必修2直线与圆典型题型总结

必修2直线与圆典型题型总结
必修2直线与圆典型题型总结

直线与圆方程复习专题

注:标*的为易错题,标**为有一定难度的题。

一:斜率与过定点问题

1.已知点(1,3)A 、(2,6)B 、(5,)C m 在同一条直线上,

那么实数m 的值为_______直线的斜率=_____. 2.已知0m ≠,则过点(1,1)-)的直线320ax my a ++=的斜率为________

**3.已知线段PQ 两端点的坐标分别为(1,1)-、(2,2),若直线:0l mx y m +-=与线段PQ 有交点,求m 的范围.

二:截距问题:

4.若三点(2,2)A ,B(,0)a ,(0,)C b (0ab ≠)共线,则11a b +=______ **

5.已知0,0ab bc <<,则直线ax by c +=通过( )

A. 一、二、三象限

B. 一、二、四象限

C. 一、三、四象限

D. 二、三、四象限

*6.(1)过点(1,2)A 且在x 轴,y 轴上截距相等的直线方程是 .

(2)过点(1,2)A 且在x 轴,y 轴截距互为相反数的直线方程是 .

三:平行垂直:

7、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则m =______

8、若直线1210l x my ++=: 与直线231l y x =-:平行,则m =___ (若垂直呢)

9、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为__________

10、已知直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=,

(1)若12l l ⊥,则________m =*(2)若12//l l ,则________m =

五:交点问题:

11、过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.是____________(垂直呢?)

**12.若直线:1l y kx =-与直线10x y +-=的交点位于第一象限,求实数k 的取值范围.

六:距离问题

13.已知点(3,)m 到直线340x +-=的距离等于1,则m =_________

14.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是_________

15. ①平行于直线34120x y +-=,且与它的距离是7的直线的方程是________________________ ②垂直于直线350x y +-=, 且与点(1,0)P -)的距离是105

3的直线的方程是___________

16.过点(1,2)A 且与原点距离最大的直线方程是____________

七:圆的方程

例1、 若方程01422

2=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是

圆心坐标是__________________,半径是________________

例2、 求过点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程,并判断点)4,2(P 与圆的

关系.

例3 圆心在直线30x y -=上,与直线0=y 相切,且被直线0x y -=所截得的弦长为方程.

**练习. 方程(0x y +-=所表示的曲线是 ( )

A .一个圆和一条直线

B . 两个点

C . 一个点

D .一个圆和两条射线 八:点与圆,直线与圆的位置关系:

1、直线1=+y x 与圆)0(022

2>=-+a ay y x 没有公共点,则a 的取值范围是

*2、设点(00,y x )在圆222r y x =+的外部,则直线200r y y x x =+与圆的位置关系是( )

A .相交

B .相切

C . 相离

D .不确定

*3、原点与圆22(1)()2(01)x y a a a -+-=<<的位置关系是___________ 九:直线与圆的位置关系

(一)相交

例1、已知圆 042:22=--+y x y x C 和点(0,2)P ,(1)求直线1:360l x y --=被圆C 截得的

弦AB 的长;(2)直线2l 与圆 C 交与MN 两点,弦MN 被点P 平分,求2l 的方程(*3)过P

点的直线l 截圆C 所得的弦长为4,求直线l 的方程。

**例2、 圆9)3()3(22=-+-y x 上到直线340x y b ++=的距离为1的点有三个,则_____b =, **例3、.已知方程0422

2=+--+m y x y x 表示圆,(1)求m 的取值范围;

(2)若该圆与直线042=-+y x 相交于两点,且OM ⊥ON (O 为坐标原点)求m 的值;

(3)在(2)的条件下,求以MN 为直径的圆的方程.

**例4. 已知圆22:(1)5C x y +-=,直线:10l mx y m -+-=。

(1) 求证:对m R ∈,直线l 与圆C 总相交;

(2)设l 与圆C 交与不同两点A 、B ,求弦AB 的中点M 的轨迹方程;

练习、1、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 2、已知圆16)1()2(22=++-y x 的一条直径通过直线032=+-y x 被圆所截弦的中点,则该直

径所在的直线方程为_____________________

3、圆03422

2=-+++y x y x 上到直线01=++y x 的距离为2的点共有______个

(二)相切

例1 已知圆422=+y x O :,

(1) 求过点M 与圆O 相切的切线方程;

(2) *求过点()42,

P 与圆O 相切的切线方程并求切线长; (3) 求斜率为2且与圆O 相切的切线方程;

(4) **若点(,)x y 满足方程224x y +=,求2y x -的取值范围;

(5) **若点(,)x y 满足方程224x y +=,求

43y x ++的取值范围。

**例2、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,

求直线AB 的方程。

**例3、若直线m x y +=与曲线24x y -=

有且只有一个公共点,求实数m 的取值范围.若有两

个公共点呢?

练习:

1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程是____________________________.

2、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 . 3. 过圆422=+y x 外一点)1,4(-M 引圆的两条切线,则经过两切点的直线方程是______________

4.已知P 是直线0843=++y x 上的动点,PB PA ,是圆012222=+--+y x y x 的两条切线,,A B 是切

点,C 是圆心,那么四边形PACB 面积的最小值为 .

**5、已知对于圆1)1(2

2=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围是____________

**6.曲线)2|(|412≤-+=x x y 与直线4)2(+-=x k y 有两个交点时,实数k 的取值范围是( )

A .]43,125(

B .),125(+∞

C .)4

3,31( D .)125,0( (三)相离 例1: 圆010442

2=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是 十:圆与圆的位置关系

例1、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,

例2、求两圆0222=-+-+y x y x 和52

2=+y x 的公共弦所在的直线方程及公共弦长。

例3:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。 1、若圆042222=-+-+m mx y x 与圆084422

22=-+-++m my x y x 相切,则实数m 的取值集合是 .

2、与圆522=+y x 外切于点)2,1(-P ,且半径为52的圆的方程是___________

十一:直线与圆中的对称问题

例1、(1) 圆22

2690x y x y +--+=关于直线250x y ++=对称的圆的方程是

(2)已知圆522=+y x 与圆224430x y x y ++-+=关于直线l 对称,求直线l 的方程。

例2.一束光线从点()33,

-A 出发经x 轴反射到圆222690x y x y +--+=的最短路程是 .

例3、已知圆07442

2=+--+y x y x C :,自点()33,-A 发出的光线l 被x 轴反射,反射光线所在的直线与圆C 相切,(1)求反射光线所在的直线方程.(2)光线自A 到切点所经历的路程.

例4、 已知直线:33l y x =+,(1)(1,1)P -关于直线l 对称点的坐标是____________

(2) 直线2y x =-关于直线l 对称的直线方程是_______________

(3) 已知点(1,2)A ,(3,1)B ,则线段AB 的垂直平分线的方程为_________

**例5、已知点M(3,5),在直线:220l x y -+=和y 轴上各找一点P 和Q ,使ABC ?的周长最小.

例6. (1)直线:3l y x b =+是圆22

2690x y x y +--+=的一条对称轴,则b =______

(2) 圆222690x y x y +--+=关于点M(3,5)对称的圆的方程是_____________________ 十二:直线与圆中的最值问题

例1、已知圆1)4()3(2

21=-+-y x O :,),(y x P 为圆O 上的动点,则 22x y +的最小值是_________ 例2、已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则2

2PB PA +的最小值是 .

例3.点(,)A x y 满足30x y +-=,[]21x ,∈,求x y 的最大值和最小值

例4.(1)点A(1,3),(5,1)B -,点P 在x 轴上使||||PA PB +最小,则P 的坐标为( )

(2)点A(1,3),(5,1)B ,点P 在x 轴上使||||PA PB +最小,则P 的坐__________

(3)点A(1,3),(5,1)B ,点P 在x 轴上使||||PA PB -最大,则P 的坐标为_________

例5.点(,)P x y 在直线40x y +-=上,则

(1________________

(2________________

(3)22x y +的最小值是________________

(4)22

2x y x ++的最小值是________________

(5)若点Q 在直线2230x y ++=上则||PQ 的最小值是___________

练习、

1、已知22430x y x +-+=,则22x y +的最小值是______;222x y y +-的最大值是_________

2、已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求222PC PB PA ++的最大值和最小值.

3、已知点(1,1)A ,(2,2)B ,点P 在直线x y 2

1=上,求22PB PA +取得最小值时P 点的坐标。

十三: 轨迹问题

例1、已知 点M 与两个定点)0,0(O ,)0,3(A 的距离的比为

2

1,求点M 的轨迹方程.

例2、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.

例3、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点

P 的轨迹方程是 .

直线与圆题型总结

高中数学圆的方程典型例题 类型一:圆的方程 1求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点 2、设圆满足:(1)截y 轴所得弦长为2; (2)被x 轴分成两段弧, 求圆 心到直线I : x 2y 0的距离最小的圆的方程. 类型二:切线方程、切点弦方程、公共弦方程 1已知圆O : x 2 y 2 4,求过点P 2,4与圆0相切的切线. 2两圆C 1: x 2 y 2 D 1x E 1 y F 1 0与C 2: x 2 y 2 D 2x E 2y F 2 0相交于A 、B 两点,求它们的公共 弦AB 所在直线的方程. 3、过圆x 2 y 2 1外一点M(2,3),作这个圆的两条切线 MA 、MB ,切点分别是 A 、B ,求直线AB 的方程。 练习: 2 2 1?求过点 M(3,1),且与圆(x 1) y 4相切的直线I 的方程 __________________ 2 2 5 2、 过坐标原点且与圆 x y 4x 2y 0相切的直线的方程为 _________ 2 2 2 3、 已知直线5x 12y a 0与圆x 2x y 0相切,则a 的值为 _________________________ . 类型三:弦长、弧问题 2 2 1、 求直线I : 3x y 6 0被圆C : x y 2x 4y 0截得的弦AB 的长 ________________________________ 2、 直线 3x y 2 3 0截圆x 2 y 2 4得的劣弧所对的圆心角为 _________________________ 3、求两圆x 2 y 2 x y 2 0和x 2 y 2 5的公共弦长 __________________________ 类型四:直线与圆的位置关系 I 1、若直线y x m 与曲线y 4 x 2有且只有一个公共点,实数 m 的取值范围 _________________________________ 4、 若直线y kx 2与圆(x 2)2 (y 3)2 1有两个不同的交点,贝U k 的取值范围是 ________________________ . 5、 圆x 2 y 2 2x 4y 3 0上到直线x y 1 0的距离为 2的点共有(). (A ) 1 个 (B ) 2 个 (C ) 3 个 (D ) 4 个 2 2 6、 过点P 3, 4作直线l ,当斜率为何值时,直线I 与圆C: x 1 y 2 4有公共点 类型五:圆与圆的位 置关系 2 2 2 2 1、判断圆C 1 : x y 2x 6y 26 0与圆C 2 : x y 4x 2y 4 0的位置关系 ___________________________________ 2 2 2 2 2圆x y 2x 0和圆x y 4y 0的公切线共有 ___________________________条。 P(2,4)与圆的关系. 其弧长的比为3:1 ,在满足条件(1)(2)的所有圆中, 2 圆(x 3)2 (y 3)2 9上到直线3x 4y 11 0的距离为1的点有 _________ 个? 2 2 3、直线 x y 1 与圆 x y 2ay 0 (a 0)没有公共点,则a 的取值范围是 __________

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

圆周运动题型总结

一.角速度 线速度 周期之间的关系 1.做匀速圆周运动的物体,10s 内沿半径是20m 的圆周运动了100m ,试求物体做匀速圆周运动时: (1)线速度的大小; (2)角速度的大小; (3)周期的大小. 【答案】(1)10/m s ;(2)0.5/rad s ;(3)12.56s 2.如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,当小球A 的速度为v A 时,小球B 的速度为v B .则轴心O 到小球B 的距离是( ) A . B A B v l v v + B .A A B v l v v + C .A B A v v L v + D .A B B v v L v + 【答案】A 3.转笔(Pen Spinning )是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是( ) A .笔杆上的点离O 点越近的,角速度越大 B .笔杆上的点离O 点越近的,做圆周运动的向心加速度越大 C .笔杆上的各点做圆周运动的向心力是由万有引力提供的 D .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做 离心运动被 甩走 【答案】D 二.传动装置 4.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径R A =2R B , a 和b 两点在轮的边缘,c 和d 分别是A 、B 两 轮半径的中点,下列判断正确的有 A .v a = 2 v b B .ωb = 2ωa C .v c = v a D .a c =a d 【答案】B 5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为 A .32 21r r ω B. 12223r r ω C 。22223r r ω D 。 32 21r r r ω 【答案】A 6.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且RA=RC=2RB ,

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

必修2直线与圆典型题型总结

直线与圆方程复习专题 注:标*的为易错题,标**为有一定难度的题。 一:斜率与过定点问题 1.已知点(1,3)A 、(2,6)B 、(5,)C m 在同一条直线上, 那么实数m 的值为_______直线的斜率=_____. 2.已知0m ≠,则过点(1,1)-)的直线320ax my a ++=的斜率为________ **3.已知线段PQ 两端点的坐标分别为(1,1)-、(2,2),若直线:0l mx y m +-=与线段PQ 有交点,求m 的范围. 二:截距问题: 4.若三点(2,2)A ,B(,0)a ,(0,)C b (0ab ≠)共线,则11a b +=______ **5.已知0,0ab bc <<,则直线ax by c +=通过( ) A. 一、二、三象限 B. 一、二、四象限 C. 一、三、四象限 D. 二、三、四象限 *6.(1)过点(1,2)A 且在x 轴,y 轴上截距相等的直线方程是 . (2)过点(1,2)A 且在x 轴,y 轴截距互为相反数的直线方程是 . 三:平行垂直: 7、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则m =______ 8、若直线1210l x my ++=:  与直线231l y x =-:平行,则m =___ (若垂直呢) 9、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为__________ 10、已知直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=, (1)若12l l ⊥,则________m =*(2)若12//l l ,则________m = 五:交点问题: 11、过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.是____________(垂直呢?) **12.若直线:1l y kx =-与直线10x y +-=的交点位于第一象限,求实数k 的取值范围. 六:距离问题 13.已知点(3,)m 到直线340x y +-=的距离等于1,则m =_________ 14.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是_________ 15. ①平行于直线34120x y +-=,且与它的距离是7的直线的方程是________________________ ②垂直于直线350x y +-=, 且与点(1,0)P -)的距离是105 3的直线的方程是___________

必修一函数经典例题

例4.已知log 4log 4m n <,比较m ,n 的大小。 解:∵log 4log 4m n <, ∴ 4411 log log m n < , 当1m >,1n >时,得4411 0log log m n << , ∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得4411 0log log m n <<, ∴44log log n m <, ∴01n m <<<. 当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<. 综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠). 解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令2 3t x =-,则03t <≤, ∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥, 当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6 .判断函数2()log )f x x =的奇偶性。 x 恒成立,故()f x 的定义域为(,)-∞+∞, 2()log )f x x -= 2 log =- 2 log =- 2log ()x f x =-=-, 所以,()f x 为奇函数。 例7.求函数213 2log (32)y x x =-+的单调区间。 解:令2 2 3 132()2 4u x x x =-+=-- 在3[,)2+∞上递增,在3 (,]2 -∞上递减, 又∵2 320x x -+>, ∴2x >或1x <, 故2 32u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵13 2log y u =为减函数, 所以,函数213 2log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。 例8.若函数2 2log ()y x ax a =--- 在区间(,1-∞上是增函数,a 的取值范围。 解:令2 ()u g x x ax a ==--,

(完整word版)初中的圆题型总结.doc

圆的基本题型 纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择 题的形式考查并占有一定的分值;一般在 10 分- 15 分左右,圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形 式考查;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有非常重要的地位,另外与圆有关的实际应用题,阅读理解题,探索存在性问题仍是热门考题,应引起注意 . 下面究近年来圆的有关热点题型,举例解析如下。 一、圆的性质及重要定理的考查 基础知识链接:( 1)垂径定理;( 2)同圆或等圆中的圆心角、弦、弧之间的关 系 .(3) 圆周角定理及推论(4)圆内接四边形性质 【例 1】(江苏镇江)如图, AB 为⊙ O直径, CD 为弦,且 CD AB ,垂足为 H .(1)OCD 的平分线 CE 交⊙ O于 E ,连结 OE .求证: E 为弧 ADB的中点; (2)如果⊙ O的半径为 1,CD 3 , ①求 O 到弦 AC 的距离; ②填空:此时圆周上存在个点到直线 AC 的距离为1.2 【解析】(1)OC OE ,E OCE C 又OCE DCE,E DCE.O E∥C.D A B O H E D 又 CD AB ,AOE BOE 90 .E 为弧 ADB的中点. (2)①CD AB , AB 为⊙ O的直径, CD 3 , 1 CD 3 .又OC CH 3 3 . CH 1 ,sin COB 2 2 2 OC 1 2 COB 60 ,BAC 30 . 作 OP AC于 P,则 OP 1 OA 1 .2 2 ②3.

【点评】本题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的 能力 . 运用垂径定理时,需添加辅助线构造与定理相关的“基本图形”. 几何上把圆心到弦的距离叫做弦心距, 本题的弦心距就是指线段OD的长 . 在圆中解有关弦心距半径有关问题时, 常常添加的辅助线是连半径或作出弦心距, 把垂 径定理和勾股定理结合起来解题. 如图 , ⊙O的半径为r , 弦心距为 d , 弦长 a 之间 d 2a 2 的关系为 r 2 . 根据此公式 , 在 a 、r、d 三个量中 , 知道任何两个量就可 2 以求出第三个量 . 平时在解题过程中要善于发现并运用这个基本图形 . 【例】(安徽芜湖)如图,已知点 E 是圆 O上的点, 2 B、C分别是劣弧 AD 的三等分点,BOC 46 , 则 AED 的度数为. 【解析】由B、C 分别是劣弧 AD 的三等分点知,圆心角∠∠∠ AOB= BOC= COD, 又 BOC 46 ,所以∠AOD=138o. 根据同弧所对的圆周角等于圆心角的一半。从而有AED =69o. 点评本题根据同圆或等圆中的圆心角、圆周角的关系。 【强化练习】 【1】. 如图,⊙O是 ABC的外接圆, BAC 60 ,AD,CE分别是 BC,AB上的高,且 AD, CE交于点 H,求证: AH=AO 1 (1)如图,在⊙ O中,弦 AC⊥BD, OE⊥AB,垂足为 E,求证: OE= CD 2 1 2 2 (2)如图, AC, BD是⊙ O的两条弦,且 ACBD,⊙ O的半径为,求 AB+CD 的值。 2

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

直线与圆锥曲线题型总结

直线与圆锥曲线题型总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

直线和圆锥曲线基本题型 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范 围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆 22 :14x y C m +=过动点04m ±≠(,且,如果直线:1l y kx =+和椭圆22 :14x y C m +=始 终有交点,则 14m ≥≠,且,即14m m ≤≠且。 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1) y k x y x =+?? =?消y 整理,得 2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ?=--=-+> 即21 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。则线段 AB 的中点为 22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得021122 x k = -,则211( ,0)22 E k -

(完整版)高中数学必修一典型例题

1 数学必修一典型例题 一、集合常见考题: 1.设A={(x ,y)|y=-4x+6},B={(x ,y)| y=5x -3},则A ∩B= ( ) A.{1,2} B.{(1,2)} C.{x=1,y=2} D.(1,2) 2.设全集U={1,2,3,4,5},集合M={1,2,3},N={2,3,5},则()()N C M C U U I =( ) A.Φ B. {2,3} C. {4} D. {1,5} 3.如图,I 是全集,M ,S ,P 是I 的三个子集, 则阴影部分所表示的集合是 A .()M P S I I B .()M P S I U C .S I C P)(M ?? D .S I C P)(M ?? 4.{}{}|||1,||2|3,A x x a B x x A B ?=-<=->=I 且,则a 的取值范围 5.设集合{} 2|2530,M x x x =--=集合{}|1N x mx ==,若M N M =U ,则非零..实数m 的取值集合..为 . 6、(本小题满分10分)已知集合A={x| 5 32+-x x ≤0}, B={x|x 2 -3x+2<0}, U=R , 求(Ⅰ)A ∩B ;(Ⅱ)A ∪B ;(Ⅲ)(uA )∩B. 7、(本题满分12分) 已知集合() 3,12y A x y x ?-? ==??-?? ,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =?I .

2 8.(本小题满分12分)已知集合2{|121},{|310}P x a x a Q x x x =+≤≤+=-≤. (1)若3a =,求()R C P Q I ;(2)若P Q ?,求实数a 的取值范围. 二、函数基本概念及性质常见考题 选择填空: 1、 已知1 |1|3)(2 ---=x x x x f ,则函数)(x f 的定义域为( ) . [0, 3] B. [0, 2)(2, 3] A ? C. (0, 2)(2, 3] D. (0, 2)(2, 3)?? 2、函数y=342-+-x x 的单调增区间是( ) A.[1,3] B.[2,3] C.[1,2] D.(,2]-∞ 3、下列函数中,是奇函数,又在定义域内为减函数的是( ) A. x y ?? ? ??=21 B. x y 1= C. y=-x 3 D. )(log 3x y -= 4. ()x f y =是R 上的偶函数,且()x f 在),0[+∞上是减函数,若()()2-≥f a f ,则a 的取值范围是( ) A .2-≤a B .2≥a C .22≥-≤a a 或 D .22≤≤-a 5、R 上的函数()f x 对任意实数,x y 满足()()()f x f y f x y +=+,且(2)4f =,则(0)(2)f f +-的值为( ) A 、-2 B 、4- C 、0 D 、4 6、3 1 1)(x a a x f x x ?-+=为 函数。(奇偶性) 7、设函数()2 1 2 f x x x =++ 的定义域是[],1n n +(n N ∈),那么()f x 的值域中共含有 个整数. 8、若函数2 34y x x =--的定义域为[]0,m ,值域为25,44?? - -???? ,则m 的取值集合为 . 9、若函数()2 121y x ax =-++在区间(),4-∞上递减,则a 的取值范围为 .

2019中考数学辅导:圆的考点总结及题型分析

2019中考数学辅导:圆的考点总结及题型分析 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 一、考点分析考点 考点一、点和圆的位置关系 设⊙O的半径是r,点P到圆心O 的距离为d,则有: d d=r点P在⊙O上; d>r点P在⊙O外。 考点二、过三点的圆 1、过三点的圆 不在同一直线上的三个点确定一个圆。 2、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 4、圆内接四边形性质 圆内接四边形对角互补。 考点三、直线与圆的位置关系 直线和圆有三种位置关系,具体如下: 相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; 相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, 相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线l的距离为d,那么: 直线l与⊙O相交d 直线l与⊙O相切d=r; 直线l与⊙O相离d>r; 考点四、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 考点五、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆

《直线与圆的位置关系》典型例题

《直线与圆的位置关系》典型例题 例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么? (1)r=1cm;(2)r=cm;(3)r=2.5cm. 例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值. 例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?

例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切. 例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.

参考答案 例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可. 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)当r =1cm时CD>r,∴圆C与AB相离; (2)当r=cm时,CD=r,∴圆C与AB相切; (3)当r=2.5cm时,CD<r,∴圆C与AB相交. 说明:从“数”到“形”,判定圆与直线位置关系. 例2 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)∵直线AB与⊙C相离,∴0rCD,即r>. 说明:从“形”到“数”,由圆与直线位置关系来确定半径. 例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,

直线和圆【概念、方法、题型、易误点及应试技巧总结】

概念、方法、题型、易误点及应试技巧总结 直线和圆 一.直线的倾斜角: 1.定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0; 2.倾斜角的范围[)π,0。如 (1)直线023cos =-+y x θ的倾斜角的范围是____ (答:5[0][ )6 6 ,,πππ ) ; (2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],3 2, 3 [π πα∈值的范围是 ______ (答:42≥-≤m m 或) 二.直线的斜率: 1.定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;( 2.斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212 121x x x x y y k ≠--= ; 3.直线的方向向量(1,)a k = ,直线的方向向量与直线的斜率有何关系? 4.应用:证明三点共线: AB BC k k =。如 (1) 两条直线钭率相等是这两条直线平行的____________条件 (答:既不充分也不必要); (2)实数,x y 满足3250x y --= (31≤≤x ),则 x y 的最大值、最小值分别为______ (答:2 ,13-) 三.直线的方程: 1.点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。 2.斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。 3.两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为1 211 21x x x x y y y y --=--, 它不包括垂直于坐标轴的直线。 4.截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为 1=+b y a x ,它不包括垂直于坐标轴的直线和过原点的直线。 5.一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。如 (1)经过点(2,1)且方向向量为v =(-1,3)的直线的点斜式方程是___________ (答:12)y x -=-); (2)直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______

高中数学必修一典型题目复习

必修一典型练习题 一、集合及其运算 1.已知集合{ } {} 1,12 +==+==x y y B x y y A ,则=B A ( ). (A) {}2,1,0 (B )()(){}2,1,1,0 (C){1 ≥x x } (D)R 2.设集合},1,5,9{},,12,4{2 a a B a a A --=--=若}9{=B A ,求实数a 的值。 3.已知}32/{},322/{<<-=-<<-=x x B a x a x A ,若B A ?,求实数a 的取值范围 4. 已知集合}0|{},0124|{2 2 =-+==-+=k kx x x B x x x A .若B B A = ,求k 的取值范围 二、映射与函数的概念 1.已知映射B A f →: ,R B A == ,对应法则x x y f 2:2 +-= ,对于实数 B k ∈在集合A 中不存在原象,则k 的取值范围是 2.}y |y {N },x |x {M 2020≤≤=≤≤=,给出如下图中4个图形,其中能表示集合M 到集合N 的函数关系有 . 3.设函数.)().0(1),0(12 1 )(a a f x x x x x f >?????? ?<≥-=若则实数a 的取值范围是 . 三、函数的单调性与奇偶性 1.求证:函数x x x f 1 )(+=在),1(+∞∈x 上是单调增函数 2.已知函数()x f y =在),(+∞-∞上是减函数,则()|2|+=x f y 的单调递减区间是( ) .A ),(+∞-∞ .B ),2[+∞- .C ),2[+∞ .D ]2,(--∞

3.已知函数a x a ax x f +-+=)31()(2 在区间),1[+∞是递增的,则a 的取值范围是 4.设函数()x f 在)2,0(上是增函数,函数()2+x f 是偶函数,则()1f 、??? ??25f 、?? ? ??27f 的大小关系是 .___________ 5.已知定义域为(-1,1)的奇函数()x f 又是减函数,且()0)9(32 <-+-a f a f , 则a 的取值范围是 三、求函数的解析式 1.已知二次函数)(x f ,满足1)1(,1)2(-=--=f f ,且)(x f 的最大值是8,试求函数解析式。 2. 设函数b a b ax x x f ,()(+= 为常数,且)0≠ab ,满足1)2(=f ,方程x x f =)(有唯一解,求)(x f 的解析式,并求出)]3([-f f 的值. 3.若函数bx x a x f 1)1()(2++=,且2)1(=f ,2 5 )2(=f ⑴求b a ,的值,写出)(x f 的表达式 ⑵用定义证明)(x f 在),1[+∞上是增函数 4.已知定义域为R 的函数a b x f x x ++-=+122)(是奇函数 (1)求b a ,的值;(2)若对任意的R t ∈,不等式0)2()2(2 2<-+-k t f t t f 恒成立,求k 的取值范围 5.(1)已知函数)(x f 为奇函数,且在0≤x 时,x x x f +=2 )(, 求当0>x 时)(x f 的解析式。 (2)已知函数)(x f 为偶函数,且在0≥x 时f(x)=x 2 -x, 求当0

必修2直线与圆典型题型总结

AHA12GAGGAGAGGAFFFFAFAF 直线与圆方程复习专题 注:标*的为易错题,标**为有一定难度的题。 一:斜率与过定点问题 1.已知点(1,3)A 、(2,6)B 、(5,)C m 在同一条直线上,那么实数m 的值为_______直线的斜率=_____. 2.已知0m ≠,则过点(1,1)-)的直线320ax my a ++=的斜率为________ **3.已知线段PQ 两端点的坐标分别为(1,1)-、(2,2),若直线 :0l mx y m +-=与线段PQ 有交点,求m 的范围. 二:截距问题: 4.若三点(2,2)A ,B(,0)a ,(0,)C b (0ab ≠)共线,则11a b +=______ **5.已知0,0ab bc <<,则直线ax by c +=通过( ) A. 一、二、三象限 B. 一、二、四象限 C. 一、三、 四象限 D. 二、三、四象限 *6.(1)过点 (1,2)A 且在x 轴, y 轴上截距相等的直线方程

AHA12GAGGAGAGGAFFFFAFAF 是 . (2)过点(1,2)A 且在x 轴,y 轴截距互为相反数的直线方程是 . 三:平行垂直: 7、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则 m =______ 8、若直线1 210l x my ++=: 与直线2 31l y x =-:平行, 则m =___ (若垂直呢) 9、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为__________ 10、已知直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=, (1)若12l l ⊥,则________m =*(2)若12//l l ,则________m = 五:交点问题: 11、过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线 032=-+y x 的直线方程.是____________(垂直呢?) **12.若直线:1l y kx =-与直线10x y +-=的交点位于第一象限,求实数k 的取值范围. 六:距离问题

直线与圆位置关系知识点与经典例题

直线与圆位置关系 一.课标要求 1.能根据给定直线、圆的方程,判断直线与圆的位置关系; 2.能用直线和圆的方程解决一些简单的问题; 3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 二.知识框架 相离 几何法 弦长 直线与圆的位置关系 相交 代数法 切割线定理 相切 直线与圆 代数法 求切线的方法 几何法 圆的切线方程 过圆上一点的切线方程 圆的切线方程 切点弦 过圆外一点的切线方程 方程 三.直线与圆的位置关系及其判定方法 1.利用圆心0),(=++C By Ax b a O 到直线的距离2 2 B A C Bb Aa d +++=与半径r 的大小来判 定。 (1)?r d 直线与圆相离 2.联立直线与圆的方程组成方程组,消去其中一个未知量,得到关于另外一个未知量的一元二次方程,通过解的个数来判定。 (1)有两个公共解(交点),即?>?0直线与圆相交 (2)有且仅有一个解(交点),也称之为有两个相同实根,即0=??直线与圆相切 (3)无解(交点),即????r d 练习

(位置关系)1.已知动直线5:+=kx y l 和圆1)1(:2 2=+-y x C ,试问k 为何值时,直线与圆相切、相离、相交? (位置关系)2.已知点),(b a M 在圆1:2 2 =+y x O 外,则直线1=+by ax 与圆O 的位置关系是() A.相切 B.相交 C.相离 D.不确定 (最值问题)3.已知实数x 、y 满足方程0142 2 =+-+x y x , (1)求 x y 的最大值和最小值; (2)求y x -的最大值和最小值; (3)求2 2 y x +的最大值和最小值。 〖分析〗考查与圆有关的最值问题,解题的关键是依据题目条件将其转化为对应的几何问题求解,运用数形结合的方法,直观的理解。①转化为求斜率的最值;②转化为求直线b x y +=截距的最大值;③转化为求与原点的距离的最值问题。 (位置关系)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(2 2 =-+-y x 相切,则n m +的取值围是() (位置关系)5.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线 1250x y c -+=的距离为1,则实数c 的取值围是 6.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π (位置关系)7.圆01222 2 =+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 2 1+ D .221+ (最值问题)8.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 9.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( ) A .0322 2 =--+x y x B .042 2=++x y x C .0322 2 =-++x y x D .042 2 =-+x y x

人教版数学必修1知识点总结及典型例题解析

人教版数学必修1知识点总结及典型例题解析 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋, 北冰洋} 3.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 4.集合的表示方法:列举法与描述法。 5.注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 6.列举法:{a,b,c……} 7.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合 的方法。{x∈R| x-3>2} ,{x| x-3>2} 8.语言描述法:例:{不是直角三角形的三角形} 9.Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 注意:B ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或 B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 10.有n个元素的集合,含有2n个子集,2n-1个真子集

相关文档
最新文档