二阶线性微分方程的解法

合集下载

二阶微分方程解法

二阶微分方程解法

第六节二阶常系数齐次线性微分方程之袁州冬雪创作讲授目标:使学生掌握二阶常系数齐次线性微分方程的解法,懂得二阶常系数非齐次线性微分方程的解法讲授重点:二阶常系数齐次线性微分方程的解法讲授过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:方程y+py+qy=0称为二阶常系数齐次线性微分方程,其中p、q均为常数.如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解,那末y=C1y1+C2y2就是它的通解.我们看看, 可否适当选取r,使y=e rx知足二阶常系数齐次线性微分方程,为此将y=e rx代入方程y+py+qy=0得(r2+pr+q)e rx=0.由此可见,只要r知足代数方程r2+pr+q=0,函数y=e rx就是微分方程的解.特征方程:方程r2+pr+q=0叫做微分方程y+py+qy=0的特征方程.特征方程的两个根r1、r2可用公式求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时,函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数xr e y 11=、xr e y 22=是方程的解,又xr r xr x r ee e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时,函数xr e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为,x r e y 11=是方程的解,又0)()2(121111=++++=q pr r xe p r e x r x r ,所以x r xe y 12=也是方程的解,且x exe y y xr xr ==1112不是常数.因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=a ib 时,函数y =e (a +ib )x 、y =e (aib )x是微分方程的两个线性无关的复数形式的解.函数y =e ax cos bx 、y =e ax sin bx 是微分方程的两个线性无关的实数形式的解. 函数y 1e (a +ib )x 和y 2e (aib )x都是方程的解 而由欧拉公式得y 1e (a +ib )x e x (cos x i sin x ) y 2e (aib )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x)(21sin 21y y ix e x -=βα故e axcos bx 、y 2=e axsin bx 也是方程解.可以验证,y 1=e axcos bx 、y 2=e axsin bx 是方程的线性无关解. 因此方程的通解为y =e ax (C 1cos bx +C 2sin bx ).求二阶常系数齐次线性微分方程y +py+qy =0的通解的步调为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的分歧情况,写出微分方程的通解.例1 求微分方程y-2y-3y =0的通解.解所给微分方程的特征方程为r 2-2r -3=0,即(r 1)(r 3)0其根r 1=-1,r 2=3是两个不相等的实根,因此所求通解为y =C 1e -x +C 2e 3x .例 2 求方程y+2y+y=0知足初始条件y|x=0=4、y|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0,即(r1)20其根r1=r2=1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e-x.将上式对x求导,得y=(C2-4-C2x)e-x.再把条件y|x=0=-2代入上式,得C2=2.于是所求特解为x=(4+2x)e-x.例 3 求微分方程y-2y+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0特征方程的根为r1=12i r2=12i是一对共轭复根因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n-1)+p2 y(n-2) ++p n-1y+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,,p n-1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D及微分算子的n次多项式L(D)=D n+p1D n-1+p2 D n-2 ++p n-1D+p n则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 ++p n-1D+p n)y=0或L(D)y0注D叫做微分算子D0y y D y y D2y y D3y y D n yy(n)分析令y e rx则L(D)y L(D)e rx(r n+p1r n-1+p2 r n-2 ++p n-1r+p n)e rx=L(r)e rx 因此如果r是多项式L(r)的根则y e rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n+p1r n-1+p2 r n-2 ++p n-1r+p n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r1,2=a ib对应于两项:e ax(C1cos bx+C2sin bx);k重实根r对应于k项:e rx(C1+C2x++C k x k-1);一对k 重复根r 1,2=a ib 对应于2k 项: e ax [(C 1+C 2x ++C k x k -1)cos bx +(D 1+D 2x ++D k x k -1)sin bx ].例4 求方程y (4)-2y +5y =0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0,即r 2(r 2-2r +5)=0,它的根是r 1=r 2=0和r 3,4=12i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+b 4y =0的通解,其中b 0.解 这里的特征方程为r 4+b 4=0.它的根为)1(22,1i r ±=β,)1(24,3i r ±-=β.因此所给微分方程的通解为)2sin2cos(212x C x C ey xβββ+=)2sin2cos(432x C x C exβββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程:方程y +py +qy =f (x )称为二阶常系数非齐次线性微分方程,其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程自己的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f(x)为两种特殊形式时,方程的特解的求法:一、f(x)=P m(x)e lx型当f(x)=P m(x)e lx时,可以猜测,方程的特解也应具有这种形式.因此,设特解形式为y*=Q(x)e lx,将其代入方程,得等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).(1)如果l不是特征方程r2+pr+q=0 的根,则l2+pl+q0.要使上式成立,Q(x)应设为m次多项式:Q m(x)=b0x m+b1x m-1++b m-1x+b m,通过比较等式双方同次项系数,可确定b0,b1,,b m,并得所求特解y*=Q m(x)e lx.(2)如果l是特征方程r2+pr+q=0 的单根,则l2+pl+q=0,但2l+p0,要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立,Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1++b m-1x+b m,通过比较等式双方同次项系数,可确定b0,b1,,b m,并得所求特解y*=xQ m(x)e lx.(3)如果l是特征方程r2+pr+q=0的二重根,则l2+pl+q=0,2l+p=0,要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立,Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1++b m-1x+b m,通过比较等式双方同次项系数,可确定b0,b1,,b m,并得所求特解y*=x2Q m(x)e lx.综上所述,我们有如下结论:如果f(x)=P m(x)e lx,则二阶常系数非齐次线性微分方程y+py+qy=f(x)有形如y*=x k Q m(x)e lx的特解,其中Q m(x)是与P m(x)同次的多项式,而k按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1求微分方程y-2y-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程,且函数f(x)是P m(x)e lx型(其中P m(x)=3x+1,l=0).与所给方程对应的齐次方程为y-2y-3y=0,它的特征方程为r2-2r-3=0.由于这里l =0不是特征方程的根,所以应设特解为y *=b 0x +b 1.把它代入所给方程,得 -3b 0x -2b 0-3b 1=3x +1,比较两头x 同次幂的系数,得⎩⎨⎧=--=-13233100b b b -3b 0=3,-2b 0-3b 1=1.由此求得b 0=-1,311=b .于是求得所给方程的一个特解为31*+-=x y .例2求微分方程y -5y +6y =xe 2x的通解.解所给方程是二阶常系数非齐次线性微分方程,且f (x )是P m (x )e lx 型(其中P m (x )=x ,l =2).与所给方程对应的齐次方程为y -5y +6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2,r 2=3.于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于l =2是特征方程的单根,所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程,得-2b 0x +2b 0-b 1=x .比较两头x 同次幂的系数,得⎩⎨⎧=-=-0212100b b b -2b 0=1,2b 0-b 1=0.由此求得210-=b ,b 1=-1.于是求得所给方程的一个特解为x e x x y 2)121(*--=.从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=.提示y *=x (b 0x +b 1)e 2x (b 0x 2+b 1x )e 2x[(b 0x 2+b 1x )e 2x][(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2xy *5y *6y *[(b 0x 2+b 1x )e 2x]5[(b 0x 2+b 1x )e 2x]6[(b 0x 2+b 1x )e 2x] [2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e2x5[(2b 0x +b 1)(b 0x 2+b 1x )×2]e 2x 6(b 0x 2+b 1x )e 2x[2b 04(2b 0x b 1)5(2b 0x +b 1)]e2x[2b 0x +2b 0b 1]e2x方程y+py+qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解形式应用欧拉公式可得e lx [P l (x )cos wx +P n (x )sin wx ]x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=,)(21)(i P P x P n l +=. 而m =max{l ,n }. 设方程y +py +qy =P (x )e (l +iw )x 的特解为y 1*=x k Q m (x )e (l +iw )x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解,其中k 按liw 不是特征方程的根或是特征方程的根依次取0或1.于是方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解为 =x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ].综上所述,我们有如下结论:如果f (x )=e lx[P l (x )cos wx +P n (x )sin wx ],则二阶常系数非齐次线性微分方程 y+py +qy =f (x )的特解可设为 y *=x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ],其中R (1)m (x )、R (2)m (x )是m 次多项式,m =max{l ,n },而k 按l +i w(或l -iw )不是特征方程的根或是特征方程的单根依次取0或1. 例3求微分方程y +y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e lx [P l (x )cos wx +P n (x )sin wx ]型(其中l =0,w =2,P l (x )=x ,P n (x )=0).与所给方程对应的齐次方程为y +y =0,它的特征方程为r 2+1=0.由于这里l +iw =2i 不是特征方程的根,所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程,得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两头同类项的系数,得31-=a ,b =0,c =0,94=d .于是求得一个特解为x x x y 2sin 942cos 31*+-=.提示 y *=(ax +b )cos2x +(cx +d )sin2x .y *=a cos2x 2(ax +b )sin2x +c sin2x +2(cx +d )cos2x (2cx +a 2d )cos2x +(2ax 2b c )sin2xy *=2c cos2x 2(2cx +a 2d )sin2x 2a sin2x +2(2ax 2b c )cos2x (4ax 4b 4c )cos2x (4cx 4a 4d )sin2x y *y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x 由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a ,b =0,c =0,94=d .。

二阶微分方程解

二阶微分方程解

二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。

在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。

二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。

求解过程如下:1. 特征方程:首先求出微分方程的特征方程。

特征方程为:r^2 - pr - q = 0其中,p、q为常数。

2. 求解特征方程:求出特征方程的两个根r1和r2。

可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。

4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。

举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。

需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。

非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。

此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。

二阶微分方程求解的技巧

二阶微分方程求解的技巧

二阶微分方程求解的技巧一阶微分方程只含有一阶导数,而二阶微分方程含有二阶导数。

求解二阶微分方程的技巧较为复杂,需要利用一些特定的方法和技巧。

下面我们将介绍几种常用的技巧,帮助你求解二阶微分方程。

1.齐次线性方程法:如果二阶微分方程可以写为形式:$ay''+by'+cy=0$,其中a、b、c是常数,则称之为齐次线性方程。

我们可以从中解得一个求解公式:$y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$,其中$C_1$和$C_2$是任意常数,$\lambda_1$和$\lambda_2$是方程的特征根。

为了寻找特征根,我们需要解决特征方程:$a\lambda^2+b\lambda+c=0$。

如果特征方程有两个相异的实根$\lambda_1$和$\lambda_2$,则方程的解是通解。

如果它们是重根,则方程的解是通解的一部分。

如果特征方程有两个虚根,则方程的解由实部和虚部组成。

2.变量可分离法:如果方程可以写为形式:$y''=f(x)g(y')$,其中f和g是一元函数,我们可以利用变量可分离法进行求解。

首先,设$y'=p$,则$y''=p\frac{dp}{dx}$。

将这些代入原方程,我们得到:$p\frac{dp}{dx}=f(x)g(p)$。

将上式变换为分离变量:$\frac{dp}{g(p)}=f(x)dx$。

然后,我们对两边进行积分,并解出p关于x的函数,最后再通过积分得到y关于x的函数。

3.常数变易法:如果方程可以写为形式:$ay''+by'+cy=f(x)$,其中f(x)是已知的函数,我们可以使用常数变易法进行求解。

首先,我们猜测一个特解$y^*$,并将其带入方程中。

然后我们将$y^*$代入方程,并解出常数。

我们将这些解代入齐次线性方程的通解中,并得到方程的通解。

4.欧拉方程法:如果方程是二阶常系数线性方程,并可以写为形式:$ax^2y''+bxy'+cy=0$,我们可以使用欧拉方程法进行求解。

二阶阶微分方程的解法及应用

二阶阶微分方程的解法及应用
f (0) 0 ,
f (0) 1
思考: 设 ( x) e x
x
x 0
( x u ) d u, (0) 0,
提示: 对积分换元 , 令 t x u , 则有
解初值问题: 答案:
机动
目录
上页
下页
返回
结束
例3. 设函数
数, 且
内具有连续二阶导
(1) 试将 x=x( y) 所满足的微分方程 2 d x dx 3 ( y sin x)( ) 0 2 dy dy
机动 目录 上页 下页 返回 结束
(7) y 2 y 5 y sin 2 x
特征根: 齐次方程通解: Y e x ( C1 cos 2 x C2 sin 2 x ) 令非齐次方程特解为 代入方程可得 A 117 ,
原方程通解为 y e x ( C1 cos 2 x C2 sin 2 x )
dp f ( x, p ) dx
机动
目录
上页
下页
返回
结束
2. 二阶线性微分方程的解法 齐次 • 常系数情形 非齐次 • 欧拉方程
代数法
x 2 y p x y q y f (x) d t 令 x e ,D dt D( D 1) pD q y f (et )
o x x
F x g (20 x) g 2( x 10) g
由牛顿第二定律, 得
d x 20 2 2( x 10) g dt dx 0 x t 0 12 , d t t 0
机动 目录 上页 下页 返回
2
结束
微分方程通解:
由初始条件得 故定解问题的解为

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
1
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x

Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,

二阶微分方程解法

二阶微分方程解法

二阶微分方程解法
1.二阶常系数齐次线性微分方程解法
一般形式:y”+py’+qy=0,特征方程r2+pr+q=0。

特征方程
r2+pr+q=0的两根为r1,r2微分方程y”+py’+qy=0的通解。

两个不相等的实根r1,r2,y=C1er1x+C2er2x。

两个相等的实根r1=r2,y=(C1+C2x)er1x。

一对共轭复根r1=α+iβ,r2=α-iβ,
y=eαx(C1cosβx+C2sinβx)。

2.二阶常系数非齐次线性微分方程解法
一般形式:y”+py’+qy=f(x)。

先求y”+py’+qy=0的通解
y0(x),再求y”+py’+qy=f(x)的一个特解y*(x)。


y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解。


y”+py’+qy=f(x)特解的方法:
①f(x)=Pm(x)eλx型。

令y*=xkQm(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Qm(x)的m+1个系数。

②f(x)=eλx[Pl(x)cosωx+Pn(x)sinωx]型。

令y*=xkeλx [Qm(x)cosωx+Rm(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Qm(x)和Rm(x)的m+1个系数。

(整理)二阶常系数线性微分方程的解法版.

(整理)二阶常系数线性微分方程的解法版.

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rxe y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数. 特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααt a n c o s s i n 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为te t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4) 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数xe λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5) 以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得230-=b 故所求特解为 x xe y 223--=* . 例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去xe 得 126-=+x b ax比较系数,得61=a 21-=b 于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=*例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为 0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=***代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x s i n 51c o s 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
2.2 二阶常系数线性微分方程 的解法
数学系 贺 丹
2.2 二阶常系数线性微分方程的解法
若二阶线性微分方程为 ay by cy f ( x) ,其中 a, b, c 均为常数,则称该方程为二阶常系数线性微分方程。
二阶常系数线性齐次方程的解法
ay by cy 0 ,

猜想方程①具有 y erx 形式的解,其中 r 为待定常数,
方程②叫做方程①的特征方程。
按特征方程的两个根 r1, r2 的三种可能情况: 1. r1 r2 是两个不相等的实根; 2. r1 r2 是两个相等的实根;
3. r1 i , r2 i 是一对共轭复数。
3
2.2 二阶常系数线性微分方程的解法
1 . 特 征 方 程 的 根 是 两 个 不 相 等 实 数 的 情 形 。
∵函数 y1 和 y2 都是方程①的解,且它们是线性无关的,
∴ 方程①的通解为 y C1 y1 C2 y2 ,即
y e x (C 1 co x s C 2 six n )
(其中 , 为特征方程的复根的实部及虚部)。
7
2.2 二阶常系数线性微分方程的解法
小结:求二阶常系数线性齐次方程通解的步骤
高阶常系数线性齐次方程的解法 n 阶常系数线性齐次方程为
a0 y(n) a1 y(n1) an1 y an y 0 , ③
其特征方程为 a0r n a1r n1 an1r an 0 . ④
方程②是一个一元 n 次方程, 有 n 个根。类似二阶常系
数线性齐次方程,相应地可得到方程①的 n 个线性无关
∵ erx 0 , 2ar b 0, ar 2 br c 0 , ∴ u( x) 0 ,
取 u( x) 0 的一个解 u( x) x ,则 y2 xerx 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如(1))(x f qy y p y =+'+''的方程称为二阶常系数线性微分方程.其中、均为实数,为已知的p q )(x f 连续函数.如果,则方程式 (1)变成0)(≡x f(2)0=+'+''qy y p y 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程 1.解的叠加性定理1 如果函数与是式(2)的两个解, 则也是1y 2y 2211y C y C y +=式(2)的解,其中是任意常数.21,C C 证明 因为与是方程(2)的解,所以有 1y 2y 0111=+'+''qy y p y0222=+'+''qy y p y 将代入方程(2)的左边,得 2211y C y C y += )()()(221122112211y C y C q y C y C p y C y C ++'+'+''+''= 0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以是方程(2)的解. 2211y C y C y +=定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有两个任意常数,但它不一定是方程式(2)的21,C C 通解.2.线性相关、线性无关的概念设为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n y y y 使得当在该区间内有, 则称这,,,,21n k k k 02211≡+++n n y k y k y k n 个函数在区间I 内线性相关,否则称线性无关.例如 在实数范围内是线性相关的,因为 x x 22sin ,cos ,10sin cos 122≡--x x 又如在任何区间(a,b)内是线性无关的,因为在该区间内要使2,,1x x02321≡++x k x k k 必须.0321===k k k 对两个函数的情形,若常数, 则,线性相关,若常数, 则=21y y 1y 2y ≠21y y,线性无关.1y 2y 3.二阶常系数齐次微分方程的解法定理 2 如果与是方程式(2)的两个线性无关的特解,则1y 2y 为任意常数)是方程式(2)的通解.212211,(C C y C y C y +=例如, 是二阶齐次线性方程,是它的0=+''y y x y x y cos ,sin 21==两个解,且常数,即,线性无关, 所以 ≠=x y y tan 211y 2yx C x C y C y C y cos sin 212211+=+=( 是任意常数)是方程的通解. 21,C C 0=+''y y由于指数函数(r 为常数)和它的各阶导数都只差一个常数因子,rxe y =根据指数函数的这个特点,我们用来试着看能否选取适当的常数,rxe y =r 使满足方程(2).rxe y =将求导,得rxe y =rx rx e r y re y 2,=''='把代入方程(2),得 y y y ''',,0)(2=++rx e q pr r 因为, 所以只有(3)0≠rxe02=++q pr r 只要满足方程式(3),就是方程式(2)的解.r rxe y =我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中的系数及常数项恰好依次是方程(2)的系数.r r ,2y y y ,,''' 特征方程(3)的两个根为 , 因此方程式(2)的通解2422,1qp p r -±-=有下列三种不同的情形.(1) 当时,是两个不相等的实根.042>-q p 21,r r,2421q p p r -+-=2422qp p r ---=是方程(2)的两个特解,并且常数,即x r x r e y e y 2121,==≠=-x r r e y y )(2121与线性无关.根据定理2,得方程(2)的通解为1y 2y x r x r e C e C y 2121+=(2) 当时, 是两个相等的实根.042=-q p 21,r r ,这时只能得到方程(2)的一个特解,还需求出另221p r r -==xr e y 11=一个解,且常数,设, 即 2y ≠12y y )(12x u y y=)(12x u e y x r =. )2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='将代入方程(2), 得 222,,y y y '''[]0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r 由于, 所以 01≠xr e 0)()2(1211=+++'++''u q pr r u p r u 因为是特征方程(3)的二重根, 所以1r02,01121=+=++p r q pr r 从而有0=''u 因为我们只需一个不为常数的解,不妨取,可得到方程(2)的另一x u =个解.x r xe y 12=那么,方程(2)的通解为x r x r xe C e C y 1121+=即.x r e x C C y 1)(21+=(3) 当时,特征方程(3)有一对共轭复根042<-q p ()βαβαi r i r -=+=21,0≠β于是x i x i e y e y )(2)(1,βαβα-+==利用欧拉公式 把改写为x i x e ixsin cos +=21,y y )sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x x i ββαβαβα-=⋅==--之间成共轭关系,取21,y y =,-1y x e y y x βαcos )(2121=+x e y y iy x βαsin )(2121_2=-=方程(2)的解具有叠加性,所以,还是方程(2)的解,并且-1y -2y 常数,所以方程(2)的通解为 ≠==--x xe x e y y x x βββααtan cos sin 12)sin cos (21x C x C e y x ββα+= 综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r (2)求特征方程的两个根21,r r (3)根据的不同情形,按下表写出方程(2)的通解. 21,r r 特征方程的02=++q pr r 两个根21,r r 方程 的通0=+'+''qy y p y 解两个不相等的实根 21r r ≠xr xr eC e C y 2121+=两个相等的实根 21r r = xr e x C C y 1)(21+=一对共轭复根βαi r ±=2,1)sin cos (21x C x C e y x ββα+=例1求方程的通解. 052=+'+''y y y 解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为.)2sin 2cos (21x C x C e y x +=-例2 求方程满足初始条件0222=++S dt dSdtS d 2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r 通解为t e t C C S -+=)(21将初始条件代入,得 ,于是40==t S41=C ,对其求导得t e t C S -+=)4(2t e t C C S ---=')4(22将初始条件代入上式,得20-='=t S22=C 所求特解为t e t S -+=)24(例3求方程的通解. 032=-'+''y y y 解 所给方程的特征方程为 0322=-+r r 其根为1,321=-=r r 所以原方程的通解为x x e C e C y 231+=-二、二阶常系数非齐次方程的解法 1.解的结构定理3 设是方程(1)的一个特解,是式(1)所对应的齐次方程式(2)*y Y 的通解,则是方程式(1)的通解.*+=y Y y 证明 把代入方程(1)的左端:*+=y Y y)()()(*++*'+'+*''+''y Y q y Y p y Y = )()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+使方程(1)的两端恒等,所以是方程(1)的解.*+=y Y y *+=y Y y 定理4 设二阶非齐次线性方程(1)的右端是几个函数之和,如 )(x f(4))()(21x f x f qy y p y +=+'+''而与分别是方程 *1y *2y )(1x f qy y p y =+'+''与)(2x f qy y p y =+'+''的特解,那么就是方程(4)的特解, 非齐次线性方程(1)的特解有时可**+21y y 用上述定理来帮助求出.2.型的解法)()(x P e x f m xλ=,其中为常数,是关于的一个次多项式.)()(x P e x f m x λ=λ)(x P m x m方程(1)的右端是多项式与指数函数乘积的导数仍为同)(x f )(x P m xe λ一类型函数,因此方程(1)的特解可能为,其中是某个多xe x Q y λ)(=*)(x Q 项式函数. 把x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去,得 xe λ(5))()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 以下分三种不同的情形,分别讨论函数的确定方法:)(x Q(1) 若不是方程式(2)的特征方程的根, 即λ02=++q pr r ,要使式(5)的两端恒等,可令为另一个次多项式02≠++q p λλ)(x Q m :)(x Q mm m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于同次幂的系数,就得到关于未知数x m b b b ,,,10 的个方程.联立解方程组可以确定出.从而得到所求1+m ),,1,0(m i b i =方程的特解为x m e x Q y λ)(=*(2)若是特征方程的单根, 即λ02=++q pr r ,要使式(5)成立, 则必须要是次多02,02≠+=++p q p λλλ)(x Q 'm 项式函数,于是令)()(x xQ x Q m =用同样的方法来确定的系数. )(x Q m ),,1,0(m i b i = (3) 若是特征方程的重根,即λ02=++q pr r ,02=++q p λλ.02=+p λ要使(5)式成立,则必须是一个次多项式,可令)(x Q ''m)()(2x Q x x Q m =用同样的方法来确定的系数.)(x Q m 综上所述,若方程式(1)中的,则式(1)的特解为xm e x P x f λ)()(=x m k e x Q x y λ)(=*其中是与同次多项式,按不是特征方程的根,是特征方程)(x Q m )(x P m k λ的单根或是特征方程的重根依次取0,1或2.例4 求方程的一个特解.xey y 232-='+''解 是型, 且)(x f xm e x p λ)(2,3)(-==λx P m 对应齐次方程的特征方程为 ,特征根根为.022=+r r 2,021-==r r =-2是特征方程的单根, 令λ,代入原方程解得x e xb y 20-=*230-=b 故所求特解为.x xe y 223--=*例5 求方程的通解. xe x y y )1(2-='-''解 先求对应齐次方程的通解. 02=+'-''y y y 特征方程为 , 0122=+-r r 121==r r 齐次方程的通解为 .x e x C C Y )(21+= 再求所给方程的特解1)(,1-==x x P m λ由于是特征方程的二重根,所以1=λx e b ax x y )(2+=*把它代入所给方程,并约去得xe126-=+x b ax 比较系数,得61=a 21-=b 于是x e x x y )216(2-=*所给方程的通解为x e x x x C C y y y )6121(3221+-+=+=*3.型的解法x B x A x f ϖϖsin cos )(+=其中、、均为常数.,sin cos )(x B x A x f ωω+=A B ω此时,方程式(1)成为(7)x B x A q y p y ωωsin cos +=+'+''这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解也*y 应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中为待定常数.为一个整数.b a ,k 当不是特征方程的根, 取0; ω±i 02=++q pr r k 当不是特征方程的根, 取1; ω±i 02=++q pr r k 例6 求方程的一个特解. x y y y sin 432=-'+''解,不是特征方程为的根,.1=ωω±i i ±=0322=-+r r 0=k 因此原方程的特解形式为x b x a y sin cos +=*于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将代入原方程,得*''*'*y y y ,,⎩⎨⎧=--=+-442024b a b a 解得54,52-=-=b a 原方程的特解为:x x y sin 54cos 52--=*例7 求方程的通解.x e y y y xsin 32+=-'-''解 先求对应的齐次方程的通解.对应的齐次方程的特征方程为Y0322=--r r3,121=-=r rx x e C e C Y 321+=- 再求非齐次方程的一个特解.*y 由于,根据定理4,分别求出方程对应的右端项为x e x x f -+=2cos 5)(的特解、,则 是原方程的一,)(1x e x f =x x f sin )(2=*1y *2y **+=*21y y y 个特解.由于,均不是特征方程的根,故特解为1=λω±i i ±= )sin cos (21x c x b ae y y y x ++=+=***代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b 解之得 . 51,101,41-==-=c b a 于是所给方程的一个特解为x x e y x sin 51cos 10141-+-=*所以所求方程的通解为 . x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*。

相关文档
最新文档