形成大分子产物。
此次键重排导致新的结构功能化合物产生。
加热反应的缩合反应机理加热反应是一种常见的缩合反应,它的反应机理如下。
在高温下,单体通过热裂解释放出活性基团,这些活性基团进一步与其它单体反应,形成活性中间体。
然后,中间体发生进一步的反应,产生新的化学键,并形成一个大分子。
这种加热反应机理在聚合物合成中广泛应用。
酮肟缩合反应机理酮肟缩合反应也是一种重要的缩合反应。
它的反应机理如下:首先,酮与肟发生亲核进攻反应,生成反应中间体。
中间体发生进一步反应,断裂一个平衡水分子,产生羧酸和亲核活性基团。
接着,亲核活性基团袭击另一个酮分子,进一步反应,最终生成一种较大的酮化合物。
酶催化反应的缩合反应机理酶催化反应的缩合反应机理与其它反应略有不同。
在酶催化下,两个单体进入酶的活性位点,形成反应中间体。
酶通过改变反应中间体的结构来降低反应活化能,催化键的形成和断裂过程,加速反应的进行。
缩合反应的酶催化反应是生物化学中的重要应用,几乎所有生物大分子的合成都依赖于酶的催化。
化学反应中的缩合反应

化学反应中的缩合反应化学反应是物质之间的相互作用及转化。
各类化学反应中,缩合反应是较常见的一种反应类型。
缩合反应是指两个或两个以上分子合成一种分子的化学反应,通常伴随着水分子的脱失或其他小分子的释放。
这种反应在生命物质的合成及纤维素、淀粉等许多高分子合成中发挥着不可替代的重要作用。
缩合反应可以分为两种类型:减缩合反应和加合成反应。
减缩合反应是指有机化合物中一些部分的氧化还原作用,如醇与醛酮的互变或脱水缩合生成醚或烯丙酮等。
减缩合反应中,一个化合物中的一个小分子被氧化或还原,同时与另一个化合物中的小分子发生缩合,生成一个新的化合物。
加合成反应则是指两个分子中部分或全部之间形成一个新的化合物,如酰胺的合成、肽链的形成等。
加合成反应通常需要一些催化剂的参与,使反应更有效地进行。
缩合反应在生命物质的合成中扮演着非常重要的角色。
例如,光合作用就是一种缩合反应,将CO2和水一起合成为葡萄糖等化合物。
在葡萄糖彼此缩合成淀粉分子时,也发生了缩合反应。
同时,核酸分子也是由核苷酸分子缩合而成。
在有机合成化学中,缩合反应同样具有重要的意义。
减缩合反应在药物合成中特别常见,因为使化合物分子中的一些基团发生氧化还原作用可以有利于合成高价值药物。
加合成反应在制备大分子有机化合物时则明显更常见。
除却其在生命物质合成及有机合成中的作用,缩合反应还有其他许多应用。
例如,将一些小分子缩合成高聚物可以用来制造塑料或纤维质材料等。
在某些溶剂和催化剂参与的状态下,缩合反应还可以用于制备一些生物活性物质。
缩合反应在化学反应中发挥着非常重要的作用,对于提高一些化合物的制备效率、改良生产工艺等方面都具有十分健康的作用。
综上所述,在化学反应中,缩合反应作为一种常见的反应类型,具有广泛的应用和意义。
缩合反应在生命物质合成中、有机合成中及其他许多方面都具有不可替代的重要作用。
对于制备一些生物活性物质、提高生产工艺等方面都有极大的帮助。
随着化学领域的不断发展,缩合反应还将发挥更加重要的作用。
第八章缩合反应

第八章缩合反应
四、酯—酮缩合
➢ 1mol酮与1mol酯进行混合缩合,就得 到β—二酮类化合物。因为酮旳α—活泼 氢一般比酯旳α—活泼氢活泼,故在碱性 催化剂作用下,因应首先形成负碳离子, 然后与酯旳羰基进行亲核加成,缩合反应 旳成果是酮旳α—碳原子酰基化。例如
第八章缩合反应
➢若用酮与不含α—活泼氢旳能进行混合 缩合,能得到纯度较高旳产物。例如
第八章缩合反应
三、分子内旳酯—酯缩合
二元酸酯能够发生分子内旳和分子间旳酯缩合 反应。假如分子中旳两个酯基被三个以上旳碳 原子隔开时,就会发生分子内旳缩合反应,形 成五员环或六员环旳酯。这种环化酯缩合反应 又称为狄克曼(Dieckmann)反应。例如
第八章缩合反应
假如两个酯基之间只被三个或三个下列旳碳原子隔开 时,就不能发生闭环酯缩合反应因为这么就要形成四 员环或不大于四员环旳体系。但能够利用这种二元酸 酯与不合α—活泼氢旳二元酸进行分子间缩合,一样也 可得到环状羰基酯。例如在合成樟脑时,其中有一步 反应就是用β—二甲基戊二酸酯与草酸酯缩合,得到五 员环旳二β—羰基酯。例如
Michael反应常用旳碱能够是较强旳碱,如叔丁 醇钾、乙醇钠(钾)、氢化钠、氨基钠、金属钠等, 也能够用吡啶、六氢吡啶、三乙胺等较弱旳碱。 碱旳选择一般取决于反应物旳活性大小及反应条 件。对于高活性反应物,常用六氢吡啶作催化剂, 它具有副反应少旳优点,但反应速度较慢;对于 低活性物质,则需选择更强旳碱。
第八章缩合反应
三、羰基合成反应 在铁、钴、镍等过渡金属羰基化合物旳催化下,烯烃
和一氧化碳在氢气存在下反应生成醛,或在水(或醇) 存在下生成羧酸(或羧酸酯)旳反应,被统称为羰基合 成反应。
➢烯烃旳反应活性与其本身旳构造有关,一般地 说,直链末端烯烃>直链非末端烯烃>支链末端 烯烃;环烯旳反应速度为C5>C6>C7>C8,即甲 酰基优先导入位阻小旳一边,叔碳原子处不发生 甲酰化。例如
常见的缩合反应类型

常见的缩合反应类型
缩合反应是有机化学中常见的一种反应类型,它是指两个或多个分子结合成一个分子的反应。
常见的缩合反应类型包括酯化反应、醛缩反应、羧酸缩合反应、酰胺缩合反应等。
酯化反应是指酸和醇反应生成酯的反应。
在酯化反应中,酸和醇分子中的羟基和羧基发生缩合反应,生成酯和水。
酯化反应是有机合成中常用的一种反应,可以用于制备香料、涂料、塑料等化合物。
醛缩反应是指醛和醛、醛和酮、醛和胺等分子之间发生缩合反应的反应。
在醛缩反应中,醛分子中的羰基和另一个分子中的羰基或氨基发生缩合反应,生成α,β-不饱和醛或酮。
醛缩反应是有机合成中常用的一种反应,可以用于制备α,β-不饱和醛或酮等化合物。
羧酸缩合反应是指两个或多个羧酸分子之间发生缩合反应的反应。
在羧酸缩合反应中,羧基和羧基发生缩合反应,生成酸酐和水。
羧酸缩合反应是有机合成中常用的一种反应,可以用于制备酸酐、酰胺等化合物。
酰胺缩合反应是指酸酐和胺反应生成酰胺的反应。
在酰胺缩合反应中,酸酐分子中的羰基和胺分子中的氨基发生缩合反应,生成酰胺和酸。
酰胺缩合反应是有机合成中常用的一种反应,可以用于制备酰胺等化合物。
缩合反应是有机化学中常见的一种反应类型,不同的缩合反应类型有不同的反应机理和应用。
在有机合成中,缩合反应是制备复杂有机分子的重要手段之一。
有机合成化学:第六章 缩合反应

第六章 缩合反应
上例是由于选择不同的起始原料,而选择不同的合成路线,使 产品成本大大降低。如果没有很好的路线选择时,可以通过优化 反应条件,提高产物的收率,降低成本。从产品收率上讲,能提 高1-5%。我们可能认为没什么意义,可对企业讲,产品成本会降 低2-8%左右。如果一个产品产值上亿时,可估算一下其价值了。 所以,一个化工产品刚上市时价格较高,随着生产时间延长,价 格逐渐降低,很大可能是由于生产工艺和生产条件的改变所致。
-CO2
CH3CH CH2CO2H
H3C
O O O
60~76%
CH3NO2 + H3CCH
C H
CO2C2H5
NaOC2H5 CH3CH CH2CO2C2H5
55%
CH2NO2
第六章 缩合反应 CH3
CN
PhCH CO2C2H5 + H2C
C H
CN
KOH 83%
CN
PhC CH2CH2CN CO2C2H5
LDA
H3C
CH3
第六章 缩合反应
羰基化合物烷基化最大负反应是O-烷基化产物。如:
副产物
第六章 缩合反应
LDA CH3(CH2)3CO2CH3 BrCH2CH
CH2
CH3CH2CH2CH CO2CH3 CH2CH CH2
LDA
CH2CH3
C2H5Br CH3CH2Байду номын сангаас CO2CH3
可以分步引入
90%
5. Knoevenagel反应:
这类反应的特点是一个亚甲基上连接两个吸电子基团,使
得其氢活性明显提高,反应较易进行。一般使用弱碱 (有机胺)
缩合反应

6 缩合反应缩合反应一般指两个或多个有机化合物分子形成较大的分子的反应,此外缩合反应也可以发生在分子内。
缩合过程常伴有小分子消除。
通过缩合反应可以形成碳碳键、碳杂键,进而达到增碳、引入官能团以及成环等目的,在药物合成中占有重要地位。
本章内容主要为含活泼氢化合物(醛、酮和酯)之间的缩合反应。
6.1alpha-羟烷化、alpha-卤烷化和alpha-氨(胺)烷化反应指在底物分子的某位置引入alpha-羟烷基、alpha-卤烷基和alpha-氨烷基的反应。
alpha是指羟基(卤素和氨(胺)基)直接与引入的烷基的碳相连。
6.1.1alpha-羟烷化(1)羰基alpha碳的alpha-羟烷化(羟醛缩合)具活泼氢的醛(酮)在碱(或酸)的催化下,自身或交叉缩合,生成beta-羟基醛或酮的反应。
最初是因为烯醇负离子对一个醛(aldehyde)加成得到醇(alcohol)而得名(aldol)。
反应机理为烯醇(负离子)对羰基的亲核加成。
①具活泼氢的醛或酮的自身缩合反应可以是碱催化的。
根据反应条件的不同,生成的beta-羟基醛或酮可以发生消除而生成烯,如丁醛的羟醛缩合反应。
也可以用酸催化,比如硫酸、盐酸以及离子交换树脂等。
碱能催化的原因在于碱可以夺取底物的质子,使其形成烯醇负离子;酸能催化的原因在于酸既能质子化羰基,使之更容易被亲核试剂进攻,也能帮助烯醇式的形成,又能催化脱水。
对称酮缩合产物单一。
对于不对称酮,不论碱催化或酸催化,反应主要发生在含氢较多的alpha碳原子上,得到beta羟基酮或其脱水物。
②芳醛与具活泼氢的醛或酮的缩合芳醛与具活泼氢的醛或酮的缩合可生成b羟基芳丙醛(酮),并进一步消除生成更稳定的芳丙烯醛(酮),即Claisen-Schmidt反应。
消除产物以反式构型为主,如苯甲醛与苯乙酮的缩合。
这与过渡态的稳定性有关(反式共平面消除)。
芳醛与两个alpha位都含活泼氢的酮反应时,酸催化倾向于在含氢较少的位置缩合,碱催化与此相反。
第四章_缩合反应

合而得b-羟基酸酯或脱水得a、b-不饱和羧
酸酯的反应:
催化剂
• 锌粉必须活化,常用20%盐酸处理,再用丙 酮、乙醚洗涤,真空干燥。 • 亦可用K、Na、Li等还原无水氯化锌,此法 活性较高。 • Mg, Cd, Ba, In, Ge, Co, Ni, Ce等。
溶剂
• 本反应常用的有机溶剂有乙醚、四氢呋喃、 1,4-二氧六环、二甲氧基乙烷、苯、二甲苯、 二甲基亚砜、乙腈等。
• 3) 催化剂和温度 Michael加成中碱催化剂 的种类很多,如醇钠(钾)、氢氧化钠、 金属钠、氢化钠、三乙胺以及季铵碱等。 Michael加成反应一般在较低温度下进行, 温度升高,收率下降。当用较弱的碱作催 化剂时,反应温度可适当提高。
第三节
亚甲基化反应
1.活性亚甲基化合物的亚甲基化反应 (Knoevenagel 反应) (1)反应通式
• 2. 安息香缩合
• • • •
影响因素 ① 芳醛结构的影响 强吸电子、强供电子对反应都不利; 自身缩合、交叉缩合
• ② 催化剂的影响 • NaCN剧毒,可用噻唑鎓盐、咪唑鎓盐等代 替
3.有机金属化合物的a-羟烷基化 雷福尔马茨基反应(Reformatsky反应)
醛或酮与a-卤代酸酯在金属锌粉存在下缩
OHC
(CH2)3
CH C3H7
CHO
OH 1150C C3H7
CHO (62%)
O CH2COCH3 O KOH (90%)
(2)甲醛与含有a-活泼氢的醛、酮之间的缩合
HCHO + CH3COCH3 NaOH(稀) 40-42 C
K2CO3 14-200C, 3h
0
- H 2O
H2C
CHCOCH3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
CH3CHO
+
H2 O
芳香醛(没有α—氢)
脂肪族醛或酮
氢氧化钠的水或乙醇溶液
构型一般都是反式的
05-09-27 6
NaOH , EtOH , H 2O
C6H5CHO
+
C6H5COCH3
H5 C6 C H C
H
25C
CO
C6 H5
HCHO CH3CHO
CHO
H2O CH2 (OH )CH2CHO CH2 CHCHO
+
+
+
B BH
+
H2C
HC COOH _
BH
+
RCH=CHCOOH CO2
+
+ H2O +
B
05-09-27
13
+
O CHO
(CH3CO)2O
CH3COONa
170C ,7h
O CH
+
CH3COOH
CHCOOH
血吸虫病治疗药呋喃丙胺原料呋喃丙烯酸
05-09-27
14
11.2.2 达村斯缩合
醛或酮在强碱作用下和α —卤代羧酸酯反应,缩 合生成α ,β —环氧羧酸酯的反应称达村(Daizens) 缩水甘油酸酯缩合反应。
11
H (CH3CO)2O H5C6HC O C O H3C CH C O _ H ,
+
H C _ _ CH3COO H 5C6C H C O
OCOCH3
OCOCH3
+
H 2O
H5C6 C C H
H COOH
_
CH3COOH
H5C6HC O
CH2 C O _ C O A O _
CO2
H5 C6
CH
酯缩合反应是指以羧酸酯为亲电试剂,在碱性催化剂 作用下,与含活泼甲基或亚甲基羰基化合物的负碳离子缩 合而生成β —羰基类化合物的反应,总称为克莱森缩合反 应
COR'' ROOC2H5 COR'' RCO CH R'
+
H
CH R'
+
C2H5OH
强碱催化剂: RONa、NaNH2、NaH等
05-09-27 20
COCH3 basic or acid
HC
CH
CO
+
NO2 NO2
05-09-27
7
氨甲基化
曼尼期(Mannich)反应
RH HCHO R2 NH RCH 2 NR2 H 2O
曼尼期碱 含活泼氢的化合物: 醛 、酸 、酯 、腈 、硝基烷烃 、端炔烃 、酚类(邻、对位无取代基的)
H
H3C(H2C)8 CH3
C O
CH2COOH
CH(OH)
H3C(H2C)8
CH
CHO
16
Байду номын сангаас
11.3 醛酮与醇的缩合反应
醛或酮在酸性催化剂作用下很容易和两分子醇缩合, 并失去水变为缩醛类或缩酮类化合物
R C R' O H
+
R C R'
+
OCH2R'' OCH2R''
2 R''CH 2OH
乙二醇:
茂烷类
R CO R' R R'' C R' O C COOEt
+
R''CHXCOOEt
+
HX
氯代酸酯 α —卤代酮
强碱催化剂: RONa、NaNH2、t—C4H9OK
05-09-27 15
_ ClCH2COOEt Cl C R' O _ CH COOEt
+
BH
+
_ CHClCOOEt
+
R R'
C
O
B
R
_
CH2COOC2H5
+
170C
_ CO
(COOC2H5)2
C2H5ONa _ C2H5OH
H
+
CHCOOC 2H5 OC COOC2H5
CHCOOC 2H5 COOC2H5
苯巴比妥的中间体
05-09-27 23
二、酯—酮缩合
酮的活性相对较大 ,易形成负碳离子
CH3COCH3
+
C2H5ONa RCOOC2H5
一、酯—酯缩合
自身缩合
异酯缩合
1. 酯的自身缩合
O H3CC OC2H5 O C2H5ONa H3CC OC2H5 H2CC OC2H5 O O
+
H H2CC
+
C2H5OH
C2H5OH O C H2 C
05-09-27
乙酰乙酸乙酯
CH3COCH2COOC2H5
O C O (CH3)3COH CH3COCH2COOC(CH 21 3) 3
芳香醛或脂肪醛: 不含α —氢
05-09-27
10
O _ H3CC O H3CC O H3CC CH3COO _ H2CC
O H2C O H3CC C
_ O
O
O
O
C6H5CHO
H5C6
CH _ O H3C C O
CH2 C O O
H5C6HC O
CH2 C O _ C O A O
H3C
H2
05-09-27
RCH CH 2
H2O
RHC OH2
+
CH2 CH2OH
RHC _ H
+
CH2 CH2OH
OH
HCHO _ H O 2
R O O
05-09-27
27
11.5.2 狄尔斯—阿德耳缩合
又称双烯合成
+
Z Z B
A
双烯体
亲双烯体
不受催化剂或溶剂的影响
05-09-27
只需光或热的作用
28
双烯体的化合物
OH
CH3
OH H3C C CH3 _ _
+
O CH2 C CH3
OH2
+
O CH2 C CH3
+
H
+
H3C
C CH3
H2O ,
H
O H3C C CH3 CH C CH3
05-09-27
5
自身缩合:
交叉缩合:
克莱森—斯密特(Claisen—Schmidt)缩合反应,如:
CHO _ OH CH CH2CHO OH CH CH2CHO
CH2
+ CH3COO
12
_
H3C 05-09-27
诺文葛耳—多布纳(Knoevenagel—Doebner)缩合反应: 醛、酮与含有活泼甲基的化合物如丙二酸(酯) 反应生成α ,β —不饱和化合物,加催化剂
COOH RCHO COOH RHC COOH OH O _ C RHC OH HC COOH O
、某些杂环化合物
甲醛: 甲醛水溶液 、三聚甲醛 胺: 仲胺
05-09-27
、多聚甲醛
、伯胺
、氨 、乙酸
8
介质: 水 、醇
COCH3
HCl,EtOH
+
CH2O
+
N H
HCl
ref luxing
COCH2CH2 N
HCl
苯海索的中间体
含羰基的曼尼期碱
α ,β —不饱和羰基化合物
COCH3 H
+
+
CH2O
_ Cl
R C R' O
CH3
CH COOEt
烯键有顺式和反式两种
CH3 H3C(H2C)8 C O
+
CH3
C2H5ONa ClCH2COOC2H5
+
H3C(H2C)8
C O CH3
CH2COOC2H5
NaOH H3C(H2C)8 C CH3 _ H3C(H2C)8 CO2 05-09-27 C O CH2COONa
ZC CZ
凡含有吸电子基团
30
05-09-27
H3C
+
CHO
H3C
O
H3C
C
H
CHO
协同反应: 经由环状过渡态进行的反应,不产生任何中间体, 旧键的断裂和新键的生成是协同进行的
05-09-27
31
CH3 CHO
CH3 CHO
CH3
+
H3C CH2 CH2 H3C
+
H3C CHO
第十一章 缩合反应
缩合一般是指两个或两个以上分子间通过生成新的 碳—碳、碳—杂原子或杂原子—杂原子键,从而形成较 大的单一分子的反应。缩合反应一般往往伴随有脱去某 一种简单分子,如H2O、HX、ROH等
分类方法: 分子种类 、历程 、是否成环 、脱去的小分子
11.1 羟醛缩合反应 11.2 醛酮与羧酸的缩合反应 11.3 醛酮与醇的缩合反应 11.4 酯缩合反应 11.5 烯键参加的缩合反应 11.6 成环缩合反应 05-09-27
HCHO RCH CH 2 HCHO RCH (OH )CH 2CH 2OH R H H 2O
O
O
催化剂:
硫酸、盐酸、磷酸、路易斯酸及强酸性离子交换树脂
05-09-27 26