中学数学中的分形几何.

中学数学中的分形几何.
中学数学中的分形几何.

中学数学中的分形几何

广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502)

桂林市第十八中学数学组蒋雪祥(541004)

内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。

关键字:容量维 Sierpinski三角毯 Koch曲线

Koch岛 Sierpinski-Menger海绵

1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。笔者试对此进行一点探讨,以抛砖引玉尔。

一、规则图形的容量维

为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。维数是描述客体的重要几何参量。也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。这种维数称为拓扑维,用字母"d"表示。维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。

一正方形,每边长×2,得到一个大的正方形,它等于4个原来大小的正方形。一立方体,每边长×2,得到一个大的立方体,它等于8个原来大小的立方体。由此可以推得,一个d维的几何对象,它的每一个独立方向都增长L倍,结果得到N

个原来的对象,这三者的关系为d L N

=,两边取自然对数,得维数

ln

ln

N

d

L

=。在

本例的正方体中,如果是L=2,则必有N=8,于是就有

ln ln8

3

ln ln2

N

d

L

===,即立方

体是三维的。将上式的定义加以推广,就得到d不必一定是整数,它可以是分数,我们就把这样推广定义的维数称为分维(fractal),用字母"D" 表示。对于规则的几何对象,可以使用统一的长度变换倍数L。而对于不规整的复杂体,如海岸线的长度,总长度与测量单位有关,为了得到精确的测量,不是把尺寸放大L 倍,而是测量单位缩小为原来的ε倍,L=1/ε,测量长度次数N随ε减小而增

大,记为N(ε),这时分维定义为:

ln()

(0)

1

ln

N

D

ε

ε

ε

=→。上式定义的分维称为

容量维D,又称为柯尔莫哥洛夫(A.N.Kolmogorov)容量维。可以证明,拓扑维d和分维D满足如下关系:d≤D式中取等号是对普通规则几何对象而言的。容量维为非整数的典型的例子是康托集合。

如图示,考虑一闭合线段[0,1],将其分成三等分,舍弃中段,剩下的两段

再分别三等分和舍弃中段,如此继续下去,最后剩下的点的总体就是康托集合。它是一种处处稀疏的对象(自相似结构),其拓扑维d=0,现在来求它的分维D。

当ε=1/3,N=2;当ε=1/9,N=4;...亦即当

1

()

3

n

ε=时,N=2n。于是可得康托

集合的容量维为

ln()ln2ln2

0.631

11ln3

ln ln()

1

3

n

n

N

D

ε

ε

====由此可见康托集合满足关系

d≤D。奇怪吸引子的维数从一个侧面反映了说明此吸引子所必须的信息量,它是该系统中最重要和最主要的信息,对它的细致研究将有利于我们抓住问题的主要方面,更根本地分析和认识问题。

二、中学数学分形问题与分形几何学问题的例子

例1、将一个三角形的三边中点连结,挖去所得的小三角形;再将剩下的图形的各边的中点连结,各得一个三角形,挖去所得三角形;如此继续下去,第七次总共可得多少个三角形(例如第二次挖去后,总共有13个三角形)?

第一次(4个)第二次(13个)第三次(40个)这个问题就是分形几何学中所说的Sierpinski三角毯,在我们竞赛中是一个

数列问题,而在分形几何中,它是一个规则的分形。其中白色的三角形共有3n(n 为第n次挖取)。当然在分形几何中,所研究的不是三角形的个数,而是利用下述公式从测度的角度把规则图形的维度D确定为

ln()

(0)

1

ln

N

D

ε

ε

ε

=→。这里的ε是测量单元的尺寸,()

Nε是测度得到的规则图形的测量单元数。本例中()

Nε=3n,ε=

1

()

2

n于是得到此分形图的容量维为

ln3ln3

1.585

1ln2

ln

1

()

2

n

n

D===例2、如图,挖去线段中间的

1

3

后,加上等边三角形的二边,形成四段等长

线段组成的折线,如此无限地进行下去,形成处处连续、但处处不可微的Koch 曲线。

在数学竞赛中,本问题是要求折线的条数。第

n次变换后有4n条。但在分形几何中,用上述的公

ln()

(0)

1

ln

N

D

ε

ε

ε

=→可以计算此分形图的容量维

ln4ln4

1.262

1ln3

ln

1

()

3

n

n

D===

例3、如图,这是著名的n级三分Koch岛,在我们的问题中,一是可能问及的问题是,每次三分后,边长如何变化;二是当其

进行无限次等分后,其面积是多少。前者是数列通

项问题,后者是数列与极限问题。在分形几何中,

其容量维仍为

ln4ln4

1.262

1ln3

ln

1

()

3

n

n

D===。

例4、正方体27等分(沿三条棱三等分)成27个小正方体,挖去中心和6个面中心位置上总共6个小正方体,留下20个小正方体,如此无限进行,试求当进行到第n次时,有多少个小正方体。其容量维为多大?

此为分形几何中著名的Sierpinski-Menger海绵,其中正方体有20n个,其容

量维为

ln20ln20

2.777

1ln3

ln

1

()

3

n

n

D===

上述几个例子说明了分形几何已经成为中学数学的一个问题源。这只是分形几何中与中学学习中最能让我们理解的几个问题,还有许多问题需要我们许多同行去研究挖掘。不难看出,这些问题还只是处于其最常见的变形为数列或几何问题,其基本数学思想还没有进入中学。某些地区已经将分形几何作为中学生学习内容,可以预见,分形几何不仅在内容上走进中学,其根本的思想也将在不久的未来进入中学课堂。学生经常问数列的一些问题是如何来的,一些立体几何问题为什么那么看起来无聊而又一再考试,这些都是应当看到和说明的。教师应当了解一点分形几何,从而拓宽自己的数学问题源,让自己的知识更加丰富,通过这些有趣的知识调动学生的学习积极性、激发学生的求知欲,这无疑是一个很好的选择。教师为学习分形几何可以参考的书有许多,笔者所阅读的书列于本文之后的参考资料。

参考资料:Thomas L.Pirnot 著Mathematics All Around 机械工业出版社,2003年1月第1版

孙霞等编著分形原理及其应用中国科技大学出版社,2003年10月第1版

[加拿大]B.H.Kaye 著徐新阳等译分形漫步东北大学出版社,1994年12月第1版

中学数学中的分形几何

中学数学中的分形几何 广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502) 桂林市第十八中学数学组蒋雪祥(541004) 内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。 关键字:容量维Sierpinski三角毯Koch曲线 Koch岛Sierpinski-Menger海绵 1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。笔者试对此进行一点探讨,以抛砖引玉尔。 一、规则图形的容量维 为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。维数是描述客体的重要几何参量。也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。这种维数称为拓扑维,用字母"d"表示。维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。一正方形,每边长×2,得到一个大的正方形,它等于4个原来大小的正方形。一立方体,每边长×2,得到一个大的立方体,它等于8个原来大小的立方体。由此可以推得,一个d维的几何对象,它的每一个独立方向都增长L倍,结果得到N个原来的对象,这三者的关系为,两边取自然对数,得维数。在本例的正方体中,如果是L=2,则必有N=8,于是就有,即立方体是三维的。将上式的定义加以推广,就得到d不必一定是整数,它可以是分数,我们就把这样推广定义的维数称为分维(fractal),用字母"" 表示。对于规则的几何对象,可以使用统一的长度变换倍数L。而对于不规整的复杂体,如海岸线的长度,总长度与测量单位有关,为了得到精确的测量,不是把尺寸放大L倍,而是测量单位缩小为原来的ε倍,L=1/ε,测量长度次数N随ε减小而增大,记为N(ε),这时分维定义为:。上式定义的分维称为容量维,又称为柯尔莫哥洛夫(A.N.Kolmogorov)容量维。可以证明,拓扑维d和分维满足如下关系:d≤式中取等号是对普通规则几何对象而言的。容量维为非整数的典型的例子是康托集合。 如图示,考虑一闭合线段[0,1],将其分成三等分,舍弃中段,剩下的两段 再分别三等分和舍弃中段,如此继续下去,最后剩下的点的总体就是康托集合。它是一种处处稀疏的对象(自相似结构),其拓扑维d=0,现在来求它的分维。当ε=1/3,N=2;当ε =1/9,N=4;...亦即当时,N=。于是可得康托集合的容量维为由此可见康托集合满足关系d ≤D。奇怪吸引子的维数从一个侧面反映了说明此吸引子所必须的信息量,它是该系统中最重要和最主要的信息,对它的细致研究将有利于我们抓住问题的主要方面,更根本地分析和认识问题。 二、中学数学分形问题与分形几何学问题的例子 例1、将一个三角形的三边中点连结,挖去所得的小三角形;再将剩下的图形的各边的中点

分形几何

分形几何 一、欧氏几何的局限性 自公元前3世纪欧氏几何基本形成至今已有2000多年。尽管此间从数学的内在发展过程中产生了射影几何、微分几何等多种几何学,但与其他几何学相比,人们在生产、实践及科学研究中更多涉及到的是欧氏几何。欧氏几何的重要性可以从人类的文明史中得到证明。欧氏几何主要是基于中小尺度上,点线、面之间的关系.这种观念与特定时期人类的实践。认识水平是相适应的,数学的发展历史告诉我们,有什么样的认识水平就有什么样的几何学。当人们全神贯注于机械运动时,头脑中的囹象多是一些囫锥曲线、线段组合,受认识主。客体的限制,欧氏几何具有很强的“人为”特征。这样说并非要否定欧氏几何的辉煌历史,只是我们应当认识到欧氏几何是人们认识、把握客观世界的一种工具、但不是唯一的工具。 进入20世纪以后,科学的发展极为迅速。特别是~~战以后,大量的新理论、新技术以及新的研究领域不断涌现,同以往相比,人们对物质世界以及人类社会的看法有了很大的不同。其结果是,有些研究对象已经很难用欧氏几何来描述了,如对植物形态的描述,对晶体裂痕的研究,等等。 美国数学家B, Mandelbrot曾出这样一个著名的问题:英格兰的海岸线到底有多长?这个问题在数学上可以理解为:用折线段拟合任意不规则的连续曲线是否一定有效?这个问题的提出实际上是对以欧氏几何为核心的传统几何的挑战,此外,在湍流的研究。自然画面的描述等方面,人们发现传统几何依然是无能为力的。人类认识领域的开拓呼唤产生一种新的能够更好地描述自然图形的几何学,在此,不妨称其为自然几何。 二、分形的产生 一些数学家在深入研究实、复分析过程中讨论了一类很特殊的集合(图形),如Cantor集、Peano曲线、KoCh曲线等,这些在连续观念下的“病态”集合往往是以反例的形式出现在不同的场合。当时它们多被用于讨论定理条件的强弱性,其更深一层意义并没有被大多数人所认识。 1975年,Mandelbrot在其《自然界中的分形几何》一书中引入了分形(fractal)这一概念。从字面意义上讲, fractal是碎块、碎片的意思,然而这并不能概括Mandelbrot的分形概念,尽管目前还没有一个让各方都满意的分形定义,但在数学上大家都认为分形有以下凡个特点: (1)具有无限精细的结构; (2)比例自相似性; (3)一般它的分数维大子它的拓扑维数; (4)可以由非常简单的方法定义,并由递 归、迭代产生等。 (1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息.第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。图1中五条曲线自下而上,按图中所示的规律逼近Koch曲线。Koch曲线处处连续,但处处不可导,其长度为无穷大,以欧氏几何的眼光来看,这种曲线是被打入另类的,从逼近过程中每一条曲线的形态可以看出分形四条性质的种种表现。以分形的观念来考察前面提到的“病态”曲线,可以看出它们不过是各种分形。 我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何作一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系.其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范日主要是人造的物体。而分形的历史只有20来年,它由递归、迭代生成,主要

高中数学高频考点专题复习之以分形为背景的数列问题的研究与拓展

以分形为背景的数列问题的研究与拓展 【课本溯源】下图中的三角形称为希尔宾斯基三角形. 图中从左向右的四个三角形,着色三角形的个数依次构成数列{a n }的前4项,写出数列{a n }的一个通项公式,并作出它的图象. 这一问题的背景是分形几何,分形几何的一个重要的特点是自相似性,可通俗地理解为适当地放大或缩小图形的几何尺寸,整个结构并不改变. 分形几何学是美籍法国数学家伯努瓦·B?曼德尔布罗特(B enoit B.M andelbrot )在20世纪70年代创立的一门新学科,与欧氏几何学在研究对象等诸多方面迥然不同. 它的创立,为描述自然界和社会系统中大量存在的不规则图形和现象提供了相应的思想方法,为解决传统科学众多领域的难题提出了全新的思路. 这门充满活力的新学科与数列结合起来,不仅对传统的数列题作了提升,又能发展我们的实践能力,拓展为我们的几何思维. 课本溯源中的问题解答:由题意分析知:12341,3,9,27a a a a ====,则数列{}n a 是首项为1,公比为3的等比数列,所以13n n a -=. 作图略. 本题通过观察即不难发现着色三角形的个数依次数列{a n }成等比数列,而在一些综合性比较强的数列问题中,通项公式的求解往往是解决数列难题的瓶颈,如何熟练掌握常用的求通项公式的方法如累积法、累加法等,是我们必须思考的问题. 下面我们再探究几个以分形为背景的数列问题. 【探究拓展】 探究1:如图,一条螺旋线是用以下方法画成:ABC △是边长为1的正三角形, 曲线1CA 、12A A 、23A A 是分别以A 、B 、C 为圆心,AC 、1BA 、2CA 为半径画的弧,曲线123CA A A 称为螺旋线旋转一圈. 然后又以A 为圆心,3AA 为半径画弧,…,这样画到第n 圈,则所得螺旋线的长度n l = . (要求用含,n π的代数式表示即可) 【解】由图可知12(123)3l π=++,22 (123456)3 l π=+++++,……, 22 (1233)(3)3 n l n n n ππ=+++ +=+. 【评注】由弧长公式可知l r α=,由第1圈、第2圈的弧长不完全归纳出第n 圈的画出,体现了由特殊到一般的思想. 探究2:下图是一个树形图的生长过程,依据图中所示的生长规律,第16行的实心圆点的个数是 .

分形几何的应用

分形几何的应用 分形几何是法国数学家芒德布罗在1975年将具有分数维数的图形,例如科赫曲线,称为分形,建立了以这类自然界和非线性系统中出现的不光滑和不规则的几何形体为对象的数学新分支。分形几何作为一门新兴的学科已经开始逐渐发展,它的应用遍及哲学、数学、物理学、化学、地质学、水文学、气象学、天文学、地震科学、人口学、情报学、经济学、管理科学,甚至在电影、音乐、美术、书法等。下面介绍一些分形几何在当代社会中的应用。 在生命科学的研究中,科学家发现,细胞的分裂正是生物体分形的基础以及近几年来的研究表明,蛋白质的分子链具有分形特征,这就为揭开生命之谜提供了新的思维方法;而且分形在中医治病的病理中起着重要的作用,因为分形理论从人体分形着手进行分析,得出令人耳目一新的结论,以针灸为例,一个穴位是人体某一部分的缩影,是一个分形元,当人体的某一器官或部位有病时,就必然要在相应的穴位上表现出来,在穴位上产生对痛刺激敏感,皮肤电阻降低等病理生理反映,因此,对特定穴位施加刺激,就会产生治疗效果,这就是中医治病的病理分形性。 在实际工程问题中,如石油开采就可以利用分形理论进行研究则有可能大幅度地增产石油;而且分形理论为化学家深化对高分子地认识提供了有利的工具使得对凝胶形成的机理、凝胶点的确定、凝胶的生成的控制都有很好的作用。 芒德布罗经过研究不仅计算出英国西海岸线、澳大利亚海岸线、

南非海岸线、西班牙与葡萄牙的国界线的分形维数分别是1.25、1.13、1.02、1.14,还将分形应用于经济学,他测定出美国60年的棉花价格随时间变化的分形维数;在矿业应用方面,中国工程院院士谢和平教授将分形理论应用于岩石损伤力学的研究,提出了演示损伤的分形模型及演化机理;国际上的一些学者将分形应用于情报学,语言学和证券的变化进行深入的研究,得出了相应的分形维数,有了这些分形维数,专家们就可以预测出在该方面的一些结果,这有利于人类的进步。 近二十年来,国外许多大公司组织了大批科学家致力于分形的应用研究,取得了一批富有价值的成果,例如:根据分形几何原理合成了保温性能最佳的人造羽绒。分形在影视事业中也大有发展前途。20世纪80年代初,A.Fournier 将分形图形推向好莱坞影视业,致使分形在电影特技制作上大显身手,用于创作出效果奇佳的地球、宇宙中某特定地域、空间的“实景”或人世间从未有过的绚丽多彩、奇妙无比的景象。 由于分形通常是以非常简单的递归方式无穷次迭代而生成的,因此各种分形可以借助微型电子计算机编制一定的程序实现。分形的这种微机图形显示进一步帮助人们推开分形艺术宫殿的大门。 这些实例足以说明分形有强大的生命力,它对于人们认识自然界和人类社会中的某些现象的真实面貌是一个有利的数学工具。

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

分形几何学

2 分形几何学的基本概念 本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。 2.1自相似性与分形几何学 无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。

自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。它也是自然界能够实现多样性和秩序性的有机统一的基础。一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。这就是分形几何学产生的基础。

1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。 科赫曲线(Koch Curve)是分形几何学基本形体中的一个典型实例,它是由这样一种规律逐次形成的:用一根线段做为操作对象,对其三等分,把中间一段向侧面旋转60度,并增加另一段与之长度相同的线段把原来的三条线段连接为一体,这四条线段组成的形状就是第一代的科赫曲线;分别对它的每一条线段重复上述的操作,将形成第二代科赫曲线;再对其每一条线段进行上述操作,可得第三代,等等;如此迭代下去(图版2-1图4)。显然,对每一代的构成元素的同样操作决定了自相似性的代代传递,使形成的科赫曲线已经明确地具有了自然的特征。如果再进一步在操作中增加一点随机成分的话,那么所得的随机科赫曲线的自然性就更强列了。[回本章页首] 2.2维数计算:分形几何学的数学量度 既然分形几何学是一种严格的数学,那么它一定有自身的数学量度。分形几何学的数学量度是分形几何形体的维数。如前所述,分形几何形体的维数不是整数而是分数,它的计算是分形几何的创立者们在总结归纳的基础上产生的。 分形几何体的维数计算的数学推导是复杂的,也不是我们所关心的内容。但维数计算所代表的形象意义却值得我们关注。如前所述,分形几何形体的本质属性是自相似性,而这一自相似性一定是在同一形体的不同层次之间(不论是对自然形体的不同程度的放大,还是对人工形体迭代操作所得到的不同代)得以体现的。因而,分形几何形的维数正是在形状的不同层次的比较之间所反映出来的规律。这一规律所代表的是分形几何形状在空间中的扩张趋势。维数越大,就表明它在空间的扩张趋势越强,形状本身的变化可能性也越丰富。

中小学数学知识点集锦

三年级上册 第一单元测量:1.1 毫米、分米的认识 2. 千米的认识 3.吨的认识 第二单元万以内的加法和减法:1. 加法 2. 减法 3. 加减法的验算 第三单元四边形:1. 四边形 2.平行四边形 3. 周长 4. 长方形和正方形的周长 5. 估计 第四单元有余数的除法 第五单元时、分、秒:1. 秒的认识 2. 时间的计算 3.单元测试题 第六单元多位数乘一位数:1. 口算乘法 2. 笔算乘法 第七单元分数的初步认识:1. 几分之一 2. 几分之几 3. 分数的简单计算 第八单元数学广角:1. 搭配问题 2. 可能性 第九单元总复习 三年级下册 第一单元位置与方向 第二单元除数是一位数的除法:1. 口算除法 2. 笔算除法(1) 3. 笔算除法(2) 4. 笔算除法(3)第三单元统计:1. 简单的数据统计 2. 平均数 第四单元年、月、日:1. 年、月、日 2. 24小时计时法 第五单元两位数乘两位数:1. 口算乘法 2. 笔算乘法(1) 3. 笔算乘法(2) 第六单元面积:1. 面积和面积单位 2. 长方形、正方形面积的计算 3. 面积单位间的进率 4. 公顷、平方千米 第七单元小数的初步认识:1. 认识小数 2. 简单的小数加减法 第八单元解决问题 第九单元数学广角 第十单元总复习 四年级上册 第一单元大数的认识:1.亿以内数的认识(一) 2.亿以内数的认识(二) 3.亿以上数的认识(一) 4.亿以上数的认识(二) 5.用计算器计算 6.亿以上数的认识综合练习题 第二单元角的度量:1.直线射线和角(一) 2.直线射线和角(二) 第三单元三位数乘两位数:1.口算乘法2.笔算乘法(一)3.笔算乘法(二)4.笔算乘法(三) 第四单元平行四边形和梯形:1.垂直与平行(一) 2.垂直与平行(二 3.平行四边形

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

华东师大版初中数学按章节目录(最新整理)

华东师大版 初中数学按章节目录七年级上 第1章走进数学世界 §1.1 从实际问题到方程:1. 数学伴我们成长;2. 人类离不开数学;3. 人人都能学会数学;阅读材料华罗庚的故事;视数学为生命的陈景润;少年高斯的速算; §1.2 让我们来做数学;1. 跟我学;2. 试试看;阅读材料幻方. 第2章有理数 §2.1 正数和负数:1. 相反意义的量;2. 正数与负数;3. 有理数; §2.2 数轴;1. 数轴;2. 在数轴上比较数的大小; §2.3 相反数; §2.4 绝对值; §2.5 有理数的大小比较;1. 数轴;2. 在数轴上比较数的大小; §2.6 有理数的加法;1. 有理数的加法法则; 2. 有理数加法的运算律; §2.7 有理数的减法; §2.8 有理数的加减混合运算;1. 加减法统一成加法;2. 加法运算律在加减混合运算中的应用; 阅读材料中国人最早使用负数; §2.9 有理数的乘法;1. 有理数的乘法法则; 2. 有理数乘法的运算律; §2.10 有理数的除法; §2.11 有理数的乘方; 阅读材料10003与31000; §2.12 科学记数法; 阅读材料光年和纳米; §2.13 有理数的混合运算; §2.14 近似数和有效数字; §2.15 用计算器进行数的简单运算; 阅读材料从结绳记数到计算器; 小结; 复习题 第3章整式的加减 §3.1 列代数式:1. 用字母表示数;2. 代数式; 3. 列代数式;§3.2 代数式的值; 阅读材料有趣的“3x+ 1”问题; §3.3 整式;1. 单项式;2. 多项式;3. 升幂排列与降幂排列; §3.4 整式的加减;1. 同类项;2. 合并同类项; 3. 去括号与添括号; 4. 整式的加减; 阅读材料用分离系数法进行整式的加减运算;供应站的最佳位置在哪里; 复习题; 课题学习身份证号码与学籍号 第4章图形的初步认识 §4.1 生活中的立体图形; 阅读材料欧拉公式; §4.2 画立体图形;1. 由立体图形到视图;2. 由视图到立体图形; §4.3 立体图形的表面展开图; §4.4 平面图形; 阅读材料七巧板; §4.5 最基本的图形-点和线;1. 点和线;2. 线段的长短比较; §4.6 角;1. 角;2. 角的比较和运算;3. 角的特殊关系; §4.7 相交线;1. 垂线;2. 相交线中的角;§4.8 平行线;1. 平行线;2. 平行线的识别; 3. 平行线的特征; 小结; 复习题; 第5章数据的收集与表示 §5.1 数据的收集;1. 数据有用吗;2. 数据的收集; 阅读材料赢在哪里;谁是《红楼梦》的作者;§5.2 数据的表示;1. 利用统计图表传递信息;2. 从统计图表获取信息; 阅读材料计算机帮我们画统计图 小结; 复习题; 课题学习图标的收集与探讨 七年级下: 第6章一元一次方程; §6.1 从实际问题到方程; §6.2 解一元一次方程;1. 方程的简单变形; 2. 解一元一次方程; 阅读材料丢番图的墓志铭与方程;

第6讲分形几何学

实用标准文案 第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分

初中数学教材目录汇总(人教版)

七年级(上) 第一章有理数 1.1 正数和负数 阅读与思考用正负数表示加工允许误差 1.3 有理数的加减法 实验与探究填幻方 阅读与思考中国人最先使用负数 1.4 有理数的乘除法 观察与思考翻牌游戏中的数学道理 1.5 有理数的乘方 第二章整式的加减 2.1 整式 阅读与思考数字1与字母X的对话 2.2 整式的加减 信息技术应用电子表格与数据计算 第三章一元一次方程 3.1 从算式到方程 阅读与思考“方程”史话 3.2 解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数 3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程 第四章图形认识初步 4.1 多姿多彩的图形 阅读与思考几何学的起源 4.2 直线、射线、线段 阅读与思考长度的测量 4.3 角 4.4 课题学习设计制作长方体形状的包装纸盒七年级(下) 第五章相交线与平行线 5.1 相交线 5.1.2 垂线 5.1.3 同位角、内错角、同旁内角 观察与猜想 5.2 平行线及其判定 5.2.1 平行线 5.3 平行线的性质 5.3.1 平行线的性质 5.3.2 命题、定理 5.4 平移 6.2 坐标方法的简单应用 阅读与思考 6.2 坐标方法的简单应用 第七章三角形 7.1 与三角形有关的线段 7.1.2 三角形的高、中线与角平分线 7.1.3 三角形的稳定性 信息技术应用 7.2 与三角形有关的角 7.2.2 三角形的外角 阅读与思考 7.3 多变形及其内角和 阅读与思考 7.4 课题学习镶嵌 第八章二元一次方程组 8.1 二元一次方程组 8.2 消元——二元一次方程组的解法 8.3 实际问题与二元一次方程组 阅读与思考 *8.4 三元一次方程组解法举例 第九章不等式与不等式组 9.1 不等式 阅读与思考 9.2 实际问题与一元一次不等式 实验与探究 9.3 一元一次不等式组 第十章数据的收集、整理与描述 10.1 统计调查 实验与探究 10.2 直方图 10.3 课题学习从数据谈节水 八年级(上) 第十一章全等三角形 11.1 全等三角形 11.2 三角形全等的判定 阅读与思考全等与全等三角形 11.3 角的平分线的性质 第十二章轴对称 12.1 轴对称 12.2 作轴对称图形 12.3 等腰三角形 第十三章实数 13.1 平方根 13.2 立方根 13.3 实数

15 分形几何课程实验研讨会在南昌召开

第3期李康燮:中学数学中的证明47 性,这是说明概率作用的最典型的例子,这种方案的一般形式是检验的对象间由一些相互作用的循环系统组成.我们知道,随机数可以相互替换,从这个事实中可以看到“随机”的作用,遗憾的是这个方案中的大多数规则对中学生来说理解起来是相当困难的.然而一些有天赋的中学生会对这些规则产生浓厚的兴趣,因此,我们可以寻找一些中学生可以理解的合适的例子.当然,中学生在学习这些规则前需要掌握一些必要的数论知识.(5)学生也许会对投币实验的各种方法感兴趣,我们可以把这种方法用带有实践性和挑战性的方式介绍给学生,这个检验方案与古典概率有点不同,然而,概率在此同样起到关键的作用.5 结论与启示 我们生活在一个学校教育制度深刻变化的时代,对待数学,我们需要有新的视野.随着社会的发展,数学和数学证明的本质也将继续变化,这就要求我们需要培养新的数学观,即信息时代的中学生要熟悉掌握各种有说服力的数学模型.在这篇文章里,我们探讨了在中学数学中不同于经典证明的一些类型的检验方案并举了一些学生易于接受的例子.当然,对于数学证明的本质的讨论将继续,我们或许不能期望得到有关这个问题的彻底回答,因为我们在考虑各种类型的方案时,不得不面对我们中学课程里流行的欧几里得几何的证明. Proofs in Secondary Schools Kang Suplee1, SUN Lian-ju2, GUO Min2 (1. Dankook University, Korea; 2. Department of Mathematics, Northeast Normal University, Jilin Changchun 130024, China) Abstract: In the information age, we needed various types of scheme of verification. We noted that only one type of verification scheme that was usually called "proof" was in the current curriculum for secondary school mathematics. In this article, we surveyed a variety of types of verification schemes that would be useful in real life. We proposed some types of verification scheme that need to be in our secondary school mathematics curriculum. We emphasized that probability plays an important role in this proposes schemes of verification. Key words: structuralism; non-structuralism; verification scheme; random [责任编校:陈汉君] 分形几何课程实验研讨会在南昌召开 2002年6月9日,江西省《分形几何初步进入普通高中数学课程的可行性实验研究》课题组在南昌大学学术交流中心召开“分形几何课程实验”研讨会,参与实验研究的全省7个城市8所学校——江西师大附中、修水一中、上饶二中、南昌十五中、吉安敦厚中学、宜丰二中、上犹中学、上犹县教师进修学校的11名代表出席了会议,就分形几何课程实验有关问题进行了研讨. 本实验研究被江西省课程办2002年4月审批立项,后又被立项为国家高中数学课程标准实验项目,主要研究在国家《高中数学课程标准》的框架设想中被列为“数学A”的一个专题“分形”教学的可行性等问题.研讨会的召开得到有关领导的关心和指示,通过与会代表的努力取得了预期的效果,为实验目标的达成铺平了道路. (江西省上犹县教师进修学校舒昌勇供稿)

分形几何无处不在

分形几何无处不在 【摘要】本文详细阐述了“什么是分形几何”的问题。并举海岸线、地表、河流、人脑表面、植物、星球分布、收入分布、股票价格的变动分布等例说明大自然中分形无处不在。介绍了分形的非均匀性、自相似性、重尺度性三个性质,最后总结出分形具有良好的发展潜质。 【关键词】分形几何;比较;定义;自然;性质 一、什么是分形几何 曼德勃罗曾经为分形下过两个定义: (1)满足下式条件: ()dim() 的集合A,称为分形集。其中,() Dim A为集合A Dim A A 的Hausdoff维数(或分维数),dim()A为其拓扑维数。一般说来,() Dim A不是整数,而是分数。 (2)部分与整体以某种形式相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。 (i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。 (ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。 (v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。 二、分形几何的性质 分形几何形态有哪些性质呢?概括说来,通常有3个特性:1.非均匀性;2.自相似性;3.重尺度性。问题的关键是它改变了人们对物体的测度观。过去人们习惯于用欧氏测度研究图形,它研究的图形是能用圆规和规尺画的简单图形,这样的图形是光滑的牛顿以后,微积分学和几何学的结构,人们可以描述复杂的形状,但这些形状的重要特征是具有特征长度.是平滑的,可微分的。分形几何研究的是更为复杂的圆形,它没有特征长度,不平滑,不可微分。

数学几何定理符号语言

1、基本事实:经过两点有且只有一条直线。(两点确定一条直线) 2、基本事实:两点之间线段最短。 3、补角性质:同角或等角的补角相等。 几何语言:∵∠A+∠B=180°,∠A+∠C =180° ∴∠B=∠C(同角的补角相等) ∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C ∴∠B=∠D(等角的补角相等) 4、余角性质:同角或等角的余角相等。 几何语言:∵∠A+∠B=90°,∠A+∠C =90° ∴∠B=∠C(同角的余角相等) ∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C ∴∠B=∠D(等角的余角相等) 5、对顶角性质:对顶角相等。 ∠1=∠2 6、过一点有且只有一条直线与已知直线垂直。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最短) 8、(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。9、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 几何语言:∵a∥b,a∥c ∴b∥c 10、两条直线平行的判定方法: 几何语言:如图所示 (1)同位角相等,两直线平行。(2)内错角相等,两直线平行。 ∵∠1=∠2 ∴a∥b ∵∠3=∠4 ∴a∥b (3)同旁内角互补,两直线平行。 ∵∠5+∠6=180° ∴a∥b 11、平行线性质: 几何语言:如图所示 (1)两直线平行,同位角相等。 ∵a∥b ∴∠1=∠2 (2)两直线平行,内错角相等。 ∵a∥b ∴∠3=∠4 (3)两直线平行,同旁内角互补。 ∵a∥b ∴∠5+∠6=180° 12、平移: (1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 (2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。 13、三角形三边关系定理:三角形两边的和大于第三边。 a+b>c a+c>b b+c>a ?14、三角形三边关系推论:三角形中任意两边之差小于第三边。

分形几何进入高中过程

分形几何课程实验研究记事 [1] 2001年10月, 课题组负责人舒昌勇的论文《对分形几何初步进入普通高中数学课程的思考》在中国教育学会中学数学教学专业委员会第十届年会(上海)上引起与会课程专家的广泛关注.著名数学教育家、数学课程专家张孝达、丁尔升、孙瑞清等先生指示开展实验研究,为高中课程改革和国家高中数学课程标准的研制提供参考. [2] 2001年11月上旬,《数学通报》编辑部函告,论文《对分形几何初步进入普通高中数学课程的思考》将于2002年初刊发.为开展课程实验,舒昌勇、徐小林投入撰写普通高级中学《分形几何初步》实验教科书工作,12月初完成初稿. [3] 2001年12月上旬,在江西省教育学会中学数学教学专业委员会2001年年会(新余)上,理事会领导高度评价并大力宣传该项新课程研究,并向与会代表展示实验教科书初稿.同月,着手筹建《分形几何初步进入普通高中数学课程的可行性实验研究》课题组. [4] 2002年3月,制订实验计划;向国家高中数学课程标准研制组申报《标准》实验项目;向江西省教育厅课题基地办申报省级教育教学研究课题. [5] 2002年4月,《数学通报》等刊刊发国家数学课程标准研制组《高中数学课程标准的框架设想》,“分形”被列为富有拓展性和挑战性的选修课程“数学A”的一个专题.同月,“分形几何初步进入普通高中数学课程的可行性实验研究”课题被江西省教育厅课题基地办批准立项. [6] 2002年5月,参加实验研究的学校已发展为全省七个地市九所高中(教师进修学校).月初定稿的全套课程实验材料(教科书、教学设计、教学建议、测试卷、调查问卷等)在四所学校印制,并分发至各实验校.课题组筹备召开“分形几何课程实验研讨会”. [7] 2002年6月,课题立项为国家高中数学课程标准实验项目.6月8~9日,“分形几何课程实验研讨会”在南昌大学学术交流中心召开,对课程材料的学习进行了辅导,对课程实验有关问题进行了研讨,为实验目标的达成奠定了基础.会后,各实验校陆续进入课程实验阶段.课题组编发《实验简报》1、2、3、期,分别寄往标准研制组、省课题基地办、各实验校及有关专家和领导.6月26日,省课题基地办对实验进展顺利表示满意. [8] 2002年7月1日,《分形几何课程实验材料》上网“国家数学新课程标准资料汇编”(http ://www.bj4hs.bj edu .cn). 7月10日,标准研制组发来电子邮件,通知课题负责人“分形”已定为高中数学选修课程E1系列的一个专题. 7月24日,电子版《标准·分形几何参考稿》(包括《标准》中分形几何内容的基本理念、内容与要求、教材实施建议及编写建议等)发往标准研制组.27日,与之配套使用的光盘寄往标准研制组. [9] 2002年8月,江西省教育厅课题基地办授予课题组“省级先进课题组”荣誉称号,授予课题负责人“省级先进课题组负责人”荣誉称号,颁发了奖牌和证书.同月,各实验校收集,整理实验资料. [10] 9月1日,据《标准·分形几何参考稿》增订的《分形几何初步》实验教科书电子版发往标准研制组.同月,开始据收集的实验资料陆续编发《实验简报》各实验校专版,策划反映本阶段实验全过程的资料汇编《分形几何初步进入高中课程的探索与实践》的编印.

论分形几何学在首饰设计中的应用

论分形几何学在首饰设计中的应用 论分形几何学在首饰设计中的应用作者:来源:浏览次数:5909标签:分形设计饰设 随着人们生活水平的提高和消费观念的改变,珠宝首饰在人们心目中的地位越来越高。传统的首饰是由设计人员先在头脑中构思,再通过图纸和计算机表现出来。设计者往往在阅读大量资料的基础上,对传统的图形进行修改和变换,设计思路受到较大的限制,越来越难以满足人们求新、求美、求异的要求。 针对目前首饰设计领域的“瓶颈”,亟待在艺术构思、图案设计、制作工艺等方面进行创新。如果将分形图形与首饰设计结合起来,把抽象的分形理论应用到实际的首饰设计中去,可以给首饰设计人员提供新的创作灵感。 1 分形几何学理论及应用 分形几何学简称分形,分形一词由法国数学家B. B. Mandelbrot在1967年的“英国的海岸线有多长———统计自相似性与分数维数”论文中首次提出。作为分形,其最显著的特征就是自相似性,即在分形上任选一个局部,无论是将其放大或缩小,其形态、复杂程度、不规则性等均不会发生变化,所得到的图形仍显示原图的特征。这种自相似性可以是近似的,也可以是统计意义的。 分形大致可分为两类:一类是几何分形,它不断地重复同一种图案;另一类是随机分形,它抽象地描述了大自然的许多不规则形态。应用分形理论既可以产生由直线、圆、多边形等构成的较为规则的图形,体现出传统美学中的平衡与对称,还可以产生奇妙的非线性图形,超越标准的新的表现形式。分形图案作为技术与美学的结合,对首饰设计具有特别重要的意义,把它引入首饰设计领域,将挑战传统的设计理念,使设计者的思路和视野得到更广泛的拓展。作为研究和处理不规则图形的强有力工具, 目前分形几何学已在物理学、化学、地质学、生物学、材料学等领域取得了较大的进展。近年来,随着对准晶体物质的深入研究,分形理论在微观领域的应用也逐渐引起了人们的重视。分形理论在计算机仿真、艺术设计、室内装饰等领域也逐渐显示出其极高的应用价值,特别是分形几何学在服装设计领域取得了突破性进展,为分形理论在首饰设计领域的应用奠定了基石。 2 在首饰设计中的应用 首饰设计一般分为手绘和电脑设计,前者主要是用手工绘制的方法将设计思想在图纸上表现出来,后者则是借助计算机辅助设计软件得以实现。无论采用哪种方式,设计者在整个设计过程中都必须遵循对比与调和或者对立与统一的原则,因为首饰设计作为一种艺术创作,它不单是造型元素的简单叠加,更多的是通过对不同材质与色彩的有机组合,营造整体的和谐与统一,从而真正体现首饰的艺术价值。 2.1 作为构成元素参与首饰设计 传统首饰设计的构成元素主要是欧氏几何中描述的具有整数维数的规则图形,设计出的首饰往往比较单一、朴素。而分形作为大自然的几何抽象,能给设计者提供一种新的设计思路。把分形中自相似性的某一重复单元作为一种新的构成要素参与首饰设计。当经过与传统几何要素相同的拉伸、旋转、变形后,新的首饰将呈现出一个更加复杂、精美的分形式造型,从而实现首饰设计的创造性和新颖性。和传统的首饰设计相比,分形首饰的特点[5 ] 在于: (1) 和谐性分形表现最多的是形状的重复,应用到首饰设计中就是造型元素的重复。这就打破了完全对称产生的呆板,给人和谐统一的视觉感。当然,仅仅借助单一结构不能达到对比的效果,

相关文档
最新文档