数学分析之实数的完备性

数学分析之实数的完备性
数学分析之实数的完备性

数学分析之实数的完备性

《数学分析》教案

第七章实数的完备性

教学目的:

1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义;

2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。

教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。

教学时数:14学时

? 1 关于实数集完备性的基本定理(4学时)

教学目的:

1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义;

2.明确基本定理是数学分析的理论基础。

教学重点难点:实数完备性的基本定理的证明。

一(确界存在定理:回顾确界概念(

Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .

二. 单调有界原理: 回顾单调和有界概念 .

Th 2 单调有界数列必收敛 .

- 1 -

《数学分析》教案

三. Cantor闭区间套定理 :

1. 区间套: 设是一闭区间序列. 若满足条件

?> 对, 有 , 即 , 亦即后

一个闭区间包含在前一个闭区间中 ;

?> . 即当时区间长度趋于零.

则称该闭区间序列为一个递缩闭区间套,简称为区间套 .

简而言之, 所谓区间套是指一个“闭、缩、套” 区间列.

区间套还可表达为:

.

我们要提请大家注意的是, 这里涉及两个数列和 , 其中递增, 递减.

例如和都是区间套. 但、

和都不是.

2. Cantor区间套定理:

Th 3 设是一闭区间套. 则存在唯一的点,使对有

.

简言之, 区间套必有唯一公共点.

四( Cauchy收敛准则——数列收敛的充要条件 :

- 2 -

《数学分析》教案

1. 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy

列.

例1 验证以下两数列为Cauchy列 :

? .

? .

解 ?

;

对,为使,易见只要 .

于是取.

?

. 当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 ,

,

- 3 -

《数学分析》教案

.

当为奇数时 ,

,

.

综上 , 对任何自然数, 有

. ……

Cauchy列的否定:

例2 . 验证数列不是Cauchy列.

证对, 取, 有

- 4 -

《数学分析》教案

. 因此, 取,……

2. Cauchy收敛原理:

Th 4 数列收敛是Cauchy列.

( 要求学生复习函数极限、函数连续的Cauchy准则,并以Cauchy收敛原理为依据,利用Heine归并原则给出证明 )

五. 致密性定理:

数集的聚点

定义设是无穷点集. 若在点(未必属于)的任何邻域内有的

无穷多个点, 则称点为的一个聚点.

数集=有唯一聚点, 但; 开区间的全体聚点之

集是闭区间; 设是中全体有理数所成之集, 易见的聚点集是闭区间.

1. 列紧性: 亦称为Weierstrass收敛子列定理.

Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.

2. 聚点原理 : Weierstrass聚点原理.

Th 6 每一个有界无穷点集必有聚点.

六. 有限复盖定理: Heine–Borel

1. 复盖: 先介绍区间族.

- 5 -

《数学分析》教案

定义( 复盖 ) 设是一个数集 , 是区间族 . 若对

,则称区间族复盖了, 或称区间族是数集的一个复盖. 记为

若每个都是开区间, 则称区间族是开区间族 . 开区间族常记为

.

定义( 开复盖 ) 数集的一个开区间族复盖称为的一个开复盖, 简称为的一个复盖.

子复盖、有限复盖、有限子复盖.

例3 复盖了区间, 但不能复盖

;复盖, 但不能复盖

.

2. Heine–Borel 有限复盖定理:

Th 7 闭区间的任一开复盖必有有限子复盖.

? 2 实数基本定理等价性的证明(4学时) 证明若干个命题等价的一般方法.

本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行: ?: 确界原理 单调有界原理 区间套定理 Cauchy 收敛准则 确界原理 ;

- 6 -

《数学分析》教案

?: 区间套定理 致密性定理 Cauchy 收敛准则 ;

?: 区间套定理 Heine –Borel 有限复盖定理 区间套定理 .

一. “?” 的证明: (“确界原理 单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: Th 2 单调有界数列必收敛 . 证

2. 用“单调有界原理”证明“区间套定理”:

Th 3 设是一闭区间套. 则存在唯一的点,使对有

. 证

系1 若是区间套确定的公共点, 则对,

当时, 总有.

系2 若是区间套确定的公共点, 则有

?, ?, .

3. 用“区间套定理”证明“Cauchy收敛准则”:

Th 4 数列收敛是Cauchy列.

引理 Cauchy列是有界列. ( 证 )

Th 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用[3]P70—71例2的证明, 即三等分的方法, 该证法比较直观.

4( 用“Cauchy收敛准则” 证明“确界原理” :

Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .

- 7 -

《数学分析》教案

证 (只证“非空有上界数集必有上确界”)设为非空有上界数集 .

当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界,

为的上界. 依此得闭区间列. 验证为Cauchy列, 由

Cauchy收敛准则,收敛; 同理收敛. 易见?. 设?.有

?.下证.用反证法验证的上界性和最小性.

二.“?” 的证明:

1. 用“区间套定理”证明“致密性定理”:

Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.

证 ( 突出子列抽取技巧 )

Th 6 每一个有界无穷点集必有聚点.

证 ( 用对分法 )

2(用“致密性定理” 证明“Cauchy收敛准则” :

Th 4 数列收敛是Cauchy列.

证 ( 只证充分性 )证明思路 :Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.

三. “?” 的证明:

1. 用“区间套定理”证明“Heine–Borel 有限复盖定理”:

2. 用“有限复盖定理” 证明“区间套定理”: Heine–Borel

证采用[3]P72例4的证明.

? 3 闭区间上连续函数性质的证明(4学时)

- 8 -

《数学分析》教案

教学目的: 能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。

教学重点难点:基本定理的应用。

一. 有界性:

命题1 , 在上.

证法一 ( 用区间套定理 ). 反证法.

证法二 ( 用列紧性 ). 反证法.

证法三 ( 用有限复盖定理 ).

二. 最值性:

命题2 , 在上取得最大值和最小值.

( 只证取得最大值 )

证 ( 用确界原理 ) 参阅[1]P226[ 证法二 ]后半段.

三. 介值性: 证明与其等价的“零点定理”.

命题3 ( 零点定理 )

证法一 ( 用区间套定理 ) .

证法二 ( 用确界原理 ). 不妨设.

令, 则非空有界, 有上确界. 设

,有. 现证 , ( 为此证明且

). 取>且. 由在点连续和,

,

- 9 -

《数学分析》教案

.于是.由在点连续和,

. 因此只能有.

证法三 ( 用有限复盖定理 ).

四. 一致连续性:

命题4 ( Cantor定理 )

证法一 ( 用区间套定理 ) . 参阅[1]P229—230 [ 证法一 ]

证法二 ( 用列紧性 ). 参阅[1]P229—230 [ 证法二 ]

习题课(2学时)

一(实数基本定理互证举例:

例1 用“区间套定理”证明“单调有界原理”.

证设数列递增有上界. 取闭区间 , 使不是的上界, 是的上界. 易见在闭区间内含有数列的无穷多项,

而在外仅含有的有限项. 对分, 取使有

的性质.…….于是得区间套,有公共点. 易见在点的

任何邻域内有数列的无穷多项而在其外仅含有的有限项,

.

例2 用“确界原理”证明“区间套定理”.

证为区间套. 先证每个为数列的下界, 而每个

为数列的上界. 由确界原理 , 数列有上确界, 数列有下确界 . 设 , .

- 10 -

《数学分析》教案

易见有和. 由,.

例3 用“有限复盖定理”证明“聚点原理”.

证 ( 用反证法 ) 设为有界无限点集, . 反设的每一点都不是的聚点, 则对, 存在开区间 , 使

在内仅有的有限个点. …… .

例4 用“确界原理”证明“聚点原理”.

证设为有界无限点集. 构造数集中大于的点有无穷多个. 易见数集非空有上界, 由确界原理, 有上确界. 设 .

则对,由不是的上界,中大于的点有无穷多个;

由是的上界,

中大于的点仅有有限个. 于是, 在内有的无穷

多个点,即是的一个聚点 .

二. 实数基本定理应用举例:

例5 设是闭区间上的递增函数, 但不必连续 . 如果

,,则,使.(山东大学研究生入学试题)

证法一 ( 用确界技术 . 参阅[3] P76例10 证法1 )

设集合 . 则, 不空 ;

,有界 .由确界原理 ,有上确界. 设, 则. 下证.

- 11 -

《数学分析》教案

?> 若, 有; 又, 得

. 由递增和, 有, 可见. 由, . 于是 , 只能有.

?> 若, 则存在内的数列, 使?, ;

, ?,. 由递增, 以及也存在数列

, 就有式对任何成立 . 令, 得

于是有.

证法二 ( 用区间套技术, 参阅[3] P77例10 证法2 ) 当或

时,或就是方程在上的实根 . 以下总设

. 对分区间, 设分点为 . 倘有, 就是

方程在上的实根.(为行文简练计, 以下总设不会出现这种情

况 ) . 若, 取; 若, 取, 如

此得一级区间 . 依此构造区间套, 对,有

. 由区间套定理, , 使对任何,

有. 现证. 事实上, 注意到时?和 ?以及递增, 就有

.

令, 得于是有. - 12 -

《数学分析》教案

例6 设在闭区间上函数连续, 递增 , 且有

,. 试证明: 方程 在区间 内有实根 . ( 西北师大2001年硕士研究生入学试题 )

证 构造区间套,使 .由区间套

定理, , 使对, 有. 现证 . 事实上, 由

在上的递增性和的构造以及?和?,, 有

.

注意到在点连续,由Heine 归并原则, 有

,

, . 为方程在区间

内的实根.

例7 试证明: 区间 上的全体实数是不可列的 .

证 ( 用区间套技术, 具体用反证法 ) 反设区间上的全体实数是可列的,即可

排成一列:

把区间三等分,所得三个区间中至少有一个区间不含,记该区间为一级区间. 把区间三等分,所得三个区间中至少有一个

区间不含,记该区间为二级区间. …… .依此得区间套 , 其中区间不含. 由区

间套定理, , 使对,

- 13 -

《数学分析》教案

有. 当然有.但对有而

, . 矛盾 .

第八章不定积分

教学要求:

1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函

数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不

定积分的基本积分公式。

2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢

记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或

凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分

部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。

3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。

- 14 -

《数学分析》教案

教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式;

教学时数:18学时

? 1 不定积分概念与基本公式( 4学时 )

教学要求: 积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。

教学重点:深刻理解不定积分的概念。

一、新课引入: 微分问题的反问题,运算的反运算. 二、讲授新课:

(一)不定积分的定义:

1.原函数:

例1 填空: ; ( ;

; ; ;

. 定义. 注意是的一个原函数.

原函数问题的基本内容:存在性,个数,求法.

原函数的个数:

- 15 -

《数学分析》教案

Th 若是在区间上的一个原函数, 则对,都是

在区间上的原函数;若也是在区间上的原函数,则必有

. ( 证 )

可见,若有原函数,则的全体原函数所成集合为 {?,}.

原函数的存在性: 连续函数必有原函数. ( 下章给出证明 ).

可见, 初等函数在其定义域内有原函数; 若在区间上有原函数,

则在区间上有介值性.

例2. 已知为的一个原函数, =5 . 求.

2.不定积分——原函数族:定义; 不定积分的记法;几何意义.

例3 ; .

(二)不定积分的基本性质: 以下设和有原函数.

? .

(先积分后求导, 形式不变应记牢~).

? .

(先求导后积分, 多个常数需当心~)

? 时,

(被积函数乘系数,积分运算往外挪~)

- 16 -

《数学分析》教案

? 由?、?可见, 不定积分是线性运算, 即对, 有

( 当时,上式右端应理解为任意常数. )

例4 . 求 . (=2 ).

(三). 不定积分基本公式: 基本积分表. [1]P180—公式1—14.

例5 .

(四)(利用初等化简计算不定积分: 例6 . 求. 例7 .

例8 .

. 例9

例10 ? ; ? 例11 .

- 17 -

《数学分析》教案

例12 .

三、小结

?2 换元积分法与分部积分法 (1 0 学时 )

教学要求: 换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。

教学重点:熟练地应用换元积分公式;熟练地应用分部积分公式;

一、新课引入:由直接积分的局限性引入

二、讲授新课:

(一). 第一类换元法——凑微分法:

引出凑微公式.

Th1 若 连续可导, 则

- 18 -

《数学分析》教案

该定理即为:若函数能分解为

就有

.

例1 .

例2 .

例3

常见微分凑法:

凑法1

例4

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

关于实数完备性的基本定理

第七章 实数的完备性 §1 关于实数完备性的基本定理 1. 验证数集? ?? ? ??+-n n 1) 1(有且只有两个聚点11 -=ξ 和12 =ξ. 分析:根据聚点定义2'',分别找各项互异的收敛数列 {}n x ,{}n y ?? ?? ? ??+-n n 1) 1(,使其极限分别为-1和1.再由聚点定义2,用反证法,对1,±≠∈?a R a ,关键在找存在ε,使U(ε,a )内含有? ????? + -n n 1)1(中有限多个点. 解:记()()() 2,11 211,2111 22=-= -=+ -=-n n y n x n n n n 则 {}n x ,{} n y ? ? ?? ? ??+-n n 1)1(,且1lim ,1lim -==∞ →∞→n n n n y x .由定义2''知, 1,121=-=ξξ为???? ?? +-n n 1)1(的两个聚点. 对1,±≠∈?a R a ,则取{}1 ,1min 2 1 0+-=a a ε, ? ?? ??? + -n n 1)1(落在U(0,εa )内部至多只有有限点, 则α不是其聚点. 2.证明 任何有限数集都没有聚点. 分析:由聚点定义2即可证明.

证明:由定义2知,聚点的任何邻域内都含有数集的无穷多个点,而对于有限数集,不可能满足此定义,因此,任何有限数集都没有聚点。 3.设{}),(n n b a 是一个严格开区间套,即满足 ,1221b b b a a a n n <<<<<<< 且0)(lim =-∞ →n n n a b .证明:存在唯一的一点 ξ,使),2,1( =<

数学分析教案(华东师大版)第七章实数的完备性

第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:14学时 § 1 关于实数集完备性的基本定理(4学时)教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 . 二.单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 .

三.Cantor闭区间套定理 : 区间套: 设是一闭区间序列. 若满足条件 1. ⅰ>对 一个闭区间包含在前一个闭区间中 ; . 即当时区间长度趋于零. ⅱ> 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个“闭、缩、套”区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列 递增, 递减. 例如和都是区间套. 但、 和都不是. 2.Cantor区间套定理: 是一闭区间套. 则存在唯一的点,使对有 Th 3 设 简言之, 区间套必有唯一公共点. 四. Cauchy收敛准则——数列收敛的充要条件 :

1.基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy列. 例1验证以下两数列为Cauchy列 : ⑴ . ⑵ . 解⑴ ; ,为使,易见只要 . 对 于是取 ⑵ . 当 为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 ,

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

实数基本定理

Ch 8 实数基本定理 计划课时:8 时 § 0 连续统假设简介(2 时) 一.数的发展简史:参阅《数学分析》选讲讲稿P66—76(1997. 8.10 ). 1.自然数的产生: 十九世纪数学家Leopold Kronecker说: 上帝创造了整数, 其余则是我们人类的事了. 2.从自然数系到有理数系: 3.算术连续统假设的建立及其破灭: 不可公度性的发现及其深远影响. Pythagoras(约在纪元前六世纪),Hippasus,Leonardo da Vinci 称为“无理的数”. Eudoxus , Euclid. 4.微积分的建立: Newton , Leibniz ; Euler , Lagrange , D′Alembert , Laplace ; Voltaire , B. Berkeley . 十九世纪分析学理论的重建工作: B.Bolzano , A.Cauchy , Abel , Dirichlet, Weierstrass . Archimedes数域. 5.实数系的建立:

十九世纪后半叶由Weierstrass , Meray , Dedekind , Cantor 等完成. 二. 连续统假设: 1.连续统假设: 以Cantor实数为例做简介. Cauchy ( 1789—1857, 法 ), Bolzano (1781—1845 ), Cantor ( 1829—1920 ). 在他们的著作中表现了实数连续性的观点. 1900年, 哥庭根大学教授Hilbert ( 1862—1943, 德 )在巴黎国际数学家代表大会上的致辞中 , 提出了二十三个研究课题 , 其中的第一题就是所谓连续统假设.首当其冲的是关于连续统观点的算术陈述. ( 参阅 D.J.斯特洛伊克著《数学简史》P160—161 ). 连续统假设的研究现况. 2.实数基本定理: 连续统假设的等价命题. 共有九个定理, 我们介绍其中的七个. 另外还有 上、下极限定理和实数完备性定理. § 1 实数基本定理的陈述( 4 时) 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界. 二.单调有界原理: 回顾单调和有界概念. Th 2 单调有界数列必收敛.

第七章 实数完备性

第七章实数的完备性 §1 关于实数完备性的基本定理 一、问题提出 定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界. 确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6. 定理1.2 (单调有界定理)任何单调有界数列必定收敛. 定理1.3 (区间套定理)设为一区间套: . 则存在唯一一点 定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即 中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成 的一个有限开覆盖. 定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于). 定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.) 这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下: :(1)~(3) 基本要求类 :(4)~(7) 阅读参考类 :(8)~(10) 习题作业类

二、回顾确界原理的证明 我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理 设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或 (,)A ε=-∞,[,)B ε=+∞无其它可能. 1 非空有上界的数集E 必存在上确界. 证明 设}{x E =非空,有上界b : E x ∈?,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界; (2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类 B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划. ο 1 A 、B 不空.首先B b ∈.其次E x ∈?,由于x 不是E 的最大数,所以它不是E 的上界,即 A x ∈.这说明E 中任一元素都属于下类A ; ο 2 A 、B 不漏性由A 、B 定义即可看出; ο 3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈?,使得x a <,而E 内每一元素属于 A ,所以b x a <<. ο 4 由ο 3的证明可见A 无最大数. 所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c . E x ∈?,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

《数学分析》5第一章§3函数概念

授课章节:第一章 §3 函数概念 教学目的:使学生深刻理解函数概念。 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示方法; (2)牢记基本初等函数的定义、性质及其图象。会求初等函数的存在域,会分析初等函数的复 合关系。 教学重点:函数的概念。 教学难点:初等函数复合关系的分析。 教学方法:课堂讲授,辅以提问、练习、部分内容可自学。 教学程序: 引言:关于函数概念,在中学数学中已有了初步的了解。为便于今后的学习,本节将对此作进一步讨 论。 一 函数的定义 1.定义1 设,D M R ?,如果存在对应法则f ,使对x D ?∈,存在唯一的一个数y M ∈与之对应,则称f 是定义在数集D上的函数,记作:f D M →(|x y →). 函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f D 。即 {}()|(),f D y y f x x D ==∈。 2.几点说明 (1)函数定义的记号中“:f D M →”表示按法则f 建立D到M的函数关系,|x y →表示这两个数集中元素之间的对应关系,也记作|()x f x →。习惯上称x 自变量,y 为因变量。 (2) 函数有三个要素,即定义域、对应法则和值域。当对应法则和定义域确定后,值域便自然确定下来。因此,函数的基本要素为两个:定义域和对应法则。所以函数也常表示为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则。 例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同) 2)()||,,x x x R ?=∈ ().x x R ψ=∈(相同,对应法则的表达形式不同) 。 (3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域)。此时,函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。即“函数()y f x =”或“函数f ”。 (4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。a 称为()f a 的原象。 (5)函数定义中,x D ?∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x 值,可以对应多于一个y 值,则称这种函数为多值函数。本书中只讨论单值函数(简称函数)。 (6)定义1中的定义是Cauchy 于1834年给出。不是完美的、现代意义上的函数定义。事实上,函数定义的产生也经历了一个从无到有,从具体到抽象。从特殊到一般,从不完美到逐步完美的过程。这个进程

实数的基本定理

第三章 关于实数的基本定理及闭区间上连续函数性质的证明 六个基本定理: 1实数戴德德公理 确界原理 2数列的单调有界定理 3区间套定理 4聚点定理 致密性定理 5数列柯西收敛准则 6有限覆盖定理 定理(确界原理) 设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界. 定理 单调有界数列必收敛. 证明 不妨设{}n a 为有上界的递增数列.由确界原理,数列{}n a 有上确界,记{}n a a sup =.下面证明a 就是{}n a 的极限. 事实上,任给0>ε,按上确界的定义,存在数列{}n a 中某一项N a ,使得N a a ε-<.又由{}n a 的递增性,当N n ≥时有 n N a a a <<-ε. 另一方面,由于a 是{}n a 的一个上界,故对一切n a 都有ε+<≤a a a n .所以当N n ≥时有 εε+<<-a a a n , 即a a n n =∞ →lim .同理可证有下界的递增数列必有极限,且其极限即为它的下确界. (区间套定理) 若[]{}n n b a ,是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[]n n b a ,, ,2,1=n ,即 ξ≤n a n b ≤, .,2,1 =n (2) 证 由(1)式,{}n a 为递增有界数列,依单调有界定理,{}n a 有极限ξ,且有 .,2,1, =≤n a n ξ (3) 同理,递减有界数列{}n b 也有极限,并按区间套的条件(??)有 ξ==∞ →∞ →n n n n a b lim lim , (4) 且 .,2,1, =≥n b n ξ (5) 联合(3)、(5)即得(2)式。 最后证明满足(2)的ξ是唯一的。设数ξ'也满足 ,,2,1, =≤'≤n b a n n ξ

实数系基本定理等价性的完全互证

第38卷第24期2008年12月数学的实践与认识M AT HEM A TICS IN PRACTICE AND T HEORY V o l.38 No.24  D ecem.,2008  教学园地 实数系基本定理等价性的完全互证 刘利刚(浙江大学数学系,浙江杭州 310027) 摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系;连续性;等价;极限收稿日期:2005-06-10 实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[1-2].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从. 我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: 1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界. 2)递增(减)有界数列必有极限(pp.34). 3)闭区间套定理(pp.41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1 I 2 … I n …,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞ n =1 I n 必不空且为单点集. 4)Bo lzano -Weierstrass 定理(pp.44):有界数列必有收敛子列. 5)Cauchy 收敛准则(pp.299):数列{x n }收敛 {x n }是基本数列. 6)有限开覆盖定理(pp.308):若开区间族{O }覆盖了有界闭区间[a ,b ],则从{O }中 必可挑出有限个开区间O 1,O 2,…,O n 同样覆盖了[a ,b ]:[a ,b ] O 1∪O 2∪…∪O n . 在证明之前,我们首先必须要理解这六个定理的每一个在说些什么,只要概念清楚了,并且理解其方法,证明并不难. 定理1)~5)属于同一类型,它们都指出,在某一条件下,便有某种“点”存在,这种点分别是确界(点)(定理1)),极限点(定理2)5)),公共点(定理3)),子列的极限点(定理4)).定理

实数完备性定理的证明及应用

. .. . 实数完备性定理的证明及应用 学生:xxx 学号: 数学与信息科学学院数学与应用数学专业 指导老师:xxx 职称:副教授 摘要:实数集的完备性是实数集的一个基本特征,他是微积分学的坚实的理论基础,从不同的角度来描述和刻画实数集的完备性,六个完备性定理是对实数完备性基本定理等价性的系统论述,让我们获得对实数集完备性的基本特征的进一步的认识和理解. 并用实数完备性定理证明闭区间上连续函数的若干性质.关键词:完备性;基本定理;等价性 Testification and application about Real Number Completeness Abstract: Completeness of the set of reel numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, To prove the equivalence of the six principle theorem is systematic discussion about it and make us acquire more recognition and understanding. At the same time, the theorem of completeness of real numbers testpfyies the several qualities of the continuous function in closed interval. Key Words: sigmacompleteness; fundamental theorem; equivalence 引言 在数学分析学习中,我们知道,实数完备性定理是极限的理论基础,是数学分析理论的基石,对实数完备性表达通常有六个定理.在此,我们以实数连续性为公理,顺序证明其余六个基本定理,最后达到循环,从而证明等价性,并用实

第七章 实数的完备性

第七章实数的完备性 § 1 关于实数集完备性的基本定理 一区间套定理与柯西收敛准则 定义1 区间套: 设是一闭区间序列. 若满足条件ⅰ)对, 有, 即, 亦即后一个闭区间包含在前一个闭区间中; ⅱ). 即当时区间长度趋于零. 则称该闭区间序列为闭区间套, 简称为区间套 . 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和, 其中递增,递减. 例如和都是区间套. 但、和都不是. 区间套定理 定理7.1(区间套定理) 设是一闭区间套. 则在实数系中存在唯一的点, 使对有 . 简言之, 区间套必有唯一公共点. 二聚点定理与有限覆盖定理

定义设是无穷点集. 若在点(未必属于)的任何邻域内有的无穷多个点, 则称点为的 一个聚点. 数集=有唯一聚点, 但; 开区间的全体聚点之集是闭区间; 设是中全体有理数所成之集, 易见的聚点集是闭区间. 定理 7.2 ( Weierstrass ) 任一有界数列必有收敛子列. 聚点原理 :Weierstrass 聚点原理. 定理7.3 每一个有界无穷点集必有聚点. 列紧性: 亦称为Weierstrass收敛子列定理. 四. Cauchy收敛准则——数列收敛的充要条件 : 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy列 : ⑴. ⑵. 解⑴ ;

对,为使,易见只要. 于是取. ⑵ . 当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 , 又 . 当为奇数时,

. 综上 , 对任何自然数, 有 . …… Cauchy 列的否定: 例2 . 验证数列不是Cauchy列. 证对, 取, 有 . 因此, 取,…… 三 Cauchy收敛原理: 定理数列收敛是Cauchy列. ( 要求学生复习函数极限、函数连续的Cauchy准则,并以Cauchy收敛原理为依据,利用Heine归并原 则给出证明 )

数学分析下——二元函数的极限课后习题

第二节二元函数的极限 1、试求下列极限(包括非正常极限): (1);(2); (3);(4); (5);(6)(x+y)sin; (7)x2+y2. 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=;(2)f(x,y)=(x+y)sinsin; (3)f(x,y)=;(4)f(x,y)= ; (5)f(x,y)=ysin;(6)f(x,y)=; (7)f(x,y)=. 。f(x,y)存在且等于A;2。y在b的某邻域内,有f(x,y)= 3、证明:若1 (y)则 f(x,y)=A. 4、试应用ε—δ定义证明 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) f(x,y)=A;(2)f(x,y)=A. 7、试求下列极限: (1);(2)(x2+y2)e-(x+y); (3)(1+)xsiny;(4). 8、试作一函数f(x,y)使当x+,y+时, (1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在; (4)重极限与一个累次极限存在,另一个累次极限不存在. 9、证明定理16.5及其推论3. 10、设f(x,y)在点(x0,y0)的某邻域U。()上有定义,且满足: (i)在U。()上,对每个y≠y0,存在极限f(x,y)=ψ(y); (ii)在U。()上,关于x一致地存在极限f(x,y)=(x)(即对任意ε>0,存在δ>0,当0<|y-y0|<δ时,对所有的x,只要(x,y)∈U。(),都有|f(x,y)-(x)|<成立). 试证明 f(x,y)=f(x,y).

数学分析课程简介

导言数学分析课程简介 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值 函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算, 利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究 一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累 时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时 期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的 ), 后面的学习就会容易一些; 只要

在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析(第三版),高等教育出版社,2001; [2] 陈纪修於崇华等编,《数学分析》(第二版)高等教育出版社,2001 [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003; [4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999; [5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003. 2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析方法课开设.

实数完备性基本定理相互证明

关于实数连续性的基本定理 关键词:实数基本定理 确界定理 单调有界原理 区间套定理 有限覆盖定理 紧致性定理 柯西收敛定理 等价证明 以上的定理表述如下: 实数基本定理:对R 的每一个分划A|B ,都?唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。 确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。 单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。 区间套定理:设{ ,[n a ] n b }是一个区间套,则必存在唯一的实数r,使得r 包含 在所有的区间里,即 ∞ =∈1 ] ,[n n n b a r 。 有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。 紧致性定理:有界数列必有收敛子数列。 柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是: ε ε<->>?>?||,,,0m n x x ,N m N n N 有时当。 这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。 (二)实数基本定理的等价证明 一.用实数基本定理证明其它定理 1.实数基本定理→单调有界定理 证明:设数列}{n x 单调上升有上界。令B 是数列}{n x 全体上界组成的集合,即B={b|n b x n ?≤,}, 而A=R ﹨B ,则A|B 是实数的一个分划。事实上,由单调上升}{n x ,故1x -1∈A ,即A 不空,由A=R ﹨B ,知A 、B 不漏。又对任给a ∈A ,b ∈B ,则存在0 n ,使 a < 0n x ≤ b ,即A 、B 不乱。故A|B 是实数的一个分划。根据实数基本定理, A ,a R r ∈?∈?使得对,b r a B ,b ≤≤∈有。

Aldmin《数学分析》3第一章 实数集与函数---§2数集和确界原理

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。 授课章节:第一章 实数集与函数---§2数集和确界原理 教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。 教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加 以运用。 教学重点:确界的概念及其有关性质(确界原理)。 教学难点:确界的定义及其应用。 教学方法:讲授为主。 教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课。 引言 上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章 §1实数的相关内容。下面,我们先来检验一下自学的效果如何! 1.证明:对任何x R ∈有(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. 2.证明:||||||x y x y -≤-. 3.设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤. 4.设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<. [引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一。而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用。提请注意这种差别,尽快掌握本门课程的术语和工具(至此,复习告一段落)。 本节主要内容: 1.先定义实数集R中的两类主要的数集——区间邻域;2.讨论有界集与无界集;3.由有界集的界引出确界定义及确界存在性定理(确界原理)。 一 区间与邻域 1.区间(用来表示变量的变化范围) 设,a b R ∈且a b <。

相关文档
最新文档