第二学期期中考试试卷高一数学及答案

合集下载

高一数学第二学期期中考试试卷含答案(word版)

高一数学第二学期期中考试试卷含答案(word版)

第二学期期中考试 高一数学试题试题分值 150分 时间 120分钟一、选择题1、集合}{01032<-+=x x x A ,}{410<+<=x x B ,则)(B C A R ⋂=( )A 、}{21<<-x x B 、}{3215≤<-≤≤-x x x 或C 、}{15-≤<-x xD 、}{15-≤≤-x x2、已知135sin =α,α是第一象限角,则cos(π)α-的值为( ) A.513-B.513C.1213-3、在等差数列{}n a 中,已知112n a n =-,则使前n 项和n S 最大的n 值为( ) A.4 B.5 C.6 D.74、在ABC ∆中,内角C B A 、、所对的边为c b a 、、, 60B =,4a =,其面积S =,则c =( )A.15B.16C.20D.5、已知平面向量→a , →b 满足|→a |=1,|→b |=2,且(→a +→b )⊥→a ,则→a ,→b 的夹角为A 、23π B 、2π C 、3π D 、6π6、在ABC ∆中,内角C B A 、、所对的边为c b a 、、, 4,30a b A ===,则B =( )A.60°B.60°或120°C.30°D.30°或150° 7、等比数列{}n a 的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A.28 B.48 C.36 D.52 8、已知等差数列}{n a 的前15项之和为154π,则789tan()a a a ++=( ) A. 33B. 3C. 1-D. 19、在△ABC 中,2,1AB AC AM AM +==,点P 在AM 上且满足2AP PM =, 则()PA PB PC ⋅+等于( ) A .94 B.34 C.-34 D.-9410、已知))()(()(b a b x a x x f >--=其中,若)(x f 的图象如右图所示:则b a x g x+=)(的图象是( )xyA 1OxyB 1OxyC1OxyD1O11、在△ABC 中,内角C B A 、、所对的边为c b a 、、,若222c a b ab ≤+-,则C 的取值范围为( ) A.(0,]3πB.[,)6ππC.[,)3ππD.(0,]6π12、已知等差数列{}n a 满足2222699678sin cos sin cos 1sin()a a a a a a -=+,公差(1,0)d ∈-,当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则该数列首项1a 的取值范围为( )A.43(,)32ππ B.43,32ππ⎡⎤⎢⎥⎣⎦C.74(,)63ππD.74,63ππ⎡⎤⎢⎥⎣⎦二、填空题13、若3sin 5x =,则cos 2x =__________. 14、在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断:①1tan tan =B A ; ② 1sin sin 3A B <+≤1cos sin 22=+B A ;④C B A 222sin cos cos =+其中正确的序号是____________xy-11O15、在矩形ABCD 中,AB=2BC ,M 、N 分别是AB 和CD 的中点,在以A 、B 、C 、D 、M 、N 为起点和终点的所有向量中,相等的非零向量共有 对.16.对于实数b a ,,定义运算⎩⎨⎧>-≤-=⊗⊗11:""b a b b a a b a ,设函数)()2()(22x x x x f -⊗-=,若函数c x f y -=)(的图象与x 轴恰有两个公共点,则实数c 的取值范围是________. 三、解答题17. (本小题满分10分)已知等差数列{}n a 满足:3710,26a a ==. (1)求数列{}n a 的通项公式;(2)请问88是数列{}n a 中的项吗?若是,请指出它是哪一项;若不是,请说明理由.18. (本小题满分12分) 已知向量(cos ,1)2x m =-,2(3sin ,cos )22x x n =, 设函数1()2f x m n =⋅+. (1)求函数()f x 的最小正周期; (2)求函数()f x 的单调区间.NCDAB19. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,递增的等比数列{}n b 满足:142318,32b b b b +=⋅=.(1)求数列{}{}n n a b 、的通项公式;(2)若*,N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T .20.(本小题满分12分)在ABC ∆中,内角C B A 、、所对的边为c b a 、、,且满足()2cos cos a c B b C -=.(1)求B 的值; (2)若3=b ,求c a 21-的取值范围.21、(12分)要将两种大小不同的钢板截成A B C 、、三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要A B C 、、三种规格的成品分别15,18,27块,各截这两种钢板多少张可得所需A B C 、、三种规格的成品,且使所用钢板张数最少?213112C 规格B 规格A 规格第一种钢板第二种钢板规格类型钢板类型22、(本小题满分12分) 已知函数)(Z ∈=++-m x x f m m322)(为偶函数,且)5()3(f f <. (1)求m 的值,并确定)(x f 的解析式.(2)若)1,0]()([log ≠>-=a a ax x f y a 且在区间[]3,2上为增函数,求实数a 的取 值范围 .第二学期期中考试 高一理科数学试题试题分值 150分 时间 120分钟 命题教师 侯思超一、选择题1、C2、C3、B4、C.5、A 、6、B.7、A8、C.9、D. 10、A 11、A.12、A.二、填空题 13、72514、②④ 15、2416. )43,1(]2,(----∞ 三、解答题 17.解析:(1)依题意知73416,4d a a d =-=∴=【3分】()3342n a a n d n ∴=+-=-【5分】(2)令*454588,4288,,N .22n a n n =-==∉即所以 所以88不是数列{}n a 中的项.【10分】 18.解析:(1)依题意得()sin()6f x x π=-,【4分】 ()2f x T π∴=最小正周期为【6分】(2)由22262k x k πππππ-≤-≤+解得22233k x k ππππ-≤≤+, 从而可得函数()f x 的单调递增区间是:2[2,2],33k k k Z ππππ-+∈【9分】 由322262k x k πππππ+≤-≤+解得252233k x k ππππ+≤≤+, 从而可得函数()f x 的单调递减区间是:25[2,2],33k k k Z ππππ++∈【12分】19.解析 :(1)当2n ≥时,()()221313111312222n n n a S S n n n n n -⎡⎤=-=+--+-=-⎢⎥⎣⎦111,2n a S ===又时符合,所以31n a n =-【3分】 2314b b b b =,14,b b ∴方程218320x x -+=的两根, 41b b >又,所以解得142,16b b ==34182b q q b ∴==∴=112n n n b b q -∴=⋅=【6分】(2)31,2n n n a n b =-=,则n (31)2n C n =-⋅1234225282112(31)2n n T n ∴=⋅+⋅+⋅+⋅++-⋅234512225282112(31)2n n T n +=⋅+⋅+⋅+⋅++-⋅将两式相减得:12341=22+32+2+2+2)(31)2-------------------------------------------8n n n T n +⋅--⋅-(分2112(12)43(31)212n n n -+⎡⎤-=+--⋅⎢⎥-⎣⎦1(34)28n n +=-+⋅-【10分】所以1=(34)28n n T n +-⋅+.【12分】20.解析:(1)由已知()2cos cos a c B b C -= 得()2sin sin cos sin cos A C B B C -= 【3分】 化简得1cos 2B =【5分】 故3B π=.【6分】(2)由正弦定理32sin sin sin 3a c bA C B====,得2sin ,2sin a A c C ==, 故122sin sin 2sin sin 2333sin cos 3226a c A C A A A A A ππ⎛⎫-=-=-- ⎪⎝⎭⎛⎫=-=- ⎪⎝⎭ 【9分】因为203A π<<,所以662A πππ-<-< 【10分】 所以133sin (,3)262a c A π⎛⎫-=-∈- ⎪⎝⎭【12分】 21、解:设所需第一种钢板x 张,第一种钢板y 张,共需截这两种钢板z 张,则目标函数为z x y =+约束条件为21521832700x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 【3分】可行域如下图2x+y =15x +3y=27x +2y=18xy =-x(185,395)yM 【5分】把z x y =+变形为v ,得到斜率为1-,在y 轴上截距为z 的一组平行直线,由上图可知,当直线z x y=+经过可行域上的点M 时,截距z 最小,解方程组327215x y x y +=⎧⎨+=⎩得点1839,55M ⎛⎫⎪⎝⎭,由于1839,55都不是整数,而此问题中最优解(),x y 中,,x y 必须都是整数,所以点1839,55M ⎛⎫⎪⎝⎭不是最优解。

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。

浙江省绍兴市2023-2024学年高一下学期创新班期中考试数学试卷含答案

浙江省绍兴市2023-2024学年高一下学期创新班期中考试数学试卷含答案

绍兴2023学年第二学期期中考试高一(素养班)试卷(答案在最后)命题:一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足z=i (2+z )(i 为虚数单位),则z=()A.1+i B.1-iC.-1+iD.-1-i【答案】C 【解析】【分析】利用复数的除法运算求解好、即可【详解】由题意2i i z z =+,()()()2i 1i 2i1i 1i 1i 1i z +===-+--+.”故选:C .2.如图所示,梯形A B C D ''''是平面图形ABCD 用斜二测画法得到的直观图,2A D ''=,1A B B C ''''==,则平面图形ABCD 中对角线AC 的长度为()A.B.C.D.5【答案】C 【解析】【分析】根据斜二测画法的规则确定原图形,利用勾股定理求得长度.【详解】由直观图知原几何图形是直角梯形ABCD ,如图,由斜二测法则知22AB A B ''==,1BC B C ''==,所以AC ===故选:C .3.已知样本数据12100,,,x x x 的平均数和标准差均为4,则数据121001,1,,1x x x ------ 的平均数与标准差分别为()A.54-,B.516-,C.416, D.44,【答案】A 【解析】【分析】根据样本数据同加上一个数和同乘以一个数后的新数据的平均值和方差的性质即可求解.【详解】由题意知,样本数据12100,,,x x x 的标准差为4,所以样本数据12100,,,x x x 的方差为16,因为样本数据12100,,,x x x 的平均数为4和方差为16,所以121001,1,,1x x x ------ 的平均数为415--=-,121001,1,,1x x x ------ 的方差为()211616-⨯=,所以121001,1,,1x x x ------ 的标准差为4,故选:A.4.一个圆锥的侧面展开图是半径为1的半圆,则此圆锥的内切球的表面积为()A.π B.π2C.π3 D.π4【答案】C 【解析】【分析】由侧面展开图的半圆弧长等于圆锥底面圆周长可构造方程求得圆锥底面半径,由此可确定圆锥轴截面为正三角形,求得正三角形内切圆半径即为所求内切球半径,代入球的表面积公式即可得到结果.【详解】设圆锥底面半径为r ,则12π2π1π2r =⨯⨯=,解得:12r =;∴圆锥的轴截面是边长为1的正三角形,∴此正三角形内切圆的半径为136=,即圆锥内切球半径6=R ,∴圆锥内切球的表面积21π4π4π123S R ==⨯=.故选:C.5.光源(3,2,1)P 经过平面Oyz 反射后经过(1,6,5)Q ,则反射点R 的坐标为()A.75(0,,)22B.(0,4,3)C.97(0,,)22D.(0,5,4)【答案】D 【解析】【分析】设点P 关于平面Oyz 的对称点为P ',得到点R 为P Q '与平面Oyz 的交点,令(0,,)R m n ,结合PR PQ λ=,列出方程组,即可求解.【详解】设点(3,2,1)P 关于平面Oyz 的对称点为P ',可得(3,2,1)P '-,则点R 为P Q '与平面Oyz 的交点,令(0,,)R m n ,则P R P Q λ''=,且(1,6,5)Q ,又由(3,2,1),(4,4,4)P R m n P Q ''=--=,所以342414m n λλλ=⎧⎪-=⎨⎪-=⎩,解得5,4m n ==,所以(0,5,4)R .故选:D.6.若4,2145,,,的第 p 百分位数是4,则 p 的取值范围是()A.(]4080,B.[)4080,C.[]40,80 D.()40,80【答案】D 【解析】【分析】根据百分位数的定义求解即可.【详解】1,2,4,4,5的第 p 百分位数是4,则()5%24p ⨯∈,,所以()4080p ∈,.故选:D7.如图是棱长均相等的多面体EABCDF ,其中四边形ABCD 是正方形,点P Q M N ,,,分别为DE ,AB ,AD ,BF 的中点,则异面直线PQ 与MN 所成角的余弦值为()A.13B.12C.23D.34【答案】C 【解析】【分析】取AE 的中点K ,连接PK ,QK ,求得1122PQ DA EB =+ ,1122MN DF AB =+,则可求得PQ MN ⋅ ,进一步求得32PQ MN ==,按向量夹角公式求解即可【详解】如图,四边形ABCD ,BEDF 均是边长为a 的正方形,多面体的侧面均为等边三角形,取AE 的中点K ,连接PK ,QK ,则1122PQ PK KQ DA EB =+=+.同理可得1122MN DF AB =+.所以1111()()2222PQ MN DA EB DF AB ⋅=+⋅+ 11114444DA DF DA AB EB DF EB AB=⋅+⋅+⋅+⋅21π11π1cos 0cos 434432a a a a a a =⋅⋅⋅++⋅⋅+⋅⋅⋅=取CE 的中点H ,连接PH ,BH ,则//PH CD ,且1.2PH CD =又点Q 为AB 的中点,AB CD =且//AB CD ,所以//PH QB 且PH QB =,则四边形QBHP 为平行四边形,所以πsin32PQ BH BE ==⋅=.同理可得=MN .设PQ ,MN的夹角为θ,则2122cos 322a PQ MN PQ MNθ⋅==⋅,即异面直线PQ 与MN 所成角的余弦值为23.故选:C8.在正方体1111ABCD A B C D -中,点M N ,分别是直线CD AB ,上的动点,点 P 是△11AC D 内的动点(不包括边界),记直线1D P 与MN 所成角为θ,若θ的最小值为π3,则1D P 与平面11AC D 所成角的正弦的最大值为()A.36-B.36+C.6D.6+【答案】B 【解析】【分析】根据正方体的几何性质,作出1QD ⊥平面11AC D ,再由线面角的最小性可知,当α取最大值时,,,D P Q 三点共线,只需求此时1D PQ ∠的正弦值即可.【详解】如图所示,连接1BD ,交平面11AC D 于点Q.设1D P 与平面11AC D 所成角为α,正方体的棱长为a ,根据正方体的性质可得,1BD ⊥平面11AC D ,所以1QD ⊥平面11AC D ,且点Q 为11A C D 的中心,所以1sin sin D PQ α=∠.又因为直线1D P 与MN 所成角为θ,且θ的最小值为π3,所以1D P 与平面1111D C B A 所成角为π3,所以1DD P ∠为π6.由线面角的最小性可知,当α取最大值时,,,D P Q 三点共线,所以此时1111π6D PQ D DP DD P D DP ∠=∠+∠=∠+.又因为在1DD Q中,易得11133D Q BD ==,1DD a =,所以63DQ a ==,所以1111136sin 33D Q DQ D DQ D DQ DD DD ====∠∠,所以1111πsin sin sin()sin()6D PQ D DQ DD P D DQ α==∠+∠=∠+∠11113sin cos 2223236D DQ D DQ +=∠∠=⨯⨯+.故选:B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在12件同类产品中,有9件正品和3件次品,从中任意抽出3件产品,设事件A “3件产品都是次品”,事件B “至少有1件是次品”,事件C “至少有1件是正品”,则下列结论正确的是()A.A 与C 为对立事件B.B 与C 不是互斥事件C.A B A =D.()()1P B P C +=【答案】ABC 【解析】【分析】通过分析事件,从而判断事件的关系.【详解】从中任意抽出3件产品,共有4种情况:3件产品都是次品,2件次品1件正品,1件次品2件正品,3件产品都是正品.事件B 的可能情况有:3件产品都是次品,2件次品1件正品,1件次品2件正品,事件C 的可能情况有:2件次品1件正品,1件次品2件正品,3件产品都是正品.A 与C 为对立事件,故A 正确;B C ⋂={2件次品1件正品,1件次品2件正品},则B 与C 不是互斥事件,故B 正确;A B ⊆ ,A B A ∴⋂=,故C 正确;由上知()()1P B P C +>,故D 错误.故选:ABC10.在某市高三年级举行的一次模拟考试中,某学科共有20000人参加考试.为了了解本次考试学生成绩情况,从中抽取了部分学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,样本容量为n ,按照[)[)[)[)[]506060707080809090100,,,,,,,,,的分组作出频率分布直方图如图所示,其中,成绩落在区间[)5060,内的人数为16.则()A.图中0.016x =B.样本容量1000n =C.估计该市全体学生成绩的平均分为71.6分D.该市要对成绩前25%的学生授予“优秀学生”称号,则授予“优秀学生”称号的学生考试成绩大约至少为77.25分【答案】AD 【解析】【分析】根据频率之和等于1,即可判断A ;根据频率,频数和样本容量之间的关系即可判断B ;根据频率分布直方图平均数的求解方法即可判断C ;根据题意算出25%分位数,再根据频率分布直方图的性质,即可判断D .【详解】对于A ,因为()0.0300.0400.0100.004101x ++++⨯=,解得0.016x =,故A 正确;对于B ,因为成绩落在区间[)50,60内的人数为16,所以样本容量16(0.01610)100n ⨯=÷=,故B 不正确;对于C ,学生成绩平均分为0.01610550.03010650.04010750.01010850.004109570.6⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,故C 不正确;对于D ,设授予“优秀学生”称号的学生考试成绩大约至少为y ,由于[)90,100的频率为0.004100.04⨯=,[)80,90的频率为0.010100.10⨯=,[)70,80的频率为0.040100.40⨯=,则0.040.100.140.25,0.040.100.400.540.25+=<++=>,所以[7080),y ∈,则()()100.0040.010800.0400.25y ⨯++-⨯=,解得77.25y =,所以大约成绩至少为77.25的学生能得到此称号,故D 正确.故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分,如图所示,若正四面体ABCD 的棱长为a .则()A.能够容纳勒洛四面体的正方体的棱长的最小值为aB.勒洛四面体能够容纳的最大球的半径为312a⎛⎫- ⎪ ⎪⎝⎭C.勒洛四面体中过A B C ,,三点的截面面积为(212π4a D.勒洛四面体的体积3326π128V a a ⎛⎫∈ ⎪ ⎪⎝⎭,【答案】AD 【解析】【分析】对于A ,根据勒洛四面体表面上任意两点间距离小于等于a ,进行判断;对于B ,求出BE a =,4OB a =,相减即为能够容纳的最大球的半径;对于C ,找到最大截面,求出截面面积;对于D ,勒洛四面体的体积介于正四杨体ABCD 的体积和正四面体ABCD 的外接球体积之间,求出正四面体ABCD 的体积和正四面体ABCD 的外接球的体积,从而求出答案.【详解】由题意知:勒洛四面体表面上任意两点间距离的最大值a ,故A 正确;勒洛四面体能容纳的最大球,与勒洛四面体的弧面相切,如图,其中点E 为该球与勒洛四面体的一个切点,O 为该球的球心,由题意得该球的球心O 为正四面体ABCD 的中心,半径为OE ,连接BE ,易知B ,O ,E 三点共线,设正四面体ABCD 的外接球半径为r ,由题意得:222))r r -+=,解得4r a =,BE a ∴=,4OB a =,由题意得(1)44OE a =-=-,故B 错误;勒洛四面体最大的截面即经过四面体ABCD 表面的截面,如图,则勒洛四面体截面面积最大值为三个半径为a ,圆心角为60︒的扇形的面积减去两个边长为a 的正三角形的面积,即222113π2(π642a a ⨯-⨯=-,故C 错误;对于D ,勒洛四面体的体积介于正四面体ABCD 的体积和正四面体ABCD 的外接球的体积之间,正四面体底面面积为24a ,底面所在圆的半径为2323a ⨯=,∴=,∴正四面体ABCD 的体积231136234312V a a a =⨯⨯=,设正四面体ABCD 的外接球半径为r ,则由题意得:222()()33a r a r -+=,解得4r a =,∴正四面体ABCD 的外接球的体积为328V a =,∴勒洛四面体的体积V 满足33π128a V a <<,故D 正确.故选:AD .【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下;(1)定球心:如果是内切球,球心到切点的距离相等目为球的半径;如果是外接球,球心到接点的距离相等目为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.三、填空题:本题共3小题,每小题5分,共15分.12.从含有6件次品的50件产品中任取4件,观察其中次品数,这个试验的样本空间Ω=______.【答案】{}0,1,2,3,4【解析】【分析】取出的4件产品中,最多有4件次品,最少是没有次品,由此能求出样本空间.【详解】取出的4件产品中,最多有4件次品,最少是没有次品,所以样本空间{0,1,2,3,4}Ω=.故答案为:{0,1,2,3,4}.13.如图,甲乙做游戏,两人通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,并规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两人都上一个台阶.如果一方连续赢两次,那么他将额外获得上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时游戏结束,则游戏结束时恰好划拳3次的概率为______.【答案】1327【解析】【分析】不妨假设游戏结束时恰好划拳3次时是甲登上第3个台阶,考虑所有可能的情况,同时考虑到也可能是划拳3次恰好是乙登上第3个台阶,根据独立事件乘法公式和互斥事件的加法公式,即可求得答案.【详解】设事件“第(N )i i *∈次划拳甲赢”为i A ,事件“第(N )i i *∈次划拳甲平局”为i B ,事件“第(N )i i *∈次划拳甲输”为i C ,则()()()13i i i P A P B P C ===;故()()()()()()()()()()123123123322P X P A P B P A P B P A P A P B P B P B ==++()()()()()()()()()()()()1231231231232222P A P B P B P B P A P B P B P B P A P C P A P A ++++11111111111111111122222333333333333333333=⨯⨯⨯+⨯⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯11113233327+⨯⨯⨯=,故答案为:1327【点睛】难点点睛:解答本题的难点在于考虑清楚游戏结束时恰好划拳3次的所有可能情况,要注意到最终登上第3个台阶的人在第2次划拳时不能输.14.在三棱锥 A BCD -中,二面角 A BD C --的大小为π3, BAD CBD ∠∠=,2BD BC ==,则三棱锥外接球表面积的最小值为____________.【答案】4π3【解析】【分析】221R OE =+,故只需求OE 的最小值,则在四边形12OO EO 中计算即可.【详解】取ABD △外心1O ,BCD △外心2O ,BD 中点为E ,则222O A O B O D ==,111O B O C O D ==,2OO ⊥面ABD ,1OO ⊥面BCD 所以12,O E BD O E BD ⊥⊥,12π3O EO ∠=,设BAD CBD θ∠=∠=,由正弦定理得22sin BDO B θ=,余弦定理得2222cos 88cos CD BC BD BC BD θθ=+-⋅=-,所以4sin2CD θ==,所以由正弦定理得12sin CD O B θ=,即11cos 2O B θ=,所以21sin O B θ=,21tan O E θ==,1tan 2O E θ==,在四边形12OO EO 中,22221212122tan12tan 2tan tan O O O E O E O E O E θθθθ=+-⋅=+-222422221tan 1tan 7tan 4tan 1222tan 224tan 4tan 22θθθθθθθ⎛⎫---+ ⎪⎝⎭=+-=,222212227111111tan 32333sin 3tan 32O O R OE θπθ-=+=+=+-≥=,当且仅当14tan 72θ-=时等号成立,所以三棱锥外接球表面积最小值为()2414ππ3R =,故答案为:4π3.【点睛】思路点睛:本题考查三棱锥外接球表面积,解题关键是用一个变量表示出球的表面积,前提是选定一个参数,由已知设BAD CBD θ∠=∠=,其他量都用表示,并利用三角函数恒等变换,换元法,基本不等式等求得最小值.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知复数22(232)(32)z m m m m i =--+-+,(其中i 为虚数单位)(1)当复数z 是纯虚数时,求实数m 的值;(2)若复数z 对应的点在第三象限,求实数m 的取值范围.【答案】(1),(2)()1,2m ∈【解析】【详解】(1)由题意有时,解得,即时,复数为纯虚数.(2)由题意有:222320{320m m m m --<-+<,解得:12{212m m -<<<<,所以当()1,2m ∈时,复数z 对应的点在第三象限考点:纯虚数概念16.如图,在四棱锥P ABCD -中,底面ABCD 是以2为边长的菱形,且120BAD ∠=︒,PB PD =,M 为PC 的中点.(1)求证:平面PBD ⊥平面PAC ;(2)若PC ==,求直线PD 与平面AMD 所成角的正弦值.【答案】(1)证明见解析(2)14【解析】【分析】(1)设AC 交BD 于点N ,连接PN ,可证明BD ⊥平面PAC ,从而得到平面PBD ⊥平面PAC .(2)可证PA ⊥平面ABCD ,取CD 的中点E ,则AE AB ⊥,故以A 为坐标原点,直线,,AB AE AP 分别为,,x y z 轴建立空间直角坐标系,利用向量法可求线面角的正弦值,或利用等积法求出点P 到平面AMD 的距离为d ,故可求线面角的正弦值.【小问1详解】设AC 交BD 于点N ,连接PN ,.PB PD = ,PN BD ∴⊥.底面ABCD 是以2为边长的菱形,AC BD ∴⊥.又PN AC N = ,,PN AC ⊂平面PAC ,BD ∴⊥平面PAC .又BD ⊂Q 平面PBD ,∴平面PBD ⊥平面PAC .【小问2详解】法一: 底面ABCD 是以2为边长的菱形,且120BAD ∠=︒,ABC ∴ 与ACD 为等边三角形,2AC ∴=.PC ==222PC PA AC ∴=+,即PA AC ⊥.BD ⊥ 平面PAC ,PA ⊂平面PAC ,BD PA ∴⊥.又BD AC N = ,,BD AC ⊂平面ABCD ,PA ∴⊥平面ABCD .取CD 的中点E ,则AE CD ⊥,AE AB ∴⊥.又PA ⊥平面ABCD ,故以A 为坐标原点,直线,,AB AE AP 分别为,,x y z 轴建立空间直角坐标系,则()()()()0,0,0,2,0,0,0,0,2,1,A B P C,()1,,,122D M ⎛⎫- ⎪ ⎪⎝⎭,()()12,,,1,22PD AM AD ⎛⎫∴=--==- ⎪ ⎪⎝⎭.设平面AMD 的一个法向量为(),,n x y z = ,则0,0,n AD n AM ⎧⋅=⎪⎨⋅=⎪⎩即0,10.22x x y z ⎧-+=⎪⎨++=⎪⎩取x =1,y z ==n = .设直线PD 与平面AMD 所成角为α,则sin 14n PD n PDα⋅=== ,∴直线PD 与平面AMD 所成角的正弦值为4214.法二: 底面ABCD 是以2为边长的菱形,且120BAD ∠=︒,ABC ∴ 与ACD 均为等边三角形,2AC ∴=.PC == 222PC PA AC ∴=+,即PA AC ⊥.由(1)知BD ⊥平面PAC ,PA ⊂平面PAC ,BD PA ∴⊥.又BD AC N = ,,BD AC ⊂平面ABCD ,PA ∴⊥平面ABCD .AD ⊂ 平面ABCD ,PA AD ∴⊥,∴由勾股定理得PD =,M 为PC的中点,12AM PC ∴==.在PCD中,由余弦定理得2222222cos 24PC CD PD PCD PC CD+-+-∠===⋅,在MCD△中,由余弦定理得2222222cos 24MD CM CD MD PCD CM CD+-+-∠===⋅,解得2MD =.在AMD 中,2AD MD ==,AM =,1222AMD S ∴==△.设点P 到平面AMD 的距离为d ,又易知点C 到平面PAD由P AMD M PAD V V --=得,111323AMD PAD S d S ⋅=⨯⨯△△,11112232232d ∴⨯⋅=⨯⨯⨯⨯,解得d =.所以直线PD 与平面AMD 所成角的正弦值为4214d PD ==.17.为了了解学生躯干、腰、髋等部位关节韧带和肌肉的伸展性、弹性等,某学校对在校1500名学生进行了一次坐位体前屈测试,采用按学生性别比例分配的分层随机抽样抽取75人,已知这1500名学生中男生有900人,且抽取的样本中男生的平均数和方差分别为13.2和13.36,女生的平均数和方差分别为15.2和17.56.(1)求样本中男生和女生应分别抽取多少人;(2)求抽取的总样本的平均数,并估计全体学生的坐位体前屈成绩的方差.【答案】(1)45;30;(2)平均数14;方差16.【解析】【分析】(1)首先计算抽样比,再计算男生和女生应抽取的人数;(2)代入总体平均数公式和方差公式,即可求解.【小问1详解】总体容量1500,样本容量75,则抽样比为751150020=,所以样本中男生数量119004520n =⨯=,女生数量()2115009003020n =-⨯=.【小问2详解】抽取的样本中男生的平均数13.2x =,方差2113.36s =,抽取的样本中女生的平均数15.2y =,方差2217.56s =,所以总体样本的平均数为()14513.23015.21475ω=⨯+⨯=,总体样本的方差()(){}22214513.3613.2143017.5615.21475s ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦()16305701675=+=.所以估计高三年级全体学生的坐位体前屈成绩的方差为16.18.如图,已知直角三角形ABC 的斜边//BC 平面α,A 在平面α上,AB ,AC 分别与平面α成30 和45 的角,6BC =.(1)求BC 到平面α的距离;(2)求平面ABC 与平面α的夹角.【答案】(1;(2)π3.【解析】【分析】(1)过,B C 作平面α的垂线,利用直角三角形边角关系及勾股定理建立方程求解.(2)作出二面角的平面角,利用余弦定理、三角形面积公式求解即得.【小问1详解】过B 作BE α⊥,垂足为E ,过C 作CF α⊥,垂足为F ,连AE 、AF 、EF ,则30BAE ∠=o ,45CAF ∠= ,设BC 到平面α的距离为d ,由//BC 平面α,得BE CF d ==,在Rt BEA 中,sin30d AB=,则212dAB d==,在Rt CAF △中,AC =,在Rt ABC △中,222BC AB AC =+,则223624d d =+,所以d =.【小问2详解】由(1)知,四边形BCFE 是矩形,过点A 作直线//l EF ,显然//l BC ,在平面α内过点A 作AO EF ⊥于O ,则AO l ⊥,过O 作//OG BE 交BC 于G ,连接AG ,则,OG OG EF α⊥⊥,有OG l ⊥,而,,AO OG O AO OG =⊂ 平面AOG ,于是l⊥平面AOG ,又AG ⊂平面AOG ,则l AG ⊥,即GAO ∠平面ABC 与平面α的夹角,由(1)知,AB AC ==,则12ABC S AB AC =⋅= ,在△AEF中,6AE AF EF ===,,则222cos 23AE AF EF EAF AE AF +-∠==⋅,于是1sin 3EAF ∠=,1sin 2EAF S AE AF EAF =⋅⋅∠= 因此112cos 122EAF ABC EF AOS AO GAO AG S BC AG ⋅∠====⋅ ,又π02GAO <∠≤,则π3GAO ∠=,所以平面ABC 与平面α的夹角为π3.19.如图,四棱锥S ABCD -的底面是平行四边形,平面α与直线AD SA SC ,,分别交于点,,P Q R ,且AP SQ CRAD SA CS==,点M 在直线SB 上运动,在线段CD 上是否存在一定点N,使得其满足:(i )直线//MN α;(ii )对所有满足条件(i )的平面α,点M 都落在某一条长为m的线段上,且3m SB =.若存在,求出点N 的位置;若不存在,说明理由.【答案】存在, N 在靠近 C 的三等分点处.【解析】【分析】以,,SA SB SC为一组基地,用向量证明即可.【详解】存在,N 在靠近C 的三等分点处.设SA a SB b SC c SD d ====,,,,则d a b c =-+,因为AP SQ CRx AD SA CS ===,所以()1SQ xa SR SC CR c xc x c ==+=-=-,,()()()11SP x a xd x a x a b c a xb xc =-+=-+-+=-+,又因为//MN α,所以存在λμ∈R ,,使得NM QR QP λμ=+,故()SM SN SP SQ SR μλμλ=+-++ ,设()()11SN tSC t SD tc t d =+-=+- ,所以()()()()()11SM tc t a b c a xb xc xa x c μλμλ=+--++-+-++-,整理得()()()11111SM t x x a t x b x x c μλμμλ⎡⎤⎡⎤⎡⎤=-+----++++-⎣⎦⎣⎦⎣⎦,又点M 在直线SB 上的充要条件是SM yb =,则()()110110t x x x x μλμλ⎧-+--=⎪⎨++-=⎪⎩,消去λ,得()211221x t x x μ--=-+,所以()()()()222213*********221tx t x t x t x t y t x t x x x x μ+----+-=--=-+=-+-+,故()()223233210y t x t y x y t -++--+-+=,①当322t y -=时,2t x =;②当322t y -≠时,()()()2Δ332423210t y y t y t =----+-+≥,所以()()()224843210*y t y t t --+--≤,12103y y -==,解得23t =.此时,①中0y =代入(*)不等式成立,故2133SN c d =+,所以存在,N 在靠近C 的三等分点处.【点睛】方法点睛:当平面α运动时,对于定点N ,确定动点M 的存在范围,使之满足所有的题设条件,我们以,,SA SB SC为一组基向量,利用向量的方法给出本题的一种证法.。

高一数学第二学期期中考试试卷含答案(共5套)

高一数学第二学期期中考试试卷含答案(共5套)

高一下学期期中考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.某质检人员从编号为1~100这100件产品中,依次抽出号码为3,13,23,…,93的产品进行检验,则这样的抽样方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .以上都不对 2.将八进制数135(8)化为二进制数为( ) A .1 110 101(2) B .1 010 101(2) C .1 111 001(2)D .1 011 101(2)3.某产品在某零售摊位上的零售价x (元)与每天的销售量y (个)统计如下表:据上表可得回归直线方程a ˆx b ˆy ˆ+=中的b ˆ=-4,据此模型预计零售价定为16元时,销售量为( )A .48B .45C .50D .514.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.65.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .106.如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6B .k ≤7C .k ≤8D .k ≤97.两人的各科成绩如茎叶图所示,则下列说法不正确的是( )A .甲、乙两人的各科平均分相同B .甲的中位数是83,乙的中位数是85C .甲各科成绩比乙各科成绩稳定D .甲的众数是89,乙的众数为878.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .29.利用秦九韶算法求f (x )=x 5+x 3+x 2+x +1当x =3时的值为( ) A .121 B .283 C .321 D .23910.如图,矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据可以估计椭圆的面积为( ) A .7.68 B .8.68 C .16.32D .17.3211.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. 91B. 92C. 187D.9412.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=21(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为32π,弦长为m 340的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3≈π,73.13≈) A . 15 B . 16 C . 17 D . 18第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归方程:y ∧=0.234x +0.521.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元. 14.已知sin(π4+α)=32,则sin(3π4-α)的值为________. 15.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件B A Y 发生的概率为________.(B 表示B 的对立事件)16.设函数y =f (x )在区间[0,1]上的图像是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得到S 的近似值为________. 二、解答题(17题10分,其余均12分)17.(10分) 已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.18.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程a ˆx b ˆyˆ+= (3)试预测加工10个零件需要多少小时?(注:b ∧=∑ni =1x i y i -n x - y -∑n i =1x i 2-n x -2,a ∧=y --b ∧ x -)零件的个数x(个)2345加工的时间y(小时) 2.5 3 4 4.519.(12分)已知α是第三象限角,f (α)=()()()α-π-•α-π-α-•α-π•α-πsin tan tan )2cos()sin((1)化简f (α);(2)若⎪⎭⎫ ⎝⎛π-α23cos =15,求f (α)的值;20.(12分)某校为了解高三年级学生的数学学习情况,在一次数学考试后随机抽取n 名学生的数学成绩,制成如下所示的频率分布表.(1)求a ,b ,n 的值;(2)若从第三、四、五组中用分层抽样的方法抽取6名学生,并在这6名学生中随机抽取2名与老师面谈,求第三组中至少有1名学生被抽到与老师面谈的概率.21.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.22.(12分)在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)求这两个班参赛学生的成绩的中位数.高一下期期中考试数学试题答案一、选择题B D B D A B D D BCD B二、填空题13. 0.234 14.3215.32 16.N1N三、解答题(17题10分,其余均12分)17.解:如图,点P所在的区域为正方形ABCD的内部(含边界),满足(x-2)2+(y-2)2≤9的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).∴所求的概率P1=14π×224×4=π16.18.解:(1)散点图如图.(2)由表中数据得∑4i=1x i y i=52.5,x -=3.5,y -=3.5,∑4i =1x i 2=54. ∴b ∧=0.7,∴a ∧=1.05. ∴y ∧=0.7x +1.05.(3)将x =10代入回归直线方程,得y ∧=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.19.解:(1)f (α)==-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝ ⎛⎭⎪⎫α-32π=cos ⎝ ⎛⎭⎪⎫32π-α=-sin α,又cos ⎝⎛⎭⎪⎫α-32π=15,∴sin α=-15.又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.20.解:(1)由表中数据,得5n =0.05,a n =0.35,20n=b ,解得n =100,a =35,b=0.20.(2)由题意,得第三、四、五组分别抽取的学生人数为3060×6=3,2060×6=2,1060×6=1.第三组的3名学生记为a 1,a 2,a 3,第四组的2名学生记为b 1,b 2,第五组的1名学生记为c ,则从6名学生中随机抽取2名,共有15种不同情况,分别为{a 1,a 2},{a 1,a 3},{a 1,b 1},{a 1,b 2},{a 1,c },{a 2,a 3},{a 2,b 1},{a 2,b 2},{a 2,c },{a 3,b 1},{a 3,b 2},{a 3,c },{b 1,b 2},{b 1,c },{b 2,c }.其中第三组的3名学生均未被抽到的情况共有3种,分别为{b 1,b 2},{b 1,c },{b 2,c }. 故第三组中至少有1名学生被抽到与老师面谈的概率为1-315=45.21解:(1)p=3162(2)先从袋中随机取一个球,记下编号m,放回后,再从袋中随机取一个球,记下编号n,可能的结果为(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16个,满足条件的事件为(1,3)(1,4)(2,4)共3个所以n ≥m+2的概率为p=16322.解:(1)各小组的频率之和为 1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40. ∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.4010=0.04.则补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x 人.∵第二小组的频数为40人,频率为0.40,∴40x=0.40,解得x=100(人).所以九年级两个班参赛的学生人数为100人.(3)∵(0.03+0.04)×10>0.5所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.设中位数为x则0.03×10+(x-59.5)×0.04=0.5得x=64.5高一下学期期中数学考试试卷(时间:120分钟满分:150分)第Ⅰ卷 (选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则( )A. B. C. D.2.( )A.0 B.1 C.2 D.43.若,则下列结论正确的是( )A. B.C. D.4.下列函数中,既不是奇函数,也不是偶函数的是( )A.B.C.D.5.函数的定义域是( )A. B. C. D.6.函数过定点( )A. B. C. D.7.已知,,,则=( )A. B. C. D.8.已知函数为幂函数,则实数的值为( )A.或 B.或 C. D.9.已知函数,若,则实数等于( )A .2 B. 45 C .12 D .910.若,则函数与的图象可能是下列四个选项中的( )11.已知是定义在上的奇函数,当时,,则当时,( )AB .C .D .12.若函数是定义在上的偶函数,在上是增函数,且,则使得的的取值范围是( ) A .B . C. D .第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.设集合,集合,若,则实数14.若,则=15.如果函数,的增减性相同,则的取值范围是.16.已知是方程的两个根,则的值是.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值(式中字母都是正数): (1);(2)已知,求的值.18.(本小题满分12分)已知集合,.(1)若,求;(2)⊆,求的取值范围.19.(本小题满分12分)已知函数+2.(1)求在区间上的最大值和最小值;(2)若在上是单调函数,求的取值范围.20.(本小题满分12分)已知函数是R上的奇函数,(1)求的值;(2)先判断的单调性,再证明.21.(本小题满分12分)已知函数,.(1)求函数的定义域;(2)讨论不等式中的取值范围.22.(本小题满分12分)若二次函数满足且. (1)求的解析式;(2)若在区间上不等式恒成立,求实数的取值范围.高一下学期期中考试试卷数学时量:120分钟 总分:150分一、选择题(本大题共12个小题,每小题5分,共60分)1.3x cos y =是( )A .周期为π6的奇函数B .周期为3π的奇函数C .周期为π6的偶函数D .周期为3π的偶函数2.已知sin α=41,则cos 2α的值为( )A .21B .87- C.21- D.873.已知平面向量()()3,2,4,1==→→b a ,则向量=+→→b a 5251( )A .()1,2B .()5,3 C.()3,5 D.()2,14.已知平面向量a =(2,4),b =(-4,m ),且a ⊥b ,则m =( )A .4B .2C .-4D .-25.为得到函数⎪⎭⎫ ⎝⎛+=33sin πx y 的图象,只需将函数y =sin 3x 的图象( )A .向左平移9π个长度单位B .向右平移9π个长度单位C .向左平移3π个长度单位D .向右平移3π个长度单位6.设a =(8,-2),b =(-3,4),c =(2,3),则(a +2b )·c 等于( )A .(4,18)B .22C .-6 D.(18,4)7.已知a ·b =122,|a |=4,a 与b 的夹角为45°,则|b |为( )A .12 A .3 C .6 D .98.若-π2<α<0,则点P (sin α,cos α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知α∠的终边经过点()31P ,,则=αsin ( )A .21 B .10103C .31D .3310.若=)(x f ⎪⎩⎪⎨⎧>⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛+2,32032sin ππππx x f x x ,,求)32(πf =( ) A.0 B.23C.21 D.1 11.已知2tan -=α,则αααα22cos sin cos sin 3-的值是( ) A .2- B . 3 C .2 D .3- 12.在Rt △ABC 中,∠C =90°,AC =3,则AB →·AC→等于( )A .-3B .-6C .9D .6 二、填空题(本大题共4小题,每小题5分,共20分)13.已知AB →=(2,7),AC →=(-5,8),则BC →=__________________.14.函数()()()R x x x x f ∈-=cos sin 2的最小正周期为________,最大值为________. 15.设a =(5,-2),b =(6,2),则2|a |2-12a ·b =______________.16.已知tan α=-2,tan(α+β)=5,则tan β的值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知()ππθθ2,,53cos ∈=,求⎪⎭⎫ ⎝⎛+6sin πθ以及⎪⎭⎫ ⎝⎛-4tan πθ的值.18.(10分)设函数()⎪⎭⎫ ⎝⎛+=6sin 2πωx x f ,0>ω,最小正周期为2π. (1)求()0f .(2)求()x f 的解析式.(3)求()x f 的单调递增区间.19.(12分)已知向量a =(3,2),b =(-1,3),c =(5,2).(1)求6a +b -2c ;(2)求满足a =m b +n c 的实数m ,n ; (3)若(a +k c )//(2b -a ),求实数k . 20. (12分)已知23παπ<<,211-tan tan -=αα.(1)求αtan 的值。

青海海南藏族自治州第一民族高级中学2023-2024学年高一下学期期中考试数学试题(含解析)

青海海南藏族自治州第一民族高级中学2023-2024学年高一下学期期中考试数学试题(含解析)

海南州第一民族高级中学2023~2024学年度第二学期期中考试高一数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:必修第二册第六章~第八章8.1—8.4.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设点O 是正三角形的中心,则向量是( )A .相同的向量B .模相等的向量C .共线向量D .共起点的向量2.用一个平面截一个几何体,得到的截面是三角形,这个几何体不可能是()A .长方体B .圆锥C .棱锥D .圆台3.复平面内表示复数的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知为不共线向量,,则( )A .三点共线B .三点共线C .三点共线D .三点共线5.如图,在正方形中,分别是的中点,若,则()A .2B.C .D .6.在中,内角所对的边分别为,若)ABC ,,AO BO CO1iiz -=,a b 5,28,3()AB a b BC a b CD a b =+=-+=-,,A B D ,,A B C ,,A C D ,,B C D ABCD ,M N ,BC CD AC AM BN λμ=+λμ+=836585,,A B C ,,A B C ,,a b c ::1:2a b c =A.B .C .D .7.若水平放置的四边形按“斜二测画法”得到如图所示的直观图,四边形为等腰梯形,,则原四边形的面积为( )A .B .C .D .8.如图,是底部不可到达的一座建筑物,A 为建筑物的最高点,某同学选择地面作为水平基线,使得在同一条直线上,在两点用测角仪器测得A 点的仰角分别是和,则建筑物的高度为( )A .BC .D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下关于平面向量的说法中,正确的是( )A .既有大小,又有方向的量叫作向量B .所有单位向量都相等C .零向量没有方向D .平行向量也叫作共线向量10.分别在两个相交平面内的两条直线间的位置关系是()A .平行B .相交C .异面D .以上皆不可能11.已知i 为虚数单位,复数,则( )A .与互为共轭复数B .C .为纯虚数D .12.在中,内角所对的边分别为,下列说法正确的是( )A .若,则B .若,则只有一解π3π22π35π6AOBC O A C B '''',4,8A C O B A C O B '''''''==∥AOBC AB CD ,,C D B ,C D 45︒75,10CD ︒=AB 5312312i,2i,i z z z =+=-=1z 2z 12z z =123z z z ++()1323i z z z +⋅=+ABC ,,A B C ,,a b c A B >sin sin A B>60,2, 1.74A c a =︒==ABCC .若,则为直角三角形D .三、填空题:本题共4小题,每小题5分,共20分.13.在复平面内,复数z 对应的点为,则_______.14.圆柱的底面圆周的半径为5,高为8,则该圆柱的表面积为_______.15.在中,,则的外接圆半径为_______.16.如图,一艘船以每小时的速度向东航行,船在A 处观测灯塔C 在北偏东方向,行驶后,船到达B 处,观测个灯塔C 在北偏东方向,此时船与灯塔C 的距离为_______.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)已知i 是虚数单位,复数.(1)当复数z 为实数时,求m 的值;(2)当复数z 为纯虚数时,求m 的值;18.(本小题满分12分)已知平面向量满足,其中.(1)若,求实数m 的值;(2)若,求向量与的夹角的大小.19.(本小题满分12分)在中,内角所对的边分别为,且.(1)求角C ;(2)若的面积为,求的值.20.(本小题满分12分)如图,某种水箱用的“浮球”是由两个半球和一个圆柱筒组成,已知球的直径是,圆柱筒长.tan aA b=ABC cos cos cos 0A B C ++>(2,1)-i 1z -=ABCπ,44A AB AC ===ABC 20km 45︒2h 15︒km ()()22562i,z m m m m m =-++-∈R ,a b (1,2),(4,1)a m b =--=-m ∈R a b∥a b ⊥ 2a b - bABC A B C 、、,,a b c 222ab c a b =--ABCc =a b 、8cm 3cm(1)这种“浮球”的体积是多少?(2)要在这样1000个“浮球”表面涂一层胶质,如果每平方厘米需要涂胶0.02克,共需胶多少克?21.(本小题满分12分)如图,在正方体中,分别是上的点,且.(1)证明:四点共面;(2)设,证明:三点共线.22.(本小题满分12分)在平面四边形中(在的两侧),.(1)若,求;(2)若,求四边形的面积的最大值.3cm 1111ABCD A B C D -,E F 1,AB AA 12,2A F FA BE AE ==1,,,E C D F 1D F CE O = ,,A O D ABCD ,B D AC 1,120AD CD ADC ==∠=︒90,DAB BC ∠=︒=ABC ∠2AB BC =ABCD海南州第一民族高级中学2023~2024学年度第二学期期中考试·高一数学参考答案、提示及评分细则1.B 是正的中心,向量分别是以三角形的中心和顶点为起点和终点的向量,到三个顶点的距离相等,但向量不是相同向量,也不是共线向量,也不是起点相同的向量.故选B .2.D 过长方体三个顶点的截面为三角形;圆锥轴截面为三角形;过棱锥底面不相邻两顶点和棱锥顶点的截面为三角形.3.C ,故对应的点在第三象限.4.A 因为,所以三点共线,故选A .5.D 取向量作为一组基底,则有,所以.又.所以,即.6.C 设,易知C 最大.7.D 在直观图中,四边形为等腰梯形,,而,则,由斜二测画法得原四边形是直角梯形,,如图.所以四边形的面积为.故选D .8.A 在中,,由正弦定理,得O ABC ,,OA OB OCO∴||||||AO BO CO == ∣,,AO BO CO1111ABCD A B C D -1A C B 、、221i (1i)i i i 1i i i 1z ---====---28335BD BC CD a b a b a b AB =+=-++-=+=,,A B D ,AB BC11,22AM AB BM AB BC BN BC CN BC AB =+=+=+=-112222AC AM BN AB BC BC AB AB BC μλλμλμλμ⎛⎫⎛⎫⎛⎫⎛⎫=+=++-=-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭AC AB BC =+ 111,122λμμλ-=+=628,,555λμλμ==+=,2,(0)a k b k c k ===>22212πcos ,(0,π),223a b c C C C ab +-==-∈=A CB O ''''45A O B '''∠=︒4,8A C O B ''''==O A ''=AOBC ,90,AC OB AOB OA OB︒∠==∥28AC ==AOBC 4822AC OB OA ++⨯=⨯=ACD 754530CAD ADB ACD ∠=∠-∠=︒-︒=︒sin 30sin 45CD AD=︒︒,在中,,故选A .9.AD 根据给定条件结合平面向量的基本概念,逐项分析判断作答,由向量的定义知,既有大小,又有方向的量叫做向量,A 正确;单位向量是长度为1的向量,其方向是任意的,B 不正确;零向量有方向,其方向是任意的,C 不正确;由平行向量的定义知,平行向量也叫做共线向量,D 正确.故选AD .10.ABC 当两直线分别平行于交线时,这两条直线平行,A 正确;两条直线可以交于交线上一点,故可以相交,B 正确;一条直线和交线平行,另一条直线在另一个平面内过交线上一点和交线外一点时,两直线异面,C 正确.11.BD 因为的共轭复数为,所以A 不正确;因为,所以B 正确;因为,所以C 不正确;因为,所以,所以D 正确.12.AD 对于A选项,由,有,由正弦定理可得,故A 选项正确;对于B,可知有两解,可知B 选项错误;对于C 选项,由,得,有,可得或,可知C 选项错误;对于D 选项,若为锐角三角形或直角三角形,有;若为钝角三角形,不妨设C 为钝角,有,有,可知D 选项正确.故选AD .13. 因为复数z 对应的点为,所以,所以.因为圆柱的底面圆的半径为5、高为8,所以圆柱底面圆的周长为,所以该圆柱的表面积为.15根据余弦定理:.由正弦定理,AD =ABDsin 755AB AD =︒==+i z a b =+i z a b =-1z ===12312i 2i (i)3z z z ++=++-+-=131i z z +=+()132(1i)(2i)3i z z z +⋅=+-=+A B >a b >sin sin A B >1.742<<ABC tan a A b =sin sin tan A B A =cos sin A B =π2A B +=π2B A =+ABC cos cos cos 0A B C ++>ABC cos 0,cos 0,cos 0C A B <>>cos cos cos cos cos cos cos(A B C A C A A++>+=-)cos cos cos sin sin cos (1cos )0B A A B A B A B +=-+>->2i (2,1)-2i z =-i(2i)12i --=130π10π50π80π130π+=BC ===ABC.16.由图知,由正弦定理有17.(1)当复数z 为实数时,有或.5分(2)当复数z 为纯虚数时,有,解得.10分18.解:(1)因为,又,所以, 3分解得;…4分(2)因为,所以,解得,所以, 6分所以,7分所以,…9分,…10分所以向量与夹角的余弦值为11分又由,可得. 12分19.解:(1)由余弦定理有3分因为,可得; 6分(2)由题意有…8分=30,40C AB ∠=︒=sin 45sin 30AB BC ︒===︒220,0m m m -=∴=2m =2256020m m m m ⎧-+=⎨-≠⎩3m =(1,2),(4,1)a m b =--=-a b ∥12(4)m -=-⨯-9m =a b ⊥4(1)20a b m ⋅=---= 12m =1,22a ⎛⎫=-- ⎪⎝⎭122,2(4,1)(3,5)2a b ⎛⎫-=----=- ⎪⎝⎭|2||a b b -==== (2)3(4)(5)117a b b -⋅=⨯-+-⨯=-2a b - bθcos θ==0πθ<<3π4θ=2221cos 222a b c ab C ab ab +--===-0πC <<2π3C =12πsin 23ab =8ab =又由,可得 10分有联立方程,解得或故或.12分20.解:(1)该半球的直径,所以“浮球”的圆柱筒直径也是,得半径, 1分所以两个半球的体积之和为, 3分而,…5分该“浮球”的体积是; 6分(2)上下两个半球的表面积是, 7分而“浮球”的圆柱筒侧面积为, 8分所以1个“浮球”的表面积为,9分因此,1000个“浮球”的表面积的和为, 11分因为每平方厘米需要涂胶0.02克,所以总共需要胶的质量为(克). 12分21.(1)证明:如图,连接.在正方体中,,所以, 2分又,且,所以四边形是平行四边形,所以,4分,所以四点共面; 6分c =2228ab a b =--2220a b +=6a b +===68a b ab +=⎧⎨=⎩24a b =⎧⎨=⎩42a b =⎧⎨=⎩2,4a b ==4,2a b ==8cm d =8cm 4cm R ==3344256ππ64πcm 333V R ==⨯=球23ππ16348πcm V R h ==⨯⨯=圆柱3256π400π48πcm 33V V V =+=+=球圆柱224π4π1664πcm S R ==⨯=球表22π2π4324πcm S Rh ==⨯⨯=圆柱侧264π24π88πcm +=2100088π88000πcm ⨯=20.0288000πcm 1760π⨯=11,,EF A B D C 1111ABCD A B C D -12,2A F FA BE AE ==1EF A B ∥11BC A D ∥11BC A D =11BCD A 11A B D C ∥1EF D C ∴∥1,,,E C D F(2)证明:由,又平面平面, 8分同理平面,又平面平面,10分,即三点共线.12分22.解:(1)在中,由余弦定理得,即.因为,所以,又,所以. 2分在中,由正项定理得,所以4分又,所以,所以; 5分(2)设,所以.在中,由余弦定理得.所以的面积, 8分所以,此时, 9分又的面积,所以四边形的面积的最大值为. 12分11,D F CE O O D F =∴∈ 1D F ⊂11,ADDA O ∴∈11ADD A O ∈ABCD 11ADD A ABCD AD =O AD ∴∈,,A O D DAC 2222cos 3C DA DC DA DC ADC =+-⋅∠=AC =1,120AD CD ADC ==∠=︒30DAC ∠=︒90DAB ∠=︒60BAC BAD DAC ∠=∠-∠=︒ABC sin sin AC BCABC BAC=∠∠sin sin AC BACABC BC∠∠===BC AC =>=60ABC ∠<︒45ABC ∠=︒(0)BC m m =>2BA m =ABC 222222224353cos 244BA BC AC m m m ABC BA BC m m+-+--∠===⋅ABC 11sin 222S BA BC ABC m =⋅∠=⋅=max 1S =253m =DAC 1sin 2DAC S DA DC ADC =⋅∠=ABCD max 1DAC S S +=+。

2022—2023学年度广东省茂名市第一中学高一第二学期期中考试数学试题及答案

2022—2023学年度广东省茂名市第一中学高一第二学期期中考试数学试题及答案

茂名市第一中学2022—2023学年度第二学期期中考试高一数学试卷考试时间:120分钟总分:150分一、单项选择题(本大题共8小题,每小题5分,共40分)1.设z =1+2i ,则在复平面内z 的共轭复数对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.=()A .B .C .D .3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知1,3,3===b a A π,则c 等于()A .2B .C .D .4.一梯形的直观图是如图所示的等腰梯形,且直观图OA ′B ′C ′的面积为2,则原梯形的面积为()A .2B .22C .24D .45.为了得到函数ππsin 3cos cos3sin 33y x x =+的图象,可以将函数sin 3y x =图象()A.向左平移π个单位B.向左平移π9个单位C.向右平移π个单位D.向右平移π9个单位6.在空间中,下列命题正确的是()A .三点确定一个平面B .若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行C .两两相交且不共点的三条直线确定一个平面D .如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行7.在ABC 中,已知2cos c a B =⋅,那么ABC 一定是()A.等腰直角三角B.等腰三角形C.直角三角形D.等边三角形8.已知中,,,点D 是AC 的中点,M 是边BC 上一点,的最小值是()A. B. C. D.二、多选题(本大题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分。

)9.复数i z 2321+=,i 是虚数单位,则下列结论正确的是()A.z 的实部是21 B.z 的共轭复数为3122i +C.z 的实部与虚部之和为2 D.z 在复平面内的对应点位于第一象限10.已知平面向量()1,0a =,(1,b = ,则下列说法正确的是()A.||16a b +=B.()2a b a +⋅= C.33,cos >=<→→b a D.向量+a b在a 上的投影向量为2a11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的有()A .若sin A >sinB ,则A >BB .若sin2A =sin2B ,则△ABC 一定为等腰三角形C .若cos 2A +cos 2B ﹣cos 2C =1,则△ABC 为直角三角形D .若△ABC 为锐角三角形,则sin A <cos B 12.如图,在直三棱柱中,,,,侧面的对角线交点O ,点E 是侧棱上的一个动点,下列结论正确的是()A.直三棱柱的体积是1B.直三棱柱的外接球表面积是C.三棱锥的体积与点E 的位置有关D.的最小值为三、填空题(每小题5分,共20分)13.设复数z 满足其中i 是虚数单位,则__________.14.圆锥的半径为2,高为2,则圆锥的侧面积为.15.非零向量→a =(sin θ,2),=(cos θ,1),若→a 与共线,则tan (θ﹣4π)=.16南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即])2([41222222b a c a c S -+-=(其中S 为三角形的面积,a ,b ,c 为三角形的三边).在斜△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若)cos 3(cos C B c a +=,且B C a sin 3sin =.则此△ABC 面积的最大值为.四、解答题(本大题共6小题,共70分)17.(10分)已知向量→a =(1,1),→b =(2,﹣3).(1)若→c =2→a +3→b ,求→c 的坐标;(2)若→a λ﹣2→b 与→a 垂直,求λ的值.18.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足bc a c b -=-22)(.(1)求角A 的大小;(2)若a =2,sinC =2sinB ,求△ABC 的面积.19.(12分)(1)已知正四棱锥的底面边长是6,侧棱长为5,求该正四棱锥的体积;(2)如图(单位:cm ),求图中阴影部分绕AB 旋转一周所形成的几何体的体积.20(12分)已知函数x x x x f 4cos 212sin )1cos 2()(2+-=.(1)求f (x )的最小正周期及单调递减区间;(2)若α∈(0,π),且22)84(=-παf ,求α的值.21.(12分)如图,在四棱锥P ﹣ABCD 中,E 是线段PD 上的点,且,PA =PD =AD =3,32CE =,BC ∥AD ,∠ADC =45°.(1)求证:CE ∥平面PAB ;(2)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使MN ∥平面PAB ?若存在,求出MN 的最小值;若不存在,说明理由.22.(12分)借助国家实施乡村振兴政策支持,某网红村计划在村内扇形荷花水池OAB 中修建荷花观赏台,助推乡村旅游经济.如图所示,扇形荷花水池OAB 的半径为20米,圆心角为π4.设计的荷花观赏台由两部分组成,一部分是矩形观赏台MNPQ ,另一部分是三角形观赏台AO C.现计划在弧AB 上选取一点M ,作MN 平行OA 交OB 于点N ,以MN 为边在水池中修建一个矩形观赏台MNPQ ,NP 长为5米;同时在水池岸边修建一个满足AO OC =且2COA AOM ∠=∠的三角形观赏台AOC ,记)46(ππ<≤=∠x x AOM .(1)当π6AOM ∠=时,过点M 作OA 的垂线,交OA 于点E ,过点N 作OA 的垂线,交OA 于点F,求ME ,OF 及矩形观赏台MNPQ 的面积;(2)求整个观赏台(包括矩形观赏台和三角形观赏台两部分)面积的最大值.茂名市第一中学2022—2023学年度第二学期期中考试高一数学试卷答案1【答案】D .解:∵z =1+2i ,∴z 的共轭复数=1﹣2i ,对应的点为(1,﹣2),故在第四象限,2【答案】D解:根据向量的线性运算法则,可得.3【答案】A解:,则由余弦定理可得,3=1+c 2﹣2c ×1×cos=1+c 2﹣c ,∴c 2﹣c ﹣2=0,解得c =2或﹣1(舍).4【答案】C解:把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a ,下底为b ,高为h ,则直观图中等腰梯形的高为h ′=h sin45°;∵等腰梯形的体积为(a +b )h ′=(a +b )•h sin45°=2,∴(a +b )•h ==4∴该梯形的面积为4.5【答案】B【详解】依题意,ππππsin 3coscos3sin sin(3)sin 3(3339y x x x x =+=+=+,所以函数sin 3y x =图象向左平移π9个单位可得πsin 3()9y x =+的图象.6【答案】C解:对于A ,不共线的三点确定一个平面,故A 错误;对于B ,l ∥α,则l 与平面α内的直线平行或异面,故B 错误;对于C ,由平面基本性质及其推论得:两两相交且不共点的三条直线确定一个平面,故C 正确;对于D ,如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行或在这个平面内,故D 错误.7【答案】B解:已知2c a cosB =,则:2sinC sinAcosB =,整理得:()2sin A B sinAcosB +=,则:()0sin A B -=,所以:A B =.8.【答案】B解:根据题意,建立图示直角坐标系,,,则,,,,是边BC上一点,设,则,,,当时,取得最小值,9【答案】ACD解:由题得A 正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,22,位于第一象限,则D 正确.10【答案】BD解:((11,02,2a b +=++= ,所以4a b +==,故A错误;()1202a a b ⋅+=⨯+⨯=,故B 正确;1313,cos =⋅>=<→→→→→→ba b a b a ,向量+a b 在a 上的投影向量为()2·21a ab a a a a a ⋅+=⨯=,故D 正确.11【答案】AC【解答】解:对于A ,若sin A >sin B 成立,由正弦定理可得a >b ,所以A >B ,故正确;对于B ,由sin2A =sin2B ,得到2A =2B 或2A +2B =π,可得A =B 或A +B =,则△ABC为等腰三角形或直角三角形,故错误;对C ,若cos 2A +cos 2B ﹣cos 2C =1,可得若(1﹣sin 2A )+(1﹣sin 2B )﹣(1﹣sin 2C )=1,整理得:sin 2A +sin 2B =sin 2C ,可得a 2+b 2=c 2.可得△ABC 为直角三角形,故正确;对于D ,若△ABC 是锐角三角形,则A +B +C =π,A +B >,A >﹣B ,A 、B 、C 均是锐角,由正弦函数在(0,)递增,所以:sin A >sin (﹣B )=cos B ,故错误.12【答案】AD解:在直三棱柱中,,,所以其体积V=Sh=121121=⨯⨯⨯,故A 正确;对于B ,由直三棱柱结构特征及外接球的对称性可得,其外接球即为长宽高分别为2,1,1的长方体的外接球,所以其外接球半径为,所以其外接球的表面积为,故B 错误;由平面,且点E 是侧棱上的一个动点,,三棱锥的高h 为定值,,,故三棱锥的体积为定值,故C 错误;将四边形沿翻折,使四边形与四边形位于同一平面内,此时,连接与相交于点E ,此时最小,即,故D 正确.13【答案】解:,故14【答案】解:如图,圆锥的母线,圆锥的侧面展开图为扇形,故侧面积为,.15【答案】【解答】解:∵向量=(sin θ,2),=(cos θ,1),且与共线,∴=2,即tan θ=2,则tan(θ﹣)===.16【答案】解:∵,∴sin A=sin C(cos B+cos C),即sin C cos B+sin C cos C=sin(B+C)=sin B cos C+cos B sin C,即sin C cos C=sin B cos C,又C∈(0,π)且C≠,∴sin B=sin C,∴b=c,又.∴ac=b,解得a=3,===,当c=3时,S max=.17解:(1)∵=(1,1),=(2,﹣3),∴=2+3=2(1,1)+3(2,﹣3)=(8,﹣7); 4分(2)λ﹣2=λ(1,1)﹣2(2,﹣3)=(λ﹣4,λ+6), 6分∵λ﹣2与垂直,∴1×(λ﹣4)+1×(λ+6)=0, 9分即λ=﹣1. 10分18解:(1)因为(b﹣c)2=a2﹣bc,可得b2+c2﹣a2=bc, 2分所以cos A==, 3分又A∈(0,π),所以A=. 5分(2)因为sin C=2sin B,由正弦定理可得c=2b, 6分又a=2,由余弦定理可得a2=b2+c2﹣2bc cos A,可得4=b2+c2﹣bc, 8分解得b=,c=, 10分所以S△ABC=bc sin A=××= 12分19【解答】解:(1)正四棱锥的底面边长是a=6,侧棱长为l=5,所以正四棱锥的高为h==, 2分所以正四棱锥的体积为V=Sh=×62×=12; 5分(2)图中阴影部分绕AB旋转一周所形成的几何体,是圆台挖去一个半球,圆台的体积为V圆台=π(r2+rr′+r′2)h=×(22+2×5+52)×4=52π, 8分半球的体积为V半球=πr3=×23=, 10分所以该几何体的体积为V=V圆台﹣V半球=52π﹣=3140(cm3). 12分20【答案】(1);;(2).【解答】解:(1)∵f(x)=(2cos2x﹣1)sin2x+cos4x=cos2x sin2x+cos4x 1分=(sin4x+cos4x)=sin(4x+), 3分∴f(x)的最小正周期T=, 4分令,可得,∴f(x)的单调递减区间为; 6分(2)∵f()=,∴, 8分∵α∈(0,π),,∴, 10分∴ 12分21【解答】(1)证明:如图1,在PA上取点F使,连接EF,BF,如图示:∵,∴EF∥AD且, 1分又BC∥AD,且, 2分∴EF∥AD,EF=AD,∴四边形BCEF为平行四边形,∴CE∥BF, 3分而CE⊄平面PAB, 4分BF⊂平面PAB,则CE∥平面PAB. 5分(2)解:线段AD上存在点N且,使得MN∥平面PAB;理由如下:如图2,在AD上取点N使,连接CN,EN,如图示:∵,,∴EN∥PA, 6分∵EN⊄平面PAB,PA⊂平面PAB,∴EN∥平面PAB; 7分由(1)知CE∥平面PAB,又CE∩EN=E,∴平面CEN∥平面PAB,又M是CE上的动点,MN⊂平面CEN,∴MN∥平面PAB, 8分∴线段AD上存在点N,使得MN∥平面PAB.∵BC∥AN,BC=AN,∴ND=2, 9分在△CND中,∠ADC=45°,,由余弦定理知CN=2. 10分在△CEN中,CN=NE=2,,∴由余弦定理知∠CNE=120°,∴MN 的最小值为, 11分∴线段AD 上存在点N ,使MN ∥平面PAB ,且MN 的最小值为1. 12分22.【详解】(1)当π6AOM ∠=时,则π1sin 201062ME OM =⋅=⨯=. 2分πcos 2062OE OM =⋅=⨯=. 3分过N 作OA 的垂线,交AO 于点F ,NF ME =.∵π4AOB ∠=,10OF NF ==,∴10MN OE OF =-=-. 4分因为5NP =.矩形MNPQ 的面积())510501S MN NP =⋅=⨯=-平方米.所以矩形观赏台MNPQ 的面积)501平方米. 5分(2)由题意可知,AOM x ∠=,π4AOB ∠=,π4MON x ∠=-,3π4MNO ∠=,在OMN 中,由sin sin MN OM MON MNO =∠∠,得()cos sin 20cos sin MN OM x OM x x x =-=-. 6分矩形MNPQ 的面积()()1520cos sin 100cos sin S MN NP x x x x =⋅=⨯-=-.7分观赏台AOC 的面积211sin 2020sin 2200sin 222S OA OC AOC x x =⋅⋅∠=⨯⨯=.整个观赏台面积()12100cos sin 200sin 2S S S x x x=+=-+. 8分设πcos sin 4t x x x ⎛⎫=-=+ ⎪⎝⎭,46(ππ<≤x ,∴.2130-≤<t 9分()2222cos sin cos sin 2sin cos 1sin 2t x x x x x x x =-=+-=-.∴2sin 21x t =-. 10分∴()100cos sin 200sin 2S x x x =-+()2211002001200212.54t t t ⎛⎫=+-=--+ ⎪⎝⎭.当]213,0(41-∈=t 时,整个观赏台观赏台S 取得最大值为212.5平方 11分∴整个观赏台的面积S 的最大值为212.5平方米. 12分。

上海宝山世外学校高中国内部2023-2024学年高一年级第二学期数学学科期中考试试卷答案

上海宝山世外学校高中国内部2023-2024学年高一年级第二学期数学学科期中考试试卷答案

上海宝山世外学校高中国内部2023/2024学年第二学期期中考试 高一数学 试卷(考试时间: 120分钟 满分: 150分)班级 学号 姓名一. 填空题(本大题共有12题, 满分54分, 第1~6题每题4分, 第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 已知角α的终边经过点P(-3,4), 则cosα= .【答案】−35.2、复数 11−i的共轭复数的模是 .【答案】223、在复数范围内,方程.x²-2x+2=0的解为 .【答案】 1+3或 1−i.4.在△ABC 中, AB =c ,AC =b , 若点D 满足 BD =2DC ,则 AD =¯.【答案】23b +1c 5.已知 sin (π2+2α)=−13,则cos(π+2α)= 【答案】−136 关于x 的实系数一元二次方程. x²+kx +3=0有两个虚根x ₁和x ₂,若 |x 1−x 2|=22,则实数k= .【答案】 k =2或 k =−2.7.已知向量ā在向量b 方向上的投影向量为-2b ,且 |b |=3,则 a ⋅b =¯..(结果用数值表示)【答案】 −18.8 已知点A 的坐标为( (43,1),,将OA 绕坐标原点O 逆时针旋转π/3至OB ,则点B 的坐标为【答案】1329.正方体的6个面无限延展后把空间分成个部分【答案】 2710.如图,为计算湖泊岸边两景点B与C之间的距离,在岸上选取A和D两点, 现测得AB=5km, AD=7km, ∠ABD=60°,∠CBD=23°,∠BCD=117°,据以上条件可求得两景点B与C之间的距离为 km(精确到0.1km).【答案】5.811.在△ABC中, a=2, b=3, 若该三角形为钝角三角形, 则边C的取值范围是 .【答案】(1,5)∪(13,5).12 将函数f(x)=4cos(π2x)和直线g(x)=x-1的所有交点从左到右依次记为.A₁,A₂,……,Aₙ,若P的坐标为(0,5),则|PA1+PA2+⋯+PAn|的值为 .【答案】30二、选择题(本大题共有4题, 满分18分, 第13、14题每题4分, 第15、16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.下列说法正确的是 ( )A. 四边形一定是平面图形B.不在同一条直线上的三点确定一个平面C.梯形不一定是平面图形D.平面α和平面β一定有交线【答案】B14. 设z₁、z₂为复数, 则.z21+z22=0是z₁=z₂=0的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C15.设函数f(x)=asinx+bcosx,其中a>0,b>0,若f(x)≤f(π4)对任意的x∈R恒成立,则下列结论正确的是 ( )Af(π2)>f(π6)в f(x)的图像关于直线x=3π4对称C. f(x)在[π4,5π4]上单调递增D.过点(a,b)的直线与函数f(x)的图像必有公共点【答案】D16 给定方程: (12)x+sin x−1=0,给出下列4个结论:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x₀是方程的实数根,则x₀>−1.其中正确结论的个数是A.1B.2C.3D.4【答案】C三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知复数z是纯虚数,(z+2)²−8i是实数.(1) 求z; (2) 若1z1=1z+2−z,求|z1|.【答案】z=2i,2824118. (本题满分14分,第1小题满分6分,第2小题满分8分)已知平面内给定三个向量a=(3,2),b=(−1,2),c=(4,1).(1) 若a=mb−nc,求实数m,n的值;(2) 若(a−kc)⋅(kb)<6,求实数k的取值范围.【答案】m=59,n=−89, (−2,32)19. (本题满分14分,第1小题满分6分,第2小题满分8分)在△ABC中, 角A, B, C所对的边分别为a, b, c.(1) 若c=2,C=π3,且△ABC的面积.S=3,求a, b的值;(2) 若sinC+sin(B--A)=sin2A, 判断△ABC的形状.【答案】a=b=2,△ABC 为等腰或直角三角形20. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数 f (x )=3sin ωx cos ωx +sin 2ωx−12(其中常数ω>0)的最小正周期为π.(1) 求函数y=f(x)的表达式;(2)作出函数y=f(x),x∈[0,π]的大致图像,并指出其单调递减区间;(3) 将y=f(x)的图像向左平移φ(0<φ<π)个单位长度得到函数y=g(x)的图像,若实数x ₁,x ₂满足. f (x₁)g (x₂)=−1,且 |x₁−x₂||的最小值是 π6,求φ的值.【答案】 y =f (x )=sin (2x−π6), [π3 , 5π6],φ=π3或 2π3【解析】(1)∵函数f (x )=3sin ωx cos ωx +sin 2ωx−12=32sin 2ωx +1−2cos 2ωx2−12=sin (2ωx−π6)(其中常数 ω>0)的最小正周期为 2π2ω=π,∴ω=1.函数 y =f (x )=sin (2x−π6).(2)作出函数 y =f (x ),x ∈[0,π]的大致图像:作图:2x-π6-π6π2π3π211π6xπ12π37π125π6πf(x)-12010—1-12作图:结合图像,可得其单调递减区间为[π3,5π6].(3)将y=f(x)=sin(2x−π6)的图像向左平移φ(0<φ<π)个单位长度,得到函数y=g(x)=sin(2x+2−π6)的图像,若实数x₁, x₂满足f(x₁)g(x₂)=−1,则f(x₁)与g(x₂)一个等于1,另一个等于.−1,且|x₁−x₂|的最小值为|T2−φ|=π6,即|122π2−φ|=π6求得φ=π3或2π3.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)在平面直角坐标系中,我们把函数y=f(x),x∈D上满足.x∈N°,y∈N*(其中N⁺表示正整数)的点P(x,y)称为函数y=f(x)的“正格点”.(1)写出当m=π2时, 函数f(x)=sin mx, x∈R图像上所有正格点的坐标;(2)若函数f(x)=sinmx, x∈R,m∈(1,2)与函数g(x)=lgx的图像有正格点交点, 求m的值,并写出两个图像所有交点个数,需说明理由.(3) 对于 (2) 中的m值和函数f(x)=sinmx, 若当x∈[0,59]时,不等式log a x>22f(x)恒成立,求实数a的取值范围.【答案】(4k+1,1)(k∈N),4,(2581,1)【解析】(1) 因为 m =π2,一所以 f (x )=sin π2x,所以函数 f (x )=sin π2x 的正格点为(1,1),(5,1), (9,1), ……, (4k+1,1)(k∈N).(2)作出两个函数图像,如图所示:可知函数. f (x )=sinmx,x ∈R,与函数 g (x )=lg x 的图像只有一个“正格点”交点(10,1),所以 2kπ+π2=10m,m =4k +120π, k ∈Z,又 m ∈(1,2),可得 m =9π20,根据图像可知,两个函数图像的所有交点个数为4;(3)由 (2) 知 f (x )=sin 9π20x,x ∈(0,59]所以 9π20x ∈(0,π4],所以f (x )=sin 9π20x ∈(0,22],故22f (x )∈(0,12],当 a >1时,不等式 log a x >22f (x )不能恒成立,当 0<a <1时, 由下图可知log a 59>22sin π4=12,由loga 59>12=logaa,.综上,实数a的取值范围是2581<a<1。

人教版高一年级第二学期期中考试数学试卷与答案解析(共五套)

人教版高一年级第二学期期中考试数学试卷与答案解析(共五套)
A. B. C. D.2
8.已知 ,且 ,则 ( )
A.4B.3C. D.
9.在△ 中, 为 边上的中线, 为 的中点,则
A. B.
C. D.
10.△ABC的内角A、B、C的对边分别为 、b、c.已知 , , ,则b=
A. B. C.2D.3
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
解得 ( 舍去),故选D.
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
A. B. C. D.
【答案】B
【解析】设 ,其中 ,则 .
由题意得 ,解得 ,即 .
故选:B.
12.若非零向量 满足 ,且 ,则 的夹角为
A. B.
C. D.
【答案】A
【解析】∵ ,所以 ,即 ,
即 ,∴
,又 ,故 ,故选A.
A.3B.2C. D.
【答案】D
【解析】点 是 所在平面上一点,过 作 ,如下图所示:
由 ,
故 ,
所以 与 的面积之比为 ,
故选:D.
7.设复数z满足(1+i)z=2i,则|z|=( )
A. B. C. D.2
【答案】C
【解析】题意, ,所以 .故选:C.
8.已知 ,且 ,则 ( )
A.4B.3C. D.
(2)因为 为三角形内角,
所以 ,

由正弦定理得: ,
又∵ .
,解得 或 (舍).

22.在 中,角 所对的边分别为 ,已知 .
(1)求角 的大小;
(2)若 ,求 的取值范围.
【答案】(1) ;(2)
【解析】(1)∵ ,
∴ ,
即 ,
∵ ,∴ ,∴ .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期中考试试卷
高一数学
(时间120分钟,满分150分)
注意事项:
⒈答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上. ⒉ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷(选择题 共60分)
一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. ︒
tan600的值是 ( )
A.33-
B. 3
3
C.3
D. 3- 2.已知α是第二象限角,那么
2
α
是 ( ) A .第一象限角 B. 第二象限角 C. 第二或第四象限角 D .第一或第三象限角 3.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对 4.函数)2
2cos(π
+=x y 的图象的一条对称轴方程是 ( )
A .2
π
-
=x B. 4
π
-
=x C. 8
π
=
x D. π=x
5.函数x y 2sin 3=的图象可以看成是将函数)3
x 2sin(3y π
-=的图象 ( )
A .向左平移个6π单位 B. 向右平移个6π
单位
C .向左平移个3π单位 D. 向右平移个3
π
单位
6.函数cos 24y x π⎛⎫
=-
⎪⎝⎭
在下列区间上为增函数的是( ) ()4,45A ππ⎡⎤⎢
⎥⎣⎦
()5,88B ππ⎡⎤⎢⎥⎣⎦ ()3,08C π⎡⎤-⎢⎥⎣⎦ ()3,44D ππ⎡⎤-⎢⎥⎣⎦ 7.已知)0,2(π
-
∈x ,5
3
sin -=x ,则tan2x= ( ) A .247 B. 247- C. 724 D. 7
24-
8.已知31)4tan(,21)tan(-=-=+παβα,则)4
tan(π
β+的值为 ( )
A .2 B. 1 C.
2
2
D. 2 9.已知83cos sin =
αα且2

απ<<,那么ααsin cos -的值是 ( ) A.21 B.21- C.41- D.2
1± 10、函数x x y cos sin 3+=,]2
,2[π
π-∈x 的最大值为 ( )
A .1 B. 2 C. 3 D.
2
3 11.已知),3
2sin(3)(π
+
=x x f 则以下不等式正确的是 ( )
A.f(3)>f(1)>f(2)
B.f(1)>f(2)>f(3)
C.f(3)>f(2)>f(1)
D.f(1)>f(3)>f(2) 12、已知)(x f 是奇函数,且0<x 时,x x x f 2sin cos )(+=,则当0>x 时,)(x f 的表达式是 ( )
A x 2s i n x c o s
+ B x 2s i n x c o s +- C x 2s i n x c o s
- D x 2s i n x c o s --
第二学期期中考试试卷
高一数学
13.角α的终边上一点()3,4-P 则ααcos sin 2+的值为 . 14.函数)6
56
(
3sin 2π
π

≤=x x y 与函数y=2的图像围成一个封闭图形,这个封闭图形的面积是__________________
15.已知2
1
)(cos -=+απ,则=+)3(cos απ_____ _
16.给出下列命题:
①存在实数α,使1cos sin =⋅αα ②存在实数α,使2
3cos sin =
+αα ③函数)23sin(x y +=π是偶函数 ④8
π=x 是函数)45
2sin(π+=x y 的一条对称轴方
程,其中正确命题的序号是____________________
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17 .(本题10分) 已知 1tan 3
α=-,
计算:(1)sin 2cos 5cos sin αααα+-; (2)2
1
2sin cos cos ααα
+.
18.(12分)
(1)已知锐角βα,满足53sin =
α,135
cos =β,求)(βα-c os 的值。

(2)若锐角βα,满足54cos =α,5
3
cos =+)(βα,求βsin 的值。

19.(12分)
求函数()cos25cos3
f x x x
=-+的最大值,并求此时x的集合.
已知函数sin(),(A 0,0)y A x x R ωφω=+∈>>其中的图像在y 轴
右侧的第一个最高点(函数取最大值的点)为M (2
,,与x 轴在原点右侧的第一个交点为N (6,0),求这个函数的解析式。

已知3cos(),45x π
+=177,124x ππ<<求2sin 22sin 1tan x x
x
+-的值。

22. (12分)
已知函数x sin sinxcosx 32x cos x f 22-+=)(,
(1)求函数)(x f 的最大值,最小值及最小正周期; (2)求函数)(x f 的单调递增区间;
(3)并用“五点法”画出它一个周期的图像。

答案
一 CDBBA CDBBB AB 二 13 25- 14 43π 15 12
- 16 ③④ 三.
17.【解】(1)
1
tan 3
α=-
s i n 2c o s t a n 25
5c o s s i n 5t a n 16
αααααα++==-- 4分 (2)212sin cos cos ααα+=222sin cos 2sin cos cos αα
ααα
++
=
2tan 110
2tan 13
αα+=+ 10分 18.【解】(1)αβ、为锐角,35
sin ,cos 513
αβ==
4cos 5α∴==
12sin 13
β== ∴ 56
cos()cos cos sin sin 65
αβαβαβ-=+= 5分
(2)α为锐角,且4cos 5α=,3sin 5
α∴==
又β为锐角,且3cos()5αβ+=, ∴4sin()5
αβ+=
[]sin sin ()sin()cos cos()sin βαβααβααβα∴=+-=+-+ =
7
25
12分 19.【解】2()2cos 15cos 3f x x x =--+ =2
59
2(cos )4
8
x --
4分
[]c o s 1,1
x ∈- c o s 1()9x f x ∴=-当时,取得最大值 8分 此时,(21)x k π=+ k Z ∈
()f x ∴的最大值为9,取得最大值时的x 的集合{}|(21),x x k k Z π=+∈ 12分
20.【解】
根据题意,可知A= 2分
6244T =-= 所以 T=16 于是 28
T ππω== 6分 将点M 的坐标(2

,代入sin(
),8
y x π
φ=+得
s i n (2),8πφ=⨯+ 即sin()14πφ+= 所以满足42ππ
φ+=的φ为最小正数解,即 4
π
φ= 10分
从而 所求的函数解析式是 sin(),84
y x x R ππ
=+∈ 12分
21.【解】
1775212434x x πππππ<<∴<+< 又3
cos()
45
x π+= 4
sin()45
x π
∴+
==- 27
sin 2cos(
2)12cos ()2425x x x π
π=-+=-+=
4
分 ∴2
s i n 22s i n 1t a n 2s i n (c o s s i n )c o s s i n c o s s i n 22s i n ()
4
c o s ()4s i n 2s i n ()
4c o s ()474()
25535
28
75
x x x x x x x x x
x x
x
x x
x π
π
π
π
+-+=
-+=
+⋅+=
+⨯-==-
12分
22.【解】(1)()f x cos22x x = =)6
2sin(2π
+
x 3分
11
∴周期T=
22
π
π= ∴当sin(2)16
x π
+
=时,()f x 取得最大值2,
当sin(2)16
x π
+
=-时()f x 取得最小值-2 6分
(2) 当2222
6
2
k x k π
π
π
ππ-≤+
≤+
k Z ∈ 即
3
6
k x k π
π
ππ-
≤≤+
k Z ∈ 函数()f x 单调递增,
∴函数()f x 的单调增区间为,3
6k k π
πππ⎡⎤
-+
⎢⎥⎣

,()k Z ∈ 9分 (3)列表:
12分。

相关文档
最新文档