中考压轴题精讲精练(一)

合集下载

压轴题教案

压轴题教案

授课教案
学员姓名:授课教师:周老师所授科目:数学
.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.
.用待定系数法求抛物线的解析式,用配方法求顶点坐标.
°是解题的前提.
相似,按照直角边的比分两种情况,每种情况又按照点
图2 图3
题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB⊥BG;二是BQ=
我们换个思路解答第(3)题:
轴,QN⊥y轴,垂足分别为H、N.
表示点B、D、E的坐标,是解题的突破口.)题的隐含条件是FD//x轴.
图2 图3 图4
,0)、C(0,-2)三点.
作PM⊥x轴,垂足为M,是否存在点
1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.
图3 图4 x 轴的垂线交AC 于E .直线AC 的解析式为22
1
-=x y .)251,2-+-m m m ,点)题也可以这样解:
的面积等于直角梯形CAMN 的面积减去△CDN 和△。

2020年中考数学压轴题精讲:动点产生的相似三角形问题

2020年中考数学压轴题精讲:动点产生的相似三角形问题

2020年中考数学压轴题精讲:动点产生的相似三角形问题例1:如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.图2此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4例2:如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3 图4(2)作PD ⊥BC ,垂足为D .在Rt △BPD 中,BP =5t ,cos B =45,所以BD =BP cos B =4t ,PD =3t . 当AQ ⊥CP 时,△ACQ ∽△CDP .所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E . 由于H 是PQ 的中点,HF //PD ,所以F 是QD 的中点. 又因为BD =CQ =4t ,所以BF =CF . 因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.例3:如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±Q 为(1,23+.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

初三数学中考专题:实际应用题压轴题大全

初三数学中考专题:实际应用题压轴题大全

类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。

初三九年级上册数学 压轴解答题(Word版 含解析) 汇编经典

初三九年级上册数学 压轴解答题(Word版 含解析) 汇编经典

初三九年级上册数学 压轴解答题(Word 版 含解析) 汇编经典一、压轴题1.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.2.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ; ②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.3.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 4.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)5.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).6.如图,已知在矩形ABCD 中,AB =2,BC =23.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ =3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.7.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数;(2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.8.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.9.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).10.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(3,2),Q(3+1,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.11.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.12.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】 【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值; (2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标. 【详解】(1)在23y x b =-+中,令x=0,解得y=b , 则D 的坐标是(0,b),OD=b , ∵OD=BE ,∴BE=b ,则点E 坐标为(3,4-b ),将点E 代入23y x b =-+中,得:4-b=2+b, 解得:b=3; (2)如图,∵OAED S 四边形=11()(31)3622OD AE OA +=⨯+⨯=, ∵三角形ODM 的面积与四边形OAEM 的面积之比为1:3, ∴13=42ODM OAED S S ∆=四边形 设M 的横坐标是a ,则13322a ⨯=, 解得:1a =, 将1x a ==代入233y x =-+中,得: 27333y =-⨯+=则点M 坐标为7(1,)3;(3)依题意,有两种情况:①当四边形OMDN 是菱形时,如图(1),M 的纵坐标是32, 把32y =代入233y x =-+中,得: 23332x -+=,解得:94x =, ∴点M 坐标为93(,)42, 点N 坐标为93(,)42-;②当四边形OMND 是菱形时,如图(2),OM =OD =3, 设M 的坐标2(,3)3m m -+, 由OM=OD 得:222(3)93m m +-+=, 解得:3613m =或m=0(舍去), 则点M 坐标为3615(,)1313, 又MN ∥OD ,MN=OD=3, ∴点N 的坐标为3654(,)1313, 综上,满足条件的点N 坐标为93(,)42-或3654(,)1313.【点睛】本题考查一次函数与几何图形的综合,涉及待定系数法、图形的面积计算、菱形的性质、方程等知识,解答的关键是认真审题,找出相关知识的联系点,运用待定系数法、数形结合法、分类讨论法等解题方法确定解题思路,进而推理、探究、发现和计算.2.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最大值为4414710【解析】【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE =BD,①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;②先求出CD=2,再将AD+BD=14,CD=2代入22AD BD⎛⎫⋅+⎪⎪⎝⎭,化简得出﹣(AD﹣212)2+4414,进而求出AD,最后用勾股定理求出AB即可得出结论.【详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=故答案为;②∵AD+BD=14,∴CD=∴2AD BD CD⎛⎫⋅+⎪⎪⎝⎭=AD•(BD+22×72)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣212)2+4414,∴当AD=212时,2AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值为4414,∵AD+BD=14,∴BD=14﹣212=72,在Rt△ABD中,根据勾股定理得,AB=22710AD BD+=,∴⊙O的半径为OA=12AB=710.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.3.(1)见解析;(2)96;(3)AD=2OM,理由见解析【解析】【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE ,则可证明△BOM ≌△OAE 得到OM=AE ,证明结论.【详解】解:(1)证明:∵AC=BD ,∴AC BD =,则AB DC ,∴AB=CD ;(2)如图1,连接OB 、OD ,作OH ⊥BD 于H ,∵弧BD 的度数为120°,∴∠BOD=120°,∴∠BOH=60°,则BH=3OB=43, ∴BD=83,则四边形ABCD 的面积=12×AC×BD=96;(3)AD=2OM ,连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图2,∵OE ⊥AD ,∴AE=DE ,∵∠BOC=2∠BAC ,而∠BOC=2∠BOM ,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE ,在△BOM 和△OAE 中,OMB OEA OBM OAE OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOM ≌△OAE (AAS ),∴OM=AE ,∴AD=2OM .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、垂径定理、等腰三角形的性质和矩形的性质、会利用三角形全等解决线段相等的问题是解题的关键.4.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时,∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q . 如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.5.(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17)π;②21【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=83,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB22AC BC+216x+∴OA216x+,∵AF22EF AE+2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭∴2162x+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,解得x=4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2,∵EF=18x2=98,∴FG=2﹣98,AF158,AH2,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴9281582-=∴CG=5﹣10,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.6.(12)BE.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT 33 7∴BE=2BT 63 7(2)设菱形BPDQ的边长为x,则AQ=3x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(3x)2=x2,解得x 43 3.∵四边形BPDQ为菱形,∴43 3,又233即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E 、Q 重合,∴BE 433∴菱形与圆重叠部分面积即为菱形的面积,∴S 菱形833. 【点睛】 本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.7.(1)15°;(2)见解析;(3)16【解析】【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=.【详解】(1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠=453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥//OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠=290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠=180NBM MBN '︒∠+∠=A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==,NE MM '⊥于点E.11()22ME EM MM a b ''∴===+, ()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=, 16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.8.(1)1;(2)①4b =-;②26c ≤<;(3)D 一定在线段AB 上,2=CD 【解析】【分析】(1)根据题意顶点P (k ,h )可将二次函数化为顶点式:()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4,即可得出a 的值; (2)①根据抛物线x=0和x=4时函数值相等,可得到顶点P 的横坐标,根据韦达定理结合(1)即可得到b 的值,②根据(1)和(2)①即可得二次函数对称轴为x=2,利用点Q (0,2)关于对称轴的对称点R (4,2)可得QR=4,又QR 在直线y=2上,故令M 坐标(t ,2)(0≤t <2),代入二次函数即求得c 的取值范围;(3)由c=-b-1代入抛物线方程即可化简,将抛物线绕原点逆时针旋转αα,且tanα=2,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tanα=2,可得到直线l 的解析式,最后联立直线方程与抛物线方程运算求解.【详解】解:(1)根据题意可知1二次函数2y ax bx c =++(a≠0)的顶点为P (k ,h ),故二次函数顶点式为()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,且无论h 、k 为何值,AB 的长度都为4,∴a=1;故答案为:a=1.(2)①∵二次函数当0x =和4x =时的函数值相等 ∴222b b x a =-=-= ∴4b =-故答案为:4b =-. ②将点Q 向右平移4个单位得点()4,2R当2c =时,242y x x =-+令2y =,则2242x x =-+解得14x =,20x =此时()0,2M ,()4,2N ,4MN QR ==∵4QM QN +=∵QM NR =∴4QN NR QR +==∴N 在线段QR 上,同理M 在线段QR 上设(),2M m ,则02m ≤<,224m m c =-+2242(2)6c m m m =-++=--+∵10-<,对称轴为2m =,02m ≤<∴c 随着m 的增大而增大∴26c ≤<故答案为:26c ≤<.(3)∵1c b =--∴21y x bx b =+--将抛物线绕原点逆时针旋转α,且tan 2α=,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tan 2α=,∴l 的解析式为2y x =221y x y x bx b =⎧⎨=+--⎩∴2(2)10x b x b +---= ∴2224(2)448b ac b b b ∆=-=-++=+∴22b x -+±=∴12D b -++⎝⎭ 22244124442444AB ac b b b b y k b a ---+-+=+=+==-++122442244AB D b b y y b b ⎛⎫-+-+-=-++-++= ⎪⎝⎭∵20b ≥∴110D AB y y -=≥==> ∴点1D 始终在直线AB 上方∵222b C b ⎛-+--+- ⎝⎭∴24224B C A b y y b b ⎛⎫-+-=-+--++= ⎪⎝⎭∴2222 448848416AB Cb b b by y-+++--++-+-==()2282164b-+-+=∵2727b-<<,即2028b≤<,∴22284b≤+<设28n b=+,224n≤<∴2(2)164AB Cny y--+-=∵14-<,对称轴为2n=∴当224n≤<时,AB Cy y-随着n的增大而减小∴当4n=时,0AB Cy y-=∴当224n≤<时,AB Cy y>∴区域S的边界与l的交点必有两个∵1D ABy y>∴区域S的边界与l的交点D一定在线段AB上∴D ABy y=∴2(2)164D C CABny y y y--+-=-=∴当22n=时,D Cy y-有最大值122+此时1222D Cx x+-=由勾股定理得:()()2252102C CD DCD x x y y+=-+-=,故答案为:5102=CD.【点睛】本题考查二次函数一般式与顶点式、韦达定理的运用,以及根与系数的关系判断二次函数交点情况,正确理解相关知识点是解决本题的关键.9.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++ 【解析】【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标; ②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解.【详解】解:(1)因为直线交抛物线于B 、C 两点,∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2);当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上, ∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴,∴点P 的纵坐标为﹣2,将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去),∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°,∴∠OBC=∠OCD ,又∵∠BOC=∠COD=90°,∴BOC ∽COD (AAA ), ∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4,∴OD=1,又∵D 点在X 的负半轴∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数),将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2,联立直线PC 和抛物线方程,得:22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10,点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等.10.(1)45,45;(2)k =33)y 33﹣2 【解析】【分析】(1)如图3,连接AC ,则∠ABC=45°;设M 是x 轴的动点,当点M 运动到点O 时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M 为圆心,长度1为半径作圆M ,当圆与直线y=kx 相切时,直线y=kx (k≠0)关于线段EF 的视角为90°,即∠EQF=90°,则MQ ⊥直线OE ,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ 的倾斜角为45°,分别作点Q 、P 作x 轴、y 轴的平行线交于点R ,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=33 ;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.11.(1)见解析;(2)EF =32或12;(3)存在 【解析】【分析】 (1)先判断出∠ECB =∠EBC ,再判断出∠OCB =∠OBC ,即可得出结论;(2)先求出EF ,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论; (3)先利用面积关系得出53CO FO =,进而利用△OAF ∽△EFC 得出比例式,即可得出结论.【详解】解:(1)如图1,连接BC ,∵AC BD = ,∴∠ECB =∠EBC ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠OCD =∠ECF =∠ECB ﹣∠OCB =∠EBC ﹣∠OBC =∠OBA ;(2)∵OA =OB ,∴∠OAF =∠OBA ,∴∠OAF =∠ECF ,①当∠AFO =90°时,∵OA tan ∠OBA =12,∴OC =OA OF =1,AB =4,∴EF =CF •tan ∠ECF =CF•tan ∠OBA ②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12,∵OA∴OF =OA •tan ∠OAF , ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC ,∴△OFA ∽△EFC ,∴5EF CF OC OF OF AF AF +===, ∴EFOF =32, 即:EF =32; (3)存在,如图2,连接OE , ∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴53CEO EFO S S ∆∆=, ∴53CO FO =, ∴FO =35CO, ∵△OFA ∽△EFC , ∴53CE AD CO EF FO FO ===, ∴BF =BE ﹣EF =CE ﹣EF =23EF , ∴AF =AB ﹣BF =4﹣23EF , ∵△OAF ∽△EFC , ∴CF EF FA FO=,∴52435EF =- ∴EF =3﹣5.【点睛】 圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD CO EF FO FO ===是解本题的关键. 12.(1)详见解析;(2)详见解析;【解析】【分析】 ()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=, CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,∴=,BD CDBE CE=,∴=,BD CD=,OA OD∴∠=∠,ADO OADPA切O于点A,∴∠=,PAO90∴∠+∠=,90OAD DAP∠=∠,PFA DFE∴∠+∠=,90PFA ADO∴∠=∠,PAF PFA∴=.PA PF【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。

苏教版数学初三九年级上册 压轴解答题专题练习(解析版)

苏教版数学初三九年级上册 压轴解答题专题练习(解析版)

苏教版数学初三九年级上册 压轴解答题专题练习(解析版)一、压轴题1.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?2.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°.①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.3.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =;(2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论.4.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽;(2)若23AC =,求AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离?5.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示);(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.6.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由. 7.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4.(1)请直接写出a 的值____________;(2)若抛物线当0x =和4x =时的函数值相等,①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.8.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.9.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.10.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.11.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.12.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴;(2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)见解析;(2)DB DF =【解析】【分析】(1)①直接利用三角形的外角性质,即可得到;②过D 作DG BC 交AB 于点G ,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC =,DGB FCD ∠=∠,然后证明三角形全等,即可得到结论成立;(2)连接BF ,根据题意,可证得BCF BDF A ∠=∠=∠,则B 、C 、D 、F 四点共圆,即可证明结论成立.【详解】解:(1)①∵BDC A ABD ∠=∠+∠,即BDF FDC A ABD ∠+∠=∠+∠,∵BDF A ∠=∠,∴FDC ADB ∠=∠;②过D 作DG BC 交AB 于点G ,∴ADG ACB ∠=∠,AGD ABC ∠=∠,又AB AC =,∴A ABC CB =∠∠,∴AGD ADG∠=∠,∴AD AG=,∴AB AG AC AD-=-,∴BG DC=,又ECF ACB AGD∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF,由(1)可知,AABC CB=∠∠,∵ECF ACB∠=∠,∴ABC ECF∠=∠,∵BCA CA BCF E F=∠+∠∠+∠,∴A BCF∠=∠,∴BDF A BCF∠=∠=∠,∴B、C、D、F四点共圆,∴180DCB DFB∠+∠=︒,DBF ECF∠=∠,∴ACB DFB∠=∠,∵BC EC ACA F B=∠=∠∠,∴DBF DFB∠=∠,∴DB DF=.【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明.2.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最大值为4414710【解析】【分析】(1)先判断出∠BAD =CAE ,进而得出△ABD ≌△ACE ,得出BD =CE ,∠B =∠ACE ,再根据勾股定理得出DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,即可得出结论;(2)同(1)的方法得,ABD ≌△ACE (SAS ),得出BD =CE ,再用勾股定理的出DE 2=2AD 2,CE 2=CD 2+DE 2=CD 2+2AD 2,即可得出结论;(3)先根据勾股定理的出DE 2=CD 2+CE 2=2CD 2,再判断出△ACE ≌△BCD (SAS ),得出AE =BD ,①将AD =6,BD =8代入DE 2=2CD 2中,即可得出结论;②先求出CD =,再将AD+BD =14,CD =代入AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭,化简得出﹣(AD ﹣212)2+4414,进而求出AD ,最后用勾股定理求出AB 即可得出结论. 【详解】 解:(1)CD 2+BD 2=2AD 2,理由:由旋转知,AD =AE ,∠DAE =90°=∠BAC ,∴∠BAD =∠CAE ,∵AB =AC ,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠B =∠ACE ,在Rt △ABC 中,AB =AC ,∴∠B =∠ACB =45°,∴∠ACE =45°,∴∠DCE =∠ACB+∠ACE =90°,根据勾股定理得,DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,∴CD 2+BD 2=2AD 2;(2)BD 2=CD 2+2AD 2,理由:如图2,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE ,同(1)的方法得,ABD ≌△ACE (SAS ),∴BD =CE ,在Rt △ADE 中,AD =AE ,∴∠ADE =45°,∴DE 2=2AD 2,∵∠ADC =45°,∴∠CDE =∠ADC+∠ADE =90°,根据勾股定理得,CE 2=CD 2+DE 2=CD 2+2AD 2,即:BD 2=CD 2+2AD 2;(3)如图3,过点C 作CE ⊥CD 交DA 的延长线于E ,∴∠DCE =90°,∵∠ADC =45°,∴∠E =90°﹣∠ADC =45°=∠ADC ,∴CD =CE ,根据勾股定理得,DE 2=CD 2+CE 2=2CD 2,连接AC ,BC ,∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°,∵∠ADC =45°,∴∠BDC =45°=∠ADC ,∴AC =BC ,∵∠DCE =∠ACB =90°,∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD ,①AD =6,BD =8,∴DE =AD+AE =AD+BD =14,∴2CD 2=142,∴CD =故答案为;②∵AD+BD =14,∴CD =∴2AD BD ⎛⎫⋅+ ⎪ ⎪⎝⎭=AD•()=AD•(BD+7) =AD•BD+7AD =AD (14﹣AD )+7AD =﹣AD 2+21AD =﹣(AD ﹣212)2+4414,∴当AD =212时,AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭的最大值为4414, ∵AD+BD =14,∴BD =14﹣212=72,在Rt △ABD 中,根据勾股定理得,AB 2=∴⊙O 的半径为OA =12AB .【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.3.(1)见解析;(2)96;(3)AD=2OM,理由见解析【解析】【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,则可证明△BOM≌△OAE得到OM=AE,证明结论.【详解】解:(1)证明:∵AC=BD,∴AC BD,则AB DC,∴AB=CD;(2)如图1,连接OB、OD,作OH⊥BD于H,∵弧BD的度数为120°,∴∠BOD=120°,∴∠BOH=60°,则BH=32OB=3∴BD=3则四边形ABCD的面积=12×AC×BD=96;(3)AD=2OM,连结OB、OC、OA、OD,作OE⊥AD于E,如图2,∵OE⊥AD,∴AE=DE,∵∠BOC=2∠BAC,而∠BOC=2∠BOM,∴∠BOM=∠BAC,同理可得∠AOE=∠ABD,∵BD⊥AC,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE,在△BOM和△OAE中,OMB OEAOBM OAEOB OA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOM≌△OAE(AAS),∴OM=AE,∴AD=2OM.【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、垂径定理、等腰三角形的性质和矩形的性质、会利用三角形全等解决线段相等的问题是解题的关键.4.(1)详见解析;(2)23)12【解析】 【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度. 【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒, ∴90AEF AFE ∠+∠=︒, ∵EC EF ⊥, ∴90FEC ∠=︒, ∴90AEF BEC ∠+∠=︒, ∴AFE BEC =∠∠, ∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC , ∵E 、F 分别是AB 、AD 的中点, ∴22,2AB AE BE AD AF ===; ∵AEF BCE ∽, ∴AE AFBC BE=, ∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =; (3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处, 同理,△CEF 的外接圆的圆心在CF 的中点N 处, ∴线段MN 为△ACF 的中位线,∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==,∴2AD AB =,∴12MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解. 5.(1)BQ ,2tcm ,PB ,()5t cm -;(2)当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由见解析. 【解析】 【分析】(1)根据点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,可以求得BQ ,PB .(2)用含t 的代数式分别表示PB 和BQ 的值,运用勾股定理求得PQ 为22(5)(2)t t -+=25据此求出t 值.(3)根据题干信息使得五边形APQCD 的面积等于226cm 的t 值存在,利用长方形ABCD 的面积减去PBQ △的面积即可,有PBQ △的面积为4,由此求得t 值.【详解】解:(1)点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,故BQ 为2tcm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,AB =5cm ,故PB 为()5t cm -.(2)由题意得:22(5)(2)t t -+=25,解得:1t =0,2t =2;当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由如下: 长方形ABCD 的面积是:56⨯=()230cm,使得五边形APQCD 的面积等于226cm ,则PBQ △的面积为3026-=()24cm,()15242t t -⨯⨯=, 解得:1t =4(不合题意舍去),2t =1.即当t =1秒时,使得五边形APQCD 的面积等于226cm . 【点睛】本题结合长方形考查动点问题,其本质运用代数式求值,利用含t 的代数式表示各自线段的直接,根据题干数量关系即可确立等量关系式,从而求出t 值. 6.(1)15°;(2)见解析;(3)16 【解析】 【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=. 【详解】 (1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠= 453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥ //OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠= 290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E. 设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠= 180NBM MBN '︒∠+∠=A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==, NE MM '⊥于点E.11()22ME EM MM a b ''∴===+,()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=,16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.7.(1)1;(2)①4b =-;②26c ≤<;(3)D 一定在线段AB 上,5210+=CD 【解析】 【分析】(1)根据题意顶点P (k ,h )可将二次函数化为顶点式:()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4,即可得出a 的值;(2)①根据抛物线x=0和x=4时函数值相等,可得到顶点P 的横坐标,根据韦达定理结合(1)即可得到b 的值,②根据(1)和(2)①即可得二次函数对称轴为x=2,利用点Q (0,2)关于对称轴的对称点R (4,2)可得QR=4,又QR 在直线y=2上,故令M 坐标(t ,2)(0≤t <2),代入二次函数即求得c 的取值范围;(3)由c=-b-1代入抛物线方程即可化简,将抛物线绕原点逆时针旋转αα,且tanα=2,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tanα=2,可得到直线l 的解析式,最后联立直线方程与抛物线方程运算求解. 【详解】解:(1)根据题意可知1二次函数2y ax bx c =++(a≠0)的顶点为P (k ,h ),故二次函数顶点式为()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,且无论h 、k 为何值,AB 的长度都为4, ∴a=1; 故答案为:a=1.(2)①∵二次函数当0x =和4x =时的函数值相等 ∴222b bx a =-=-= ∴4b =-故答案为:4b =-.②将点Q 向右平移4个单位得点()4,2R 当2c =时,242y x x =-+ 令2y =,则2242x x =-+ 解得14x =,20x =此时()0,2M ,()4,2N ,4MN QR == ∵4QM QN +=∵QM NR = ∴4QN NR QR +==∴N 在线段QR 上,同理M 在线段QR 上 设(),2M m ,则02m ≤<,224m m c =-+2242(2)6c m m m =-++=--+∵10-<,对称轴为2m =,02m ≤< ∴c 随着m 的增大而增大 ∴26c ≤<故答案为:26c ≤<.(3)∵1c b =--∴21y x bx b =+--将抛物线绕原点逆时针旋转α,且tan 2α=,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tan 2α=,∴l 的解析式为2y x =221y x y x bx b =⎧⎨=+--⎩∴2(2)10x b x b +---= ∴2224(2)448b ac b b b ∆=-=-++=+∴22b x -+±=∴12D b -++⎝⎭22244124442444AB ac b b b b y k b a ---+-+=+=+==-++124224AB D b y y b b ⎛⎫-+-=-++-++=⎪⎝⎭∵20b ≥∴14104D ABy y -=≥==>∴点1D 始终在直线AB 上方∵222b C b ⎛-+--+-⎝⎭∴22442244BC A b b y y b b ⎛⎫-+---=-+--++=⎪⎝⎭∴AB C y y -==)22164-+=∵b -<<2028b ≤<,∴4≤<设n,4n ≤<∴2(2)164AB C n y y --+-=∵104-<,对称轴为2n =∴当4n ≤<时,AB C y y -随着n 的增大而减小 ∴当4n =时,0AB C y y -=∴当4n ≤<时,AB C y y >∴区域S 的边界与l 的交点必有两个 ∵1D AB y y >∴区域S 的边界与l 的交点D 一定在线段AB 上 ∴D AB y y =∴2(2)164D C C AB n y y y y --+-=-=∴当22n =时,D C y y -有最大值122+ 此时1222D C x x +-=由勾股定理得:()()2252102C CD D CD x x y y +=-+-=,故答案为:52102+=CD . 【点睛】本题考查二次函数一般式与顶点式、韦达定理的运用,以及根与系数的关系判断二次函数交点情况,正确理解相关知识点是解决本题的关键. 8.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 992m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M、N关于直线对称,所以,设,则,利用勾股定理求出a以及MN的长,再根据根与系数关系,列出方程即可解决问题.【详解】(1), ,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD、BD,对称轴交x轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,,,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或,点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则, 设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃), ,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.9.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或(579491778+-,.【解析】 【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可;(2)由题意易得35COFCOD SS =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可. 【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COFCOD SS =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t ,点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t t y x x t t--==, 则点55(5)D t t -,,把D 点坐标代入抛物线解析式,解得:15t =或2 5, 则点D 的坐标为(14),或(2)3,; (3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ', ∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, ,∴()E BO EBO AAS '≌ ,∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点BE '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- , 故点P 1的坐标为17()24-,;当BP 在x 轴下方时, 如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠',∴222E BE OBE EBP OBE ∠'=∠∠=∠, ,∴FEB EBF ∠=∠ ,∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- , 设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3), 则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求,设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,,由FE BF =,同理可得:12n =, 故点15()24F ,,则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时,同理可得:x =舍去负值),故点458(417P +-+,.故点P 的坐标为:(14),或17()24-,或13209()24--,或. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.10.(1)()90,3,4--;(2)48QH t =- ;(31或732或2532 【解析】【分析】(1)由于直线y =34t x -3过C 点,因此C 点的坐标为(0,-3),那么抛物线的解析式中c=-3,然后将A 点的坐标代入抛物线的解析式中即可求出b 的值;(2)求QH 的长,需知道OQ ,OH 的长.根据CQ 所在直线的解析式即可求出Q 的坐标,也就得出了OQ 的长,然后求OH 的长.在(1)中可得出抛物线的解析式,那么可求出B 的坐标.在直角三角形BPH 中,可根据BP=5t 以及∠CBO 的正弦值(可在直角三角形COB 中求出),得出BH 的长,根据OB 的长即可求出OH 的长.然后OH ,OQ 的差的绝对值就是QH 的长;(3)本题要分①当H 在Q 、B 之间.②在H 在O ,Q 之间两种情况进行讨论;根据不同的对应角得出的不同的对应成比例线段来求出t 的值.【详解】(1)由于直线y =34tx -3过C 点,C 点在y 轴上,则C 点的坐标为(0,-3), 将A 点坐标代入解析式中,得0=34-b -3,解得b =-94;故答案为 ()0,3-,94-; (2)由(1),得y =34x 2-94x -3,它与x 轴交于A ,B 两点,得B (4,0).∴OB =4,又∵OC =3,∴BC =5.由题意,得△BHP ∽△BOC ,∵OC ∶OB ∶BC =3∶4∶5,∴HP ∶HB ∶BP =3∶4∶5,∵PB =5t ,∴HB =4t ,HP =3t .∴OH =OB -HB =4-4t .由y =34tx -3与x 轴交于点Q ,得Q (4t ,0). ∴OQ =4t .①当H 在Q 、B 之间时,QH =OH -OQ=(4-4t )-4t =4-8t .②当H 在O 、Q 之间时,QH =OQ -OH=4t -(4-4t )=8t -4.综合①,②得QH =|4-8t |;(3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似.t 121,t 2=732,t 3=2532解析:①当H 在Q 、B 之间时,QH =4-8t , 若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得48334t t t -=, ∴t =732. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得34834t t t -=, 即t 2+2t -1=0.∴t 1=21-,t 2=21--(舍去).②当H 在O 、Q 之间时,QH =8t -4.若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得84334t t t -=, ∴t =2532. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得38434t t t -=, 即t 2-2t +1=0.∴t 1=t 2=1(舍去).综上所述,存在t 的值,t 1=21-,t 2=732,t 3=2532. 故答案为(1)()90,3,4--;(2)48QH t =- ;(3)存在,21-或732或2532. 【点睛】 本题是二次函数的综合题,此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.(1)45,45;(2)k =3±;(3)y =3x +3﹣2 【解析】【分析】(1)如图3,连接AC ,则∠ABC=45°;设M 是x 轴的动点,当点M 运动到点O 时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M 为圆心,长度1为半径作圆M ,当圆与直线y=kx 相切时,直线y=kx (k≠0)关于线段EF 的视角为90°,即∠EQF=90°,则MQ ⊥直线OE ,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ 的倾斜角为45°,分别作点Q 、P 作x 轴、y 轴的平行线交于点R ,RQ=RP=1,以点R 为圆心以长度1为半径作圆R ,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q 为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC ,则∠ABC =45°;设M 是x 轴的动点,当点M 运动到点O 时,∠AOB =45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=33 ;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.12.(1)点B的坐标为(﹣1,0),点A的坐标为(3,0),点C的坐标为(0,3);抛物线的对称轴为直线x=1;(2)⊙P5;(3)1<y<2;(4)332.【解析】【分析】(1)分别代入y=0、x=0求出与之对应的x、y的值,进而可得出点A、B、C的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP、BP,在Rt△BOC中利用勾股定理可求出BC的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC=90°,再利用等腰直角三角形的性质可求出BP的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C ′的坐标及∠AC ′O ′=45°,进而可找出线段C ′O ′所在直线的解析式,由点E 在CO 上可得出点F 在C ′O ′上,过点O 作OF ⊥C ′O ′于点F ,则△OC ′F 为等腰直角三角形,此时线段OF 取最小值,利用等腰直角三角形的性质即可求出此时OF 的长即可.【详解】(1)当y =0时,﹣(x+1)(x ﹣3)=0,解得:x 1=﹣1,x 2=3,∴点B 的坐标为(﹣1,0),点A 的坐标为(3,0);当x =0时,y =﹣(0+1)×(0﹣3)=3,∴点C 的坐标为(0,3);∵抛物线与x 轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x =1;(2)连接CP 、BP ,如图1所示,在Rt △BOC 中,BC =∵∠AOC =90°,OA =OC =3,∴∠OAC =∠OCA =45°,∴∠BPC =2∠OAC =90°,∴CP =BP =2BC∴⊙P(3)设点D 的坐标为(1,y),当∠BDC =90°时,BD 2+CD 2=BC 2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y 2﹣3y+2=0,解得:y 1=1,y 2=2,∴当1<y <2时,∠BDC >90°;(4)将△ACO 绕点A 逆时针方向旋转45°,点C 落在点C′处,点O 落在点O′处,如图2所示.∵AC =ACO =45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y =﹣x+3﹣∵点E 在线段CO 上,∴点F 在线段C′O′上.过点O 作OF ⊥C′O′于点F ,则△OC′F 为等腰直角三角形,此时线段OF 取最小值, ∵△OC′F 为等腰直角三角形,∴OF =2OC′=23)=3﹣2.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A 、B 、C 的坐标;(2)利用圆周角定理找出∠BPC =90°;(3)利用极限值法求出点D 纵坐标;(4)利用点到直线之间垂直线段最短确定点F 的位置.。

中考数学压轴题(含答案)

中考数学压轴题(含答案)

2016中考压轴题突破训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。

题型结构及解题方法压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作1.试卷上探索思路、在演草纸上演草。

2.合理规划答题卡的答题区域:两栏书写,先左后右。

作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。

3.作答要求:框架明晰,结论突出,过程简洁。

23题作答更加注重结论,不同类型的作答要点:几何推理环节,要突出几何特征及数量关系表达,简化证明过程;面积问题,要突出面积表达的方案和结论;几何最值问题,直接确定最值存在状态,再进行求解;存在性问题,要明确分类,突出总结。

4.20分钟内完成。

实力才是考试发挥的前提。

若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。

下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。

课程名称:2014中考数学难点突破1、图形运动产生的面积问题2、存在性问题3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练)一、图形运动产生的面积问题一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态:①由起点、终点确定t 的范围;②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.1题图 2题图2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB= CD高CE=,对角线AC 、BD 交于点H .平行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x .3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2).(1)t 为何值时,点Q' 恰好落在AB 上(2)求S 与t 的函数关系式,并写出t 的取值范围.(3)S 能否为98若能,求出此时t 的值;若不能,请说明理由.CBAABCPRQ Q'l AC MNQPBCHD CBAA B CH HDCBA AB C DM N R QF G HE HD C BAHDCB A4.如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为t s,正方形APDE和梯形BCFQ重叠部分的面积为S cm2.(1)当t=_____s时,点P与点Q重合;(2)当t=_____s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.5.如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为________,点C的坐标为_________.(2)若正方形以每秒5个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.l2与x轴相交于点N.(1)求M,N的坐标.(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.A BCDNMOyA BC二、二次函数中的存在性问题一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解. ③验证取舍.结合点的运动范围,画图或推理,对结果取舍. 二、精讲精练1.直PQ 1y ②如图2,当∠PCB =∠BCA 时,求直线CP 的解析式.1.如图,在直角梯形OABC 中,AB ∥OC ,BC ⊥x 轴于点C ,A (1,1),B (3,1).动点P 从点O 出发,沿x 轴正方向以每秒1个单位长度的速度移动.过点P 作PQ ⊥OA ,垂足为Q .设点P 移动的时间为t 秒(0<t <4),△OPQ 与直角梯形OABC 重叠部分的面积为S . (1)求经过O ,A ,B 三点的抛物线解析式. (2)求S 与t 的函数关系式.新 课 标 第 一 网COy BAxxO C C OxxO2.如图,抛物线2++=bxax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线的解析式及点D 的坐标.(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标. (3)过点P 作直线CD的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上若存在,求出此时点P 的坐标;若不存在,请说明理由.3.(11分)如图,已知直线12y x =-+与坐标轴交于A ,B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线的另一个交点为E .(1)请直接写出C ,D 两点的坐标,并求出抛物线的解析式;(2AB 下滑,直至顶点D 落在x 轴上时停止,设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C ,E 两点间的抛物线弧所扫过的面积.4.(11分)如图,抛物线y =ax 2+bx +c 交x 轴于点A (-3,0),点B (1,0),交y 轴于点E (0,-3).点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴于点D .(1)求抛物线的解析式;(2)点K 为线段AB 上一动点,过点K 作x 轴的垂线,交直 线CD 于点H ,交抛物线于点G ,求线段HG 长度的最大值; (3)在直线l 上取点M ,在抛物线上取点N ,使以A ,C ,M , N 为顶点的四边形是平行四边形,求点N 的坐标.5.(11分)如图,在平面直角坐标系中,直线3342y x =-与 抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B (1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值. ②连接P A ,以P A 为边作图示一侧的正方形APFG .随着点P 正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 直接写出对应的点P 的坐标.6.(11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为 (1,0),直线AB 交抛物线C 1于另一点C . (1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.附:参考答案一、图形运动产生的面积问题1. (1)当t =32时,四边形MNQP 恰为矩形.此时,该矩形的面积为2平方厘米.(2) 当0<t ≤1时,+2S =;当1<t ≤2时,2S =;当2<t <3时,S =+2.(1)90°;4 (2)x =2.3.(1)当t =125时,点Q' 恰好落在AB 上. (2)当0<t ≤125时,23-+38S t t =;当125<t ≤6时,29(8-)56S t =(3)由(2)问可得,当0<t ≤125时,239-388t t += ;当125<t ≤6时,299(8-)568t =;解得,8t =4t =98S =.4.(1)1 (2)45(3)当1<t ≤43时,29-24S t t =;当43<t <2时,29-10-84S t t =+. 5.(1)(﹣1,3),(﹣3,2) (2)当0<t ≤12时,25S t =;当12<t ≤1时,55-4S t =;当1<t ≤32时,225-515-4S t t =+.6.(1)M (4,2) N (6,0)(2)当0≤t ≤1时,24t S =;当1<t ≤4时,1-24t S =; 当4<t ≤5时,231349--424S t t =+;当5<t ≤6时,13-2S t =+;当6<t ≤7时,()217-2S t =二、二次函数中的存在性问题1.解:由题意,设OA =m ,则OB =2m ;当∠BAP =90°时, △BAP ∽△AOB 或△BAP ∽△BOA ; ① 若△BAP ∽△AOB ,如图1,可知△PMA ∽△AOB ,相似比为2:1;则P 1(5m ,2m ),代入x x y 32+-=,可知2513=m ,)2526,513(1P ② 若△BAP ∽△BOA ,如图2,可知△PMA ∽△AOB ,相似比为1:2;则P 2(2m ,2m),代入x x y 32+-=,可知811=m ,)1611,411(2P当∠ABP =90°时,△ABP ∽△AOB 或△ABP ∽△BOA ; ③ 若△ABP ∽△AOB ,如图3,可知△PMB ∽△BOA ,相似比为2:1;则P 3(4m ,4m ), 代入x x y 32+-=,可知21=m ,)2,2(3P ④ 若△ABP ∽△BOA ,如图4,可知△PMB ∽△BOA ,相似比为1:2;则P 4(m ,m 25), 代入x x y 32+-=,可知21=m ,415(,)24P2.解:(1)由抛物线解析式()21134y x =--+可得B 点坐标(1,3)要求直线BQ 的函数解析式,只需求得点Q 坐标即可,即求CQ 长度. 过点D 作DG ⊥x 轴于点G ,过点D 作DF ⊥QP 于点F . 则可证△DCG ≌△DEF .则DG =DF ,∴矩形DGQF 为正方形.则∠DQG =45°,则△BCQ 为等腰直角三角形.∴CQ =BC=3,此时,Q 可得BQ 解析式为y =-x +4.(2)要求P 点坐标,只需求得点Q 坐标,然后根据横坐标相同来求点P 坐标即可. 而题目当中没有说明∠DCE =30°还是∠DCE =60°,所以分两种情况来讨论. ① 当∠DCE =30°时,a )过点D 作DH ⊥x 轴于点H ,过点D 作DK ⊥QP 于点K . 则可证△DCH ∽△DEK .则DH DCDK DE== 在矩形DHQK 中,DK =HQ ,则DHHQ=在Rt △DHQ 中,∠DQC =60°.则在Rt △BCQ 中,BCCQ=∴CQ ,此时,Q 点坐标为()则P 点横坐标为代入()21134y x =--+可得纵坐标.∴P (b )又P 、Q 为动点,∴可能PQ 由对称性可得此时点P 坐标为(194)② 当∠DCE =60°时,a) 过点D 作DM ⊥x 轴于点M ,过点D作DN ⊥QP 于点N .则可证△DCM ∽△DEN .则DM DC DN DE == 在矩形DMQN 中,DN =MQ ,则DM MQ =. 在Rt △DMQ 中,∠DQM =30°.则在Rt △BCQ 中,BC CQ =∴CQ =Q 点坐标为(1+0) 则P 点横坐标为1+代入()21134y x =--+可得纵坐标.∴P (b )又P 、Q 为动点,∴可能PQ 在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P 坐标为(1-154-) 综上所述,P 点坐标为(94),(194),(1+154-)或(1-154-).当2=ANMN 时,268310312=-+-m m m ,即264631=---mm m ))(( ∴2-=m (舍)2)如果点M 在x 轴上方的抛物线上:当21=AN MN 时,2168310312=--+-m m m ,即2164631=----m m m ))(( ∴211=m ∴M ),(41211 此时41=MN ,21=AN ∴21=AN MN ∴△AMN ∽△ACD ∴M ),(41211满足要求当2=ANMN 时,268310312=--+-m m m ,即264631=----mm m ))(( ∴m =10(舍) 综上M 1),(4725-,M 2),(412114.解:满足条件坐标为:1(36,0)-M 2(36,0)+M 3(12,0)-+M 4(12,0)--M 思路分析:A 、M 、N 、P 四点中点A 、点P 为顶点,则AP 可为平行四边形边、对角线; (1)如图,当AP 为平行四边形边时,平移AP ;∵点A 、P 纵坐标差为2 ∴点M 、N 纵坐标差为2; ∵点M 的纵坐标为0 ∴点N 的纵坐标为2或-2 ①当点N 的纵坐标为2时 解:2232--=x x 得16=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 1(36,0)-M 、2(36,0)+M ②当点N 的纵坐标为-2时解:2232--=-x x 得12=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 3(12,0)-+M 、4(12,0)--M (2)当AP 为平行四边形边对角线时; 设M 5(m ,0) MN 一定过AP 的中点(0,-1)则N 5(-m ,-2),N 5在抛物线上 ∴2232+-=-m m12=-±m (负值不符合题意,舍去)∴12=-+m ∴5(12,0)-+M 综上所述:符合条件点P 的坐标为:1(36,0)-M 2(36,0)+M 3(12,0)-+M 4(12,0)--M5.解:分析题意,可得:MP ∥NQ ,若以P 、M 、N 、Q 为顶点的四边形为平行四边形,只需MP =NQ 即可。

中考压轴题-四点共圆精讲精练

中考压轴题-四点共圆精讲精练

中考压轴题之四点共圆问题精讲精练一.选择题1.如图,圆内接四边形ABCD 的外角ABE ∠为80︒,则ADC ∠度数为( )A .80︒B .40︒C .100︒D .160︒(第1题图) (第2题图) (第3题图)2.如图,在ABC ∆中,90ABC ∠=︒,4BC =,8AB =,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当CBP BAD ∠=∠时,线段CD 的最小值是( )A B .2 C .1 D .43.如图,在矩形ABCD 中,8AB =,6BC =,点P 在矩形的内部,连接PA ,PB ,PC ,若PBC PAB ∠=∠,则PC 的最小值是( )A .6B 3C .4D .44.如图,在矩形ABCD 中,5AD =,AB =E 在AB 上,12AE EB =,在矩形内找一点P ,使得60BPE ∠=︒,则线段PD 的最小值为( )A .2B .4-C .4D .5.如图,6AB AD ==,60A ∠=︒,点C 在DAB ∠内部且120C ∠=︒,则CB CD +的最大值( )A .B .8C .10D .二.填空题6.在ABC ∆中,4AB =,45C ∠=︒,则2AC BC +的最大值为 .7.如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP = .8.如图,AB BC ⊥,5AB =,点E 、F 分别是线段AB 、射线BC 上的动点,以EF 为斜边向上作等腰Rt DEF ∆,90D ∠=︒,连接AD ,则AD 的最小值为 .9.在Rt ABC ∆中,AB AC =,90BAC ∠=︒,点E 是线段AC 上一点,过E 作EG BC ⊥,交BC 于G ,连接BE ,点D 是BE 的中点,连接AD 交BC 于点F .若25AD =,3BF =,则FG = .10.如图,ABC ∆和BCD ∆均为直角三角形,90BAC BDC ∠=∠=︒,2AB =,连接AD .若30ADB ∠=︒,则AC 的长为 .11.如图,在四边形ABCD 中,6BD =,90BAD BCD ∠=∠=︒,则四边形ABCD 面积的最大值为 .12.如图,在ABC ∆和ACD ∆中,45ABC ADC ∠=∠=︒,6AC =,则AD 的最大值为 .13.如图,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,点E ,F 分别为AB ,AC 边上的点,且90EDF ∠=︒,连接EF ,则DEF ∠的度数为 .14.如图,以C 为公共顶点的Rt ABC ∆和Rt CED ∆中,90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,且点D 在线段AB 上,则ABE ∠= ,若10AC =,9CD =,则BE = . 三.解答题 15.【问题原型】如图①,在O 中,弦BC 所对的圆心角90BOC ∠=︒,点A 在优弧BC 上运动(点A 不与点B 、C 重合),连结AB 、AC .(1)在点A 运动过程中,A ∠的度数是否发生变化?请通过计算说明理由.(2)若2BC =,求弦AC 的最大值.【问题拓展】如图②,在ABC ∆中,4BC =,60A ∠=︒.若M 、N 分别是AB 、BC 的中点,则线段MN 的最大值为 .16.【问题提出】九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在O 的内接四边形ABCD 中,BD 是O 的直径.A ∠与C ∠、ABC ∠与ADC ∠有怎样的数量关系?2.如图(2),若圆心O 不在O 的内接四边形ABCD 的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的A ∠与C ∠、ABC ∠与ADC ∠都满足互补关系,请帮助他完善问题1的证明:BD是O的直径,∴,180∴∠+∠=︒,四边形内角和等于360︒,∴.A C(2)请回答问题2,并说明理由;【深入探究】如图(3),O的内接四边形ABCD恰有一个内切圆I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若90CD=,请直接写出图中阴影部分的面积.BC=,2∠=︒,3C17.综合与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果B D∠=∠,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则180∠+∠=︒(依据1)AEC D∠=∠180B DAEC B∴∠+∠=︒∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,12∠的度数为.∠=∠,345∠=︒,则4拓展探究:(3)如图4,已知ABC=,点D在BC上(不与BC的∆是等腰三角形,AB AC中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE ,DE .①求证:A ,D ,B ,E 四点共圆;②若22AB =,AD AF ⋅的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.18.如图,在矩形ABCD 中,点E 为边AD 的中点,点F 为AB 上的一个动点,连接FE 并延长,交CD 的延长线于点G ,以FG 为底边在FG 下方作等腰Rt FHG ∆,且90FHG ∠=︒.(1)如图①,若点H 恰好落在BC 上,连接BE ,EH .①求证:2AD AB =;②若tan 2BEH ∠=,1GD =,求FHG ∆的面积;(2)如图②,点H 落在矩形ABCD 内,连接CH ,若4AD =,3AB =,求四边形FHCB 面积的最大值.19.如图,ABC ∆是等边三角形,以AC 为腰在AC 右侧作等腰()ADE AD AE ∆=,点D 与点C 重合,连接BE .(1)如图①,过点C 作CG EB ⊥于点G ,若90CAE ∠=︒.①求证:BG CG =;②已知22BC =,求BCE ∆的周长;(2)如图②,若60DAE ∠=︒,将DAE ∆绕点A 逆时针旋转,使点E 落在BA 的延长线上.现DAB ∠内有一点M ,连接DM ,EM ,BM ,作DM 的垂直平分线交BM 的延长线于点N ,交EM 于点H ,直线NH 恰好过点A .若2AE =,当EH 取得最大值时,求AN 的长.20.如图,在ABC ∆中,以AB 为直径作O 交AC 于点D ,交BC 于点E ,CE BE =,过点E 作EF AC ⊥于点F ,FE 的延长线交AB 的延长线于点G ,连接DE .(1)求证:FG 是O 的切线;(2)求证:2EG AG BG =⋅;(3)若1BG =,2EG =,求sin CDE ∠的值.参考答案一.选择题1.解:四边形ABCD 为圆内接四边形,180ADC ABC ∴∠+∠=︒,180ABE ABC ∠+∠=︒,80ADC ABE ∴∠=∠=︒,故选:A .2.解:90ABC ∠=︒,90ABP CBP ∴∠+∠=︒,CBP BAD ∠=∠,90ABD BAD ∴∠+∠=︒,90ADB ∴∠=︒,取AB 的中点E ,连接DE ,CE ,142DE AB ∴==, 242EC EB ∴==,CD CE DE -, CD ∴的最小值为424-,故选:D .3.解:四边形ABCD 是矩形,90ABC ∴∠=︒,90ABP PBC ∴∠+∠=︒,PBC PAB ∠=∠,90PAB PBA ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的圆上运动,设圆心为O ,连接OC 交O 于P ,此时PC 最小,222246213OC OB BC =+=+=,PC ∴的最小值为2134-,故选:C .4.解:如图,在BE 的上方,作OEB ∆,使得OE OB =,120EOB ∠=︒,连接OD ,过点O 作OQ BE ⊥于Q ,OJ AD ⊥于J .12BPE EOB ∠=∠,∴点P 的运动轨迹是以O 为圆心,OE 为半径的O ,∴当点P 落在线段OD 上时,DP 的值最小,四边形ABCD 是矩形,90A ∴∠=︒,33AB =,:1:2AE EB =,23BE ∴=,OE OB =,120EOB ∠=︒,OQ EB ⊥,3EQ BQ ∴==,60EOQ BOQ ∠=∠=︒,1OQ ∴=,2OE =,OJ AD ⊥,OQ AB ⊥,90A AJO AQO ∴∠=∠=∠=︒,∴四边形AQOJ 是矩形,1AJ OQ ∴==,23JO AQ ==,5AD =,4DJ AD AJ ∴=-=,22224(23)27OD JD OJ ∴=+=+=,PD ∴的最小值272OD OP =-=-,故选:A . 5.解:如图,连接AC ,BD ,在AC 上取点M 使DM DC =,60DAB ∠=︒,120DCB ∠=︒,180DAB DCB ∴∠+∠=︒,A ∴,B ,C ,D ,四点共圆,AD AB =,60DAB ∠=︒,ADB ∴∆是等边三角形,60ABD ACD ∴∠=∠=︒,DM DC =,DMC ∴∆是等边三角形,60ADB ACD ∴∠=∠=︒,ADM BDC ∴∠=∠,AD BD =,()ADM BDC SAS ∴∆≅∆,AM BC ∴=,AC AM MC BC CD ∴=+=+, 四边形ABCD 的周长为AD AB CD BC AD AB AC +++=++,且6AD AB ==,∴当AC 最大时,四边形ABCD 的周长最大,则CB CD +最大,此时C 点在BD 的中点处,30CAB ∴∠=︒,AC ∴的最大值cos3043AB =⨯︒=,CB CD ∴+最大值为43AC =,故选:A .二.填空题(共9小题)6.解:过点B 作BD AC ⊥于点D ,45C ∠=︒,BCD ∴∆为等腰直角三角形,BD CD ∴=,设BD CD a ==,延长AC 至点F ,使得CF a =, 1tan 22a AFB a ∠==,作ABF ∆的外接圆O ,过点O 作OE AB ⊥于点E ,则122AE AB ==,AOE AFB ∠=∠, 1tan 2AOE ∴∠=,4OE ∴=,222425OA =+=, ∴222()2()22()2AC BC AC BC AC CF AF OA OF +=+=+=+,∴2AC BC +的最大值为245410⨯=.故答案为:410.7.解:以AB 为直径作半圆O ,连接OD ,与半圆O 交于点P ',当点P 与P '重合时,DP 最短, 122AO OP OB AB ='===,2AD =,90BAD ∠=︒,22OD ∴=,45ADO AOD ODC ∠=∠=∠=︒,222DP OD OP ∴'=-'=-,过P '作P E CD '⊥于点E ,则2222P E DE DP '=='=-,22CE CD DE ∴=-=+,2223CP P E CE ∴'='+=. 故答案为:23.8.解:连接BD 并延长,如图,AB BC ⊥,90ABC ∴∠=︒,90EDF ∠=︒,180ABC EDF ∴∠+∠=︒,B ∴,E ,D ,F 四点共圆,DEF ∆为等腰直角三角形,45DEF DFE ∴∠=∠=︒,45DBF DEF ∴∠=∠=︒,45DBF DBE ∴∠=∠=︒,∴点D 的轨迹为ABC ∠的平分线上,垂线段最短,∴当AD BD ⊥时,AD 取最小值,AD ∴的最小值为25222AB =,故答案为:522. 9.解:连接AG ,将ACG ∆绕点A 逆时针旋转90︒得到ABM ∆,连接MG ,MF ,EG BC ⊥,90BAC ∠=︒,180BAC BGE ∴∠+∠=︒,∴点A 、B 、G 、E 四点共圆,GBE GAE ∴∠=∠,又点D 是BE 的中点,且AB AC =,90BAC ∠=︒,AD BD ∴=,ABE BAD ∴∠=∠,45BAD GAE ABE GBE ∴∠+∠=∠+∠=︒,45FAG ∴∠=︒,由旋转性质可得:90MAG ∠=︒,AM AG =,MB CG =,45MBA C ∠=∠=︒,45MAF FAG ∴∠=∠=︒,90MBF ∠=︒,在MAF ∆和GAF ∆中,AM AG MAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()MAF GAF SAS ∴∆≅∆,MF FG ∴=,EG BC ⊥,45C ∠=︒,EG GC MB ∴==,在MBG ∆和EGB ∆中,MB EG MBG EGB BG GB =⎧⎪∠=∠⎨⎪=⎩,()MBG EGB SAS ∴∆≅∆,245MG BE AD ∴===,设CG x =,FG y =,则MB x =,FM y =,在Rt MBG ∆中,222(3)(45)x y ++=①,在Rt MBF ∆中,2223x y +=②,联立①②,解得1145x y =⎧⎨=⎩,22558x y ⎧=⎪⎨=-⎪⎩(不合题意,舍去),33558x y ⎧=-⎪⎨=-⎪⎩(不合题意,舍去),4445x y =-⎧⎨=⎩(不合题意,舍去),综上,5FG =, 解法二:如图,延长AD 到H ,使得DH AD =,连接BH ,则ADE HDB ∆≅∆设AB AC x ==,AE BH y ==,则有228023x y y x x ⎧+=⎪⎨=⎪-⎩,解得622x y ⎧=⎪⎨=⎪⎩, 12345FG ∴=--=.故答案为:5.10.解:90BAC BDC ∠=∠=︒,A ∴,B ,C ,D 四点共圆,30ADB ∠=︒,2AB =,30ACB ADB ∴∠=∠=︒,24BC AB ∴==,22224223AC BC AB ∴--2311.解:90BAD BCD ∠=∠=︒,A ∴,C 两点在以BD 为直径的圆上,∴当AB AD =,CB CD =时,四边形ABCD 面积最大,6BD =,32AB AD CB CD ∴====,∴四边形BCD 的面积为132322182⨯⨯⨯=.故答案为:18. 12.解:45ABC ADC ∠=∠=︒,A ∴,C ,D ,B 四点共圆,如图,作O 经过A ,C ,D ,B 四点,当()AD D '为直径时,AD 有最大值,45ADC ∠=︒,90AOC ∴∠=︒,OA OC =,AOC ∴∆是等腰直角三角形,6AC =,26322AO ∴=⨯=, 262AD AO ∴'==,即AD 的最大值为62.故答案为:62.13.解:如图,连接AD ,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,90ADC ∴∠=︒,AD CD =,45BAD C ∠=∠=︒,而90EDF ∠=︒,ADE CDF ∴∠=∠,在ADE ∆和CDF ∆中,BAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CDF ASA ∴∆≅∆,DE DF ∴=, 而90EDF ∠=︒,45DEF DFE ∴∠=∠=︒.故答案为:45︒.14.解:90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,60DBC DEC ∴∠=∠=︒,B ∴、C 、D 、E 四点共圆,30DBE DCE ∴∠=∠=︒,30ABE ∴∠=︒,设BC x =,则2AB x =,在Rt ABC ∆中,由勾股定理得222AB AC BC =+,10AC =,222(2)10x x ∴=+,解得:1033x =,1033BC ∴=, 设DE a =,则2CE a =,在Rt CED ∆中,由勾股定理得222CE DE CD =+,9CD =,222(2)9a a ∴=+,解得:33a =,33DE ∴=,63CE =,60ABC ∠=︒,30ABE ∠=︒,90CBE ABC ABE ∴∠=∠+∠=︒,在Rt CBE ∆中,由勾股定理得2222103442(63)()33BE CE BC =--=. 三.解答题(共9小题)15.解:【问题原型】(1)A ∠的度数不发生变化,理由如下:12A BOC ∠=∠,90BOC ∠=︒,∴190452A ∠=⨯︒=︒; (2)当AC 为O 的直径时,AC 最大,在Rt BOC ∆中,90BOC ∠=︒,根据勾股定理,得222OB OC BC +=,OB OC =,∴222222OC BC ==⨯=, ∴222AC OC ==,即AC 的最大值为22;【问题拓展】如图,画ABC ∆的外接圆O ,连接OB ,OC ,ON ,则ON BC ⊥,60BON ∠=︒,122BN BC ==,sin60BNOB∴===︒M、N分别是AB、BC的中点,MN∴是ABC∆的中位线,12MN AC∴=,AC∴为直径时,AC最大,此时2AC OB==,MN∴16.解:【问题提出】(1)BD是O的直径,90A C∴∠=∠=︒,180A C∴∠+∠=︒,四边形内角和等于360︒,180ABC ADC∴∠+∠=︒;故答案为:90A C∠=∠=︒,180ABC ADC∠+∠=︒;(2)成立,理由如下:连接AC、BD,DAC CBD∠=∠,ACD ABD∠=∠,DAC ACD DBC ABD ABC∴∠+∠=∠+∠=∠,180DAC ACD ADC∠+∠+∠=︒,180ABC ADC∴∠+∠=︒;同理,180BAD BCD∠+∠=︒;【深入探究】(3)AD BC AB CD+=+,理由如下:连接AI、BI、CI、DI ,圆I是四边形ABCD的内切圆,AG AE∴=,DE DH=,CH CF=,BF BG=,AD BC AE ED BF CF AG DH BG CH AB CD∴+=+++=+++=+,即AD BC AB CD+=+,故答案为:AD BC AB CD+=+;(4)EF GH⊥,理由如下:连接EH、IH、IG、IF、GF ,四边形ABCD是圆O的内接四边形,180B D∴∠+∠=︒,BG IG⊥,IF BF⊥,90BGI IFB∴∠=∠=︒,180B GIF∴∠+∠=︒,GIF D∴∠=∠,GI IF=,1902GFI GIF∴∠=︒-∠,ED DH=,1902DEH D∴∠=︒-∠,GFI DEH∴∠=∠,GE GE=,GFE GHE∴∠=∠,GHE GFI IFE∴∠=∠+∠,IF IE=,IFE IEF∴∠=∠,90FEH EHG FEH IEF DEH EID∴∠+∠=∠+∠+∠=∠=︒,EF GH∴⊥;(5)连接BD ,90C ∠=︒,90A ∴∠=︒,ABCD 是圆O 的内接圆,BD ∴是圆O 的直径,连接IF 、IH ,I 是四边形ABCD 的内切圆圆心,ADI IDH ∴∠=∠,ABI FBI ∠=∠,IH CD ⊥,IF BC ⊥,90BIF IBF ∴∠=︒-∠,90DIH IDH ∠=︒-∠, 1180()180()2BIF DIH IBF IDH ADC ABC ∴∠+∠=︒-∠+∠=︒-∠+∠, 180ABC ADC ∠+∠=︒,90BIF DIH ∴∠+∠=︒,IF FC ⊥,IH CD ⊥,90C ∠=︒,IH IF =,∴四边形IHCF 是正方形, 90HIF ∴∠=︒,I ∴点在BD 上,3BC =,2CD =,326ABCD S ∴=⨯=四边形,90DIH IDH ∠+∠=︒,90IBF IDH ∠+∠=︒,DIH IBF ∴∠=∠,90IHD IFB ∠=∠=︒,DHI IFB ∴∆∆∽,∴IH DH BF IF =,即23IH IH IH IH-=-, 解得65IH =,3625I S π∴=,∴阴影部分的面积36625π=-.17.(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:12∠=∠,∴点A ,B ,C ,D 四点在同一个圆上,34∴∠=∠,345∠=︒,445∴∠=︒,故答案为:45︒;(3)①证明:AB AC =,ABC ACB ∴∠=∠,点E 与点C 关于AD 的对称,AE AC ∴=,DE DC =,AEC ACE ∴∠=∠,DEC DCE ∠=∠,AED ACB ∴∠=∠,AED ABC ∴∠=∠,A ∴,D ,B ,E 四点共圆;②解:AD AF ⋅的值不会发生变化,理由如下:如图4,连接CF ,点E 与点C 关于AD 的对称, FE FC ∴=,FEC FCE ∴∠=∠,FED FCD ∴∠=∠, A ,D ,B ,E 四点共圆,FED BAF ∴∠=∠,BAF FCD ∴∠=∠, A ∴,B ,F ,C 四点共圆,BAD FAB ∠=∠,ABD AFB ∴∆∆∽, ∴AD AB AB AF=,28AD AF AB ∴⋅==.18.(1)①证明:如图①中,过点E 作ET BC ⊥于点T .四边形ABCD 是矩形,90A ADC EDG ∴∠=∠=∠=︒,在AEF ∆和DEG ∆中, 90A EDG AE EDAEF DEG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()AEF DEG ASA ∴∆≅∆,EF EG ∴=, FGH ∆是等腰直角三角形,HE EF EG ∴==,HE FG ⊥, 90A ABT ETB ∠=∠=∠=︒,∴四边形ABTE 是矩形,90AET FEH ∴∠=∠=︒,AEF TEH ∴∠=∠,在EAF ∆和ETH ∆中,90A ETH AEF TEH EF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EAF ETH AAS ∴∆≅∆,EA ET ∴=,∴四边形ABTE 是正方形,AE AB ∴=,2AD AE =,2AD AB ∴=;②解:如图①1-中,时FH 交BE 于点J .FJB EJH ∠=∠,45FBJ EHJ ∠=∠=︒,BFH BEH ∴∠=∠, tan tan 2BFH BEH ∴∠=∠=,∴2BH FB =,EAF ETH EDG ∆≅∆≅∆, 1AF DG TH ∴===,设AB BT x ==,则121x x +=-,3x ∴=,2BF ∴=,4BH =, 在Rt BFH ∆中,22222425FH BF BH =+=+=,12525102DGH S ∆∴=⨯⨯=; (2)解:如图②中,过点H 作HQ AB ⊥于点Q ,过点E 作ER QH ⊥于点R ,连接BH .同法可证,EAF ERH ∆≅∆,EA ER ∴=,AF RH =,2AE ED ==,2ER AE ∴==,四边形AQRE 是正方形,2AQ AE ∴==,1BQ ∴=,14122BCH S ∆∴=⨯⨯=,设AF RH y ==, 211125(3)(2)()2228BFH S y y y ∆∴=-⋅+=--+,102-<, 12y ∴=时,BFH ∆的面积最大,最大值为258, ∴四边形BCHF 的面积的最大值2541288=+=. 19.(1)①证明:如图①中,连接AG ,延长CG 交AB 于点J ,过点A 作AM CJ ⊥交CJ 的延长线于点M ,AN BE ⊥于点N .CG BE ⊥,90OAE OGC ∴∠=∠=︒,AOE GOC ∠=∠,AOE GOC ∴∆∆∽,∴AO EO GO CO =,∴AO GO EO CO=, AOG EOC ∠=∠,AOG EOC ∴∆∆∽,45AGO ACE ∴∠=∠=︒,90OGJ ∠=︒,45AGN AGM ∴∠=∠=︒, AM GM ⊥,AN GN ⊥,AM AN ∴=,90ANB AMC ∠=∠=︒,AC AB =, Rt AMC Rt ANB(HL)∴∆≅∆,ACM ABN ∴∠=∠,AB AC =, ABC ACB ∴∠=∠,GBC GCB ∴∠=∠,GB GC ∴=;②解:GB GC =,90BGC ∠=︒,22BC =,2GB GC ∴==, AB AC =,GB GC =,AG ∴垂直平分线线段BC ,30CAG ∴∠=︒,AOG EOC ∆∆∽,30OEC OAG ∴∠=∠=︒, 24EC CG ∴==,23EG =,223BE ∴=+,BCE ∴∆的周长22223422236BC BE EC =++=+++=++;(2)解:如图②中,以A 为圆心,AE 为半径作A ,设AN 交DM 于点J .AD AE =,60DAE ∠=︒,ADE ∴∆是等边三角形,点D ,M 关于AN 对称,AD AM ∴=,∴点M 在A 上, 1302EMD EAD ∴∠=∠=︒,AN DM ⊥,90MJH ∴∠=︒,60AHE MHJ ∠=∠=︒,60AHE ADE ∴∠=∠=︒,A ∴,E ,D ,H 四点共圆, 60EHD EAD ∴∠=∠=︒,120AHD ∴∠=︒,∴当EH 是四边形AEDH 的外接圆的直径时,EH 的值最大,此时点C 与点M 重合,B ,C ,N 共线,且EM AD ⊥(如图②1-中),30AEM DEM ∴∠=∠=︒,90AEN ∴∠=︒,90BAN ∴∠=︒, 2AB AE ==,60B ∠=︒,tan 6023AN AB ∴=⋅︒=20.(1)证明:连接OE ,CE BE =,OA BO =,OE ∴是ABC ∆的中位线, //OE AC ∴,EF AC ⊥,OE EF ∴⊥,E 点在圆O 上,FG ∴是O 的切线;(2)证明:OE GF ⊥,90OEG ∴∠=︒,222OG OE EG ∴=+, 222()()EG OG OE OG OE OG OE =-=+-,EO BO OA ==, 2()()EG OG OA OG OB AG BG ∴=+-=⋅; (3)解:连接AE ,过E 点作EM AB ⊥交于点M ,2EG AG BG =⋅,1BG =,2EG 2AG ∴=,1AB ∴=,AB 是直径,90AEB ∴∠=︒,90OEG ∠=︒,AEO BEB ∴∠=∠,AO OE =,EAO OEA ∴∠=∠, BEG EAO ∴∠=∠,AEG EBG ∴∆∆∽,∴2EG EB AG AE =,设EB x =,则2AE x , 在Rt ABE ∆中,2212x x =+,解得3x =,3BE ∴=,6AE =,AE BE AB EM ⋅=⋅,23EM ∴=,A 、B 、E 、D 四点共圆,CDE ABE ∴∠=∠,263sin sin 333EM CDE EBM EB ∴∠=∠===.。

初三九年级数学上册 压轴解答题中考真题汇编[解析版]

初三九年级数学上册 压轴解答题中考真题汇编[解析版]

初三九年级数学上册 压轴解答题中考真题汇编[解析版]一、压轴题1.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于3,请直接写出圆心B 的横坐标B x 的取值范围.2.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.3.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.4.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.5.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.6.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.8.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.9.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.10.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.11.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.12.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)②;(2)±1;(3)23-<B x <33或733-<B x <23-- 【解析】 【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k 的正负分类讨论,作图后根据最美三角形的定义求解EF ,利用勾股定理求解AF ,进一步确定∠AOF 度数,最后利用勾股定理确定点F 的坐标,利用待定系数法求k .(3)本题根据⊙B 在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB 的度数,继而按照最美三角形的定义,分别以△BND ,△BMN 为媒介计算BD 长度,最后与OD 相减求解点B 的横坐标范围. 【详解】(1)如下图所示:∵PM 是⊙O 的切线, ∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-, ∵1=2PMOSPM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF .则由已知可得:111=1222AEFSAE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==.∵A(0,2),即OA=2,∴在直角△AFO 中,22=2OF OA AF AF -==, ∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1), 将F 点代入y=kx 可得:1k =-. ②当k >0时,同理可得k=1. 故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D -,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OCODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形, ∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°, 在直角△BDN 中,sin BNBDN BD∠=, 故23=sin sin 60?BN BN BD BN BDN =∠.∵⊙B 3, ∴3BM =.当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=3222BMNSMN BM MN MN ••=•=<32,故MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD <33,OB BD OD =- <333-33,则23-<B x <33. ②当⊙B 在直线CD 左侧时,同理可得:73-<B x<23--. 故综上:23-<B x <3或73-<B x <23--. 【点睛】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.2.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【解析】 【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得. 【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒ ∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:连接OD 、OC 、AC ,如图:∵1OD OC CD === ∴OCD 为等边三角形 ∴60COD ∠=︒ ∴30DAC ∠=︒ ∴30EBD ∠=︒ ∵90ADB ∠=︒ ∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD = ∴30A ∠=︒ ∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.3.(1)()C 8,43;(2)t=18s ;(3)t 1513=±. 【解析】 【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,OH 即可.(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .求出OH 的长即可解决问题.(3)设M (﹣5+t ,33),EF 12=AB =8,由∠EMF =90°,可得EM 2+MF 2=EF 2,由此构建方程即可解决问题. 【详解】(1)如图1中,作CH ⊥AB 于H .∵A (20,0),AB =16,∴OA =20,OB =4.在Rt △ABC 中,∵∠ACB =90°,AB =16,∠CAB =30°,∴BC 12=AB =8,CH =BC •sin60°3BH =BC •cos60°=4,∴OH =8,∴C (8,3(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .∵MN =MH 3MN ⊥BC ,MH ⊥BA ,∴∠MBH =∠MBN =30°,∴BH 3==9,∴点M 的运动路径的长为5+4+9=18,∴当点M 在∠ABC 的内部且⊙M 与直线BC 相切时,t 的值为18s .(3)∵C (8,3B (4,0),A (20,0).∵CE =EB ,CF =FA ,∴E (6,3),F (14,3),设M (﹣5+t ,3),EF 12=AB =8. ∵∠EMF =90°,∴EM 2+MF 2=EF 2,∴(6+5﹣t )2+32+(14+5﹣t )2+32=82,整理得:t 2﹣30t +212=0,解得:t =1513【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.4.(1)BQ=8.2cm ;(2)5cm ;(3)S △BOC =39625. 【解析】【分析】(1)根据ABC APQ ∆~∆得AC AB AQ AP=,从而得到AQ 的长即可求出BQ 的长; (2)由点Q 与点A 重合和点Q 与点B 重合时,可以确定点O 的位置,再根据点Q 位于AB 上除端点外的任意一点时,由点O 是PQ 的中点,点F 是PB 的中点可知OF 是PBQ ∆的中位线,从而得到点O 的运动轨迹是APB ∆的 中位线,即线段EF ,即可求得答案;(3)连接AO ,过点O 作ON AC ⊥ ,先证明APQ ABC ∆~∆得到AQ AP PQ AC AB BC == ,所以求得,AQ PQ 的值,且OP OQ =,再证明PON PAQ ∆~∆得到ON PO AQ PA=,求得ON 的值,再根据BOC ABC AOB AOC S S S S ∆∆∆∆=--即可求得答案;【详解】解:(1)如图1所示,∵90,6,8C AC cm BC cm ∠===∴10AB cm =又∵点P 为AC 的中点,∴3AP cm =∵ABC APQ ∆~∆∴AC AB AQ AP = ,即6103AQ = 解之得: 1.8AQ =则8.2BQ AB AQ cm =-=(2)如图2,当点Q 与点A 重合时,点O 位于点E 的位置,当点Q 与点B 重合时,点O 位于点F 的位置,则EF 是△APB 的中位线,∴EF ∥AB ,且EF =12AB =5,152EF AB == 而当点Q 位于AB 上除端点外的任意一点时,∵点O 是PQ 中点,点F 是PB 的中点,∴OF 是△PBQ 的中位线,∴OF ∥BQ ,∴点O 的运动轨迹是线段EF ,则点O 的运动路径长是5cm ;故答案为5cm . (3)如图3,连接AO ,过点O 作ON AC ⊥于点N ,∵⊙O 与AB 相切,∴PQ AB ⊥ ,即90AQP ∠= ,∵,90PAQ BAC ACB AQP ∠=∠∠=∠=∴APQ ABC ∆~∆ ∴AQ AP PQ AC AB BC == ,即36108AQ PQ == 解之得: 912,55AQ PQ == 则65OP OQ == ∵ON AC ⊥∴90PNO PQA ∠=∠=又∵OPN APQ ∠=∠∴PON PAQ ∆~∆, ∴ON PO AQ PA = ,即65935ON = , 解之得:1825ON = 则BOC ABC AOB AOC S S S S ∆∆∆∆=--111•••222BC AC AB OQ AC ON =-- 11611868106225225=⨯⨯-⨯⨯-⨯⨯ 39625= 【点睛】本题主要考查了相似三角形和圆的综合问题,掌握圆的切线判定、三角形中位线定理、相似三角形的判定和性质、割补法求面积等知识点是解题关键.5.(1)OD=4,(2)证明过程见详解(3)504 3π-【解析】【分析】(1)根据AB与圆O相切,在Rt△OBD中运用tan∠BOD=34,即可求出OD的长,(2)作辅助线证明四边形ADOG是矩形,得DO∥AC,sin∠OCG=35,在Rt△OCG中,求出OG的长等于半径即可解题,(3)利用S阴影=S Rt△BAC-S正方形ADOG-14S圆O,求出AC长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.6.(1)菱形的周长为8;(2)t=65,∠MAC=105°;(3)当t=1﹣35或t=1+315时,圆M与AC相切.【解析】试题分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:BE=3,AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为 M与AD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=3,最后依据3t+2t=5+AE.列方程求解即可.试题解析:(1)如图1所示:过点B作BE AD⊥,垂足为E,∵(B1,3,()A2,0,∴BE3=AE1=,∴22AB AE BE2=+=,∵四边形ABCD为菱形,∴AB BC CD AD===,∴菱形的周长248=⨯=.(2)如图2所示,⊙M 与x 轴的切线为F ,AD 中点为E ,∵()M 3,1-,∴()F 3,0-,∵AD 2=,且E 为AD 中点,∴()E 30,,EF 6=, ∴2t 3t 6+=, 解得6t 5=. 平移的图形如图3所示:过点B 作BE AD ⊥,垂足为E ,连接MF ,F 为⊙M 与AD 切点,∵由(1)可知,AE 1=,BE 3=∴tan EAB 3∠=∴EAB 60∠=︒,∴FAB 120∠=︒,∵四边形ABCD 是菱形,∴11FAC FAB 1206022∠∠==⨯︒=︒, ∵AD 为M 切线,∴MF AD ⊥,∵F 为AD 的中点,∴AF MF 1==,∴AFM 是等腰直角三角形,∴MAF 45∠=︒,∴MAC MAF FAC 4560105∠∠∠=+=︒+︒=︒.(3)如图4所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒, ∴DAC 60∠=︒.∵AC 、AD 是圆M 的切线∴MAE 30∠=︒,∵ME MN 1==.∴EA 3=,∴3t 2t 53+=-,∴3t 1=-. 如图5所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒,∴DAC 60∠=︒,∴NAE 120∠=︒,∵AC 、AD 是圆M 的切线,∴MAE 60∠=︒,∵ME MN 1==,∴3EA =∴33t2t53+=+,∴3t1=+.综上所述,当3t1=-或3t1=+时,圆M与AC相切.点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.7.(1)详见解析;(2)AE=194;(3)74≤AE<254.【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2+BC2=BE2,∴(8-x)2+62=x2,解得:x=254,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2=DC2+DE2,∴(8-x)2=62+x2,解得:x=74, ∵P 为边BC 上一个动点(可以包括点C 但不包括点B ), ∴线段AE 长度的取值范围为:74≤AE <254. 【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.8.(1)PA O 的半径为3;(2)见解析;(3)⊙O 的半径为2或【解析】【分析】(1)过点A 作BP 的垂线,作直径AM ,先在Rt △ABH 中求出BH ,AH 的长,再在Rt △AHP 中用勾股定理求出AP 的长,在Rt △AMP 中通过锐角三角函数求出直径AM 的长,即求出半径的值;(2)证∠APB =∠PAD =2∠PAE ,即可推出结论;(3)分三种情况:当AE ⊥BD 时,AB 是⊙O 的直径,可直接求出半径;当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,通过证△BFE ∽△DAE ,求出BE 的长,再证△OBE 是等边三角形,即得到半径的值;当AE ⊥AB 时,过点D 作BC 的垂线,通过证△BPE ∽△BND ,求出PE ,AE 的长,再利用勾股定理求出直径BE 的长,即可得到半径的值.【详解】(1)如图1,过点A 作BP 的垂线,垂足为H ,作直径AM ,连接MP ,在Rt △ABH 中,∠ABH =60°,∴∠BAH =30°,∴BH =12AB =2,AH =AB •sin60°= ∴HP =BP ﹣BH =1,∴在Rt △AHP 中,AP∵AB 是直径,∴∠APM =90°,在Rt △AMP 中,∠M =∠ABP =60°,∴AM =AP sin 60︒=3,∴⊙O的半径为3,即PA⊙O(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF,在Rt△BFE中,BE5,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D 作BC 的垂线,交BC 的延长线于点N ,延开PE 交AD 于点Q , 在Rt △DCN 中,∠DCN =60°,DC =4,∴DN =DC •sin60°=23,CN =12CD =2, ∴PQ =DN =23,设QE =x ,则PE =23﹣x ,在Rt △AEQ 中,∠QAE =∠BAD ﹣BAE =30°,∴AE =2QE =2x ,∵PE ∥DN ,∴△BPE ∽△BND ,∴PE DN =BP BN , ∴2323x -=BP 10, ∴BP =10﹣533x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣533x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)223y x x =+-;(2)是,定值为8;(3)1557,416⎛⎫- ⎪⎝⎭或939,416⎛⎫-- ⎪⎝⎭ 【解析】【分析】(1)把点A 、C 坐标代入抛物线解析式即可求得b 、c 的值.(2)设点Q 横坐标为t ,用t 表示直线AQ 、BN 的解析式,把x =1-分别代入即求得点M 、N 的纵坐标,再求DM 、DN 的长,即得到DM +DN 为定值.(3)点P 可以在x 轴上方或下方,需分类讨论.①若点P 在x 轴下方,延长AP 到H ,使AH =AB 构造等腰△ABH ,作BH 中点G ,即有∠PAB =2∠BAG =2∠ACO ,利用∠ACO 的三角函数值,求BG 、BH 的长,进而求得H 的坐标,求得直线AH 的解析式后与抛物线解析式联立,即求出点P 坐标.②若点P 在x 轴上方,根据对称性,AP 一定经过点H 关于x 轴的对称点H ',求得直线AH '的解析式后与抛物线解析式联立,即求出点P 坐标.【详解】解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,-3),∴10003b c c ++=⎧⎨++=-⎩解得:23b c =⎧⎨=-⎩, ∴抛物线的函数表达式为y =x 2+2x -3.(2)结论:DM +DN 为定值.理由:∵抛物线y =x 2+2x -3的对称轴为:直线x =-1,∴D (﹣1,0),x M =x N =﹣1,设Q (t ,t 2+2t ﹣3)(﹣3<t <1),设直线AQ 解析式为y =dx +e∴2023d e dt e t t +=⎧⎨+=+-⎩解得:33d t e t =+⎧⎨=--⎩, ∴直线AQ :y =(t +3)x ﹣t ﹣3,当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6,∴DM =0﹣(﹣2t ﹣6)=2t +6,设直线BQ 解析式为y =mx +n ,∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩, ∴直线BQ :y =(t ﹣1)x +3t ﹣3,当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2,∴DN =0﹣(2t ﹣2)=﹣2t +2,∴DM +DN =2t +6+(﹣2t +2)=8,为定值.(3)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I .∵当x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1,∴B (﹣3,0),∵A (1,0),C (0,﹣3),∴OA =1,OC =3,AC=AB =4,∴Rt △AOC 中,sin ∠ACO=0A AC =,cos ∠ACO=OC AC =, ∵AB =AH ,G 为BH 中点,∴AG ⊥BH ,BG =GH ,∴∠BAG =∠HAG ,即∠PAB =2∠BAG ,∵∠PAB =2∠ACO ,∴∠BAG =∠ACO ,∴Rt △ABG 中,∠AGB =90°,sin ∠BAG=10BG AB =, ∴BGAB =, ∴BH =2BG, ∵∠HBI +∠ABG =∠ABG +∠BAG =90°,∴∠HBI =∠BAG =∠ACO ,∴Rt △BHI 中,∠BIH =90°,sin ∠HBI =HI BH,cos ∠HBI=BI BH =, ∴HI=10BH =43,BI=10BH =125, ∴x H =411355-+=-,y H =125-,即1112,55H ⎛⎫-- ⎪⎝⎭, 设直线AH 解析式为y =kx +a , ∴0111255k a k a +=⎧⎪⎨-+=-⎪⎩,解得:3434k a ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AH :3344y x =-, ∵2334423y x y x x ⎧=-⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或943916x y ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴939,416P ⎛⎫-- ⎪⎝⎭. ②若点P 在x 轴上方,如图2,在AP 上截取AH '=AH ,则H '与H 关于x 轴对称.∴1112,55H ⎛'⎫- ⎪⎝⎭, 设直线AH '解析式为y k x a ='+', ∴0111255k a k a +='''⎧-'⎪⎨+=⎪⎩,解得:3434k a ⎧=-⎪⎪⎨''⎪=⎪⎩, ∴直线AH ':3344y x =-+, ∵2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或1545716x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1557,416P ⎛⎫- ⎪⎝⎭. 综上所述,点P 的坐标为939,416⎛⎫-- ⎪⎝⎭或1557,416⎛⎫- ⎪⎝⎭. 【点睛】本题属于二次函数综合题,考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.运用到分类讨论的数学思想,理清线段之间的关系为解题关键.10.(1)点B 的坐标为(﹣1,0),点A 的坐标为(3,0),点C 的坐标为(0,3);抛物线的对称轴为直线x =1;(2)⊙P 5;(3)1<y <2;(4)3﹣322. 【解析】【分析】(1)分别代入y =0、x =0求出与之对应的x 、y 的值,进而可得出点A 、B 、C 的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP 、BP ,在Rt △BOC 中利用勾股定理可求出BC 的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC =90°,再利用等腰直角三角形的性质可求出BP 的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F 为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF 的长即可.【详解】(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1;(2)连接CP、BP,如图1所示,在Rt△BOC中,BC=∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,BC∴CP=BP=2∴⊙P(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC=ACO=45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,∵△OC′F为等腰直角三角形,∴OF=22OC′=22(32﹣3)=3﹣322.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用圆周角定理找出∠BPC=90°;(3)利用极限值法求出点D纵坐标;(4)利用点到直线之间垂直线段最短确定点F的位置.11.(1)见解析;(2)EF=3251+;(3)存在【解析】【分析】(1)先判断出∠ECB=∠EBC,再判断出∠OCB=∠OBC,即可得出结论;(2)先求出EF,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论;(3)先利用面积关系得出53COFO=,进而利用△OAF∽△EFC得出比例式,即可得出结论.【详解】解:(1)如图1,连接BC,∵AC BD=,∴∠ECB=∠EBC,∵OB=OC,∴∠OCB=∠OBC,∴∠OCD=∠ECF=∠ECB﹣∠OCB=∠EBC﹣∠OBC=∠OBA;(2)∵OA=OB,∴∠OAF=∠OBA,∴∠OAF=∠ECF,①当∠AFO=90°时,∵OA5tan∠OBA=12,∴OC=OA5OF=1,AB=4,∴EF =CF •tan ∠ECF =CF•tan ∠OBA=12 ②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12, ∵OA∴OF =OA •tan ∠OAF, ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC ,∴△OFA ∽△EFC ,∴EF CF OC OF OF AF AF +=== ∴EF=5OF =32, 即:EF =32; (3)存在,如图2,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴53CEO EFO S S ∆∆=, ∴53CO FO =, ∴FO =35CO=5, ∵△OFA ∽△EFC , ∴53CE AD CO EF FO FO ===,∴BF=BE﹣EF=CE﹣EF=23 EF,∴AF=AB﹣BF=4﹣23 EF,∵△OAF∽△EFC,∴CF EF FA FO=,∴85523543EF=-,∴EF=3﹣35.【点睛】圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD COEF FO FO===是解本题的关键.12.(1)t=3;(2)P(35t+2,45t﹣4);(3)t的值为209秒或4秒或16秒或1609秒【解析】【分析】(1)如图1,过点C作CP⊥OA,交x轴于点P.就可以求出OP的值,由勾股定理就可以求出的OP值,进而求出结论;(2)t<10时,P在OA或AB上运动,所以分两种情况:①当0≤t≤5时,如图1,点P在OA上,OP=t,可得P的坐标;②当5<t<10时,如图2,点P在AB上,构建直角三角形,根据三角函数定义可得P的坐标;(3)设切点为G,连接PG,分⊙P与四边相切,其中P在AB和BC时,与各边都不相切,所以分两种情况:①当P在OA上时,根据三角函数列式可得t的值;②当P在OC上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P与直线AB相切,∵OC∥AB,∴∠AOC=∠OAG,∴sin∠AOC=sin∠OA45PGGAP==,t45-t5 =,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,∴1609t=,综上所述,t的值2016041699为秒或秒或秒或秒【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考压轴题例题精讲(一)
1、(2013•内江)如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.
(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.
2、(2013凉山州压轴题)如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0)与,y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由.
3、(2013•曲靖压轴题)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x 轴于点C,交抛物线于点E.
(1)求抛物线的解析式.
(2)当DE=4时,求四边形CAEB的面积.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.。

相关文档
最新文档