盘式制动器设计毕业设计

盘式制动器设计毕业设计
盘式制动器设计毕业设计

盘式制动器设计毕业设计

目录

摘要 ............................................................................................................ 错误!未定义书签。ABSTRACT .................................................................................................... 错误!未定义书签。第一章绪论 (3)

1.1制动系统概述 (3)

1.1.1 汽车制动系统的功用及其组成: (3)

1.1.2 制动系的一般工作原理 (3)

1.1.3 制动系的类型 (5)

1.1.4 汽车制动器设计要求 (6)

1.2 汽车制动系统的研究现状及发展趋势 (9)

第二章制动器的结构型式方案分析与选择 (11)

2.1 汽车制动器形式方案分析 (11)

2.1.1 盘式制动器 (11)

2.1.2 鼓式制动器 (15)

2.2 制动驱动机构的结构型式选择 (16)

2.2.1 简单制动系 (16)

2.2.2 动力制动系 (16)

2.2.3 伺服制动系 (17)

2.3 制动主缸型式 (18)

2.4 制动管路型式选择 (19)

2.4 .1 II型回路 (20)

2.4 .2 X型回路 (20)

2.4 .3其他类型回路 (21)

2.5 制动系统布置型式 (21)

第三章制动系统主要参数及其设计计算 (22)

3.1 参考车型制动系相关主要参数数值 (22)

3.2 同步附着系数分析 (22)

3.3 法向力及制动力矩分配系数 (23)

3.4 制动强度和附着系数利用率 (26)

3.5附着力的计算 (27)

3.6 制动器制动力及制动力矩的计算 (28)

3.7 前轮盘式制动器制动因数 (28)

3.8 前轮盘式制动器参数设计计算 (29)

3.9 制动器磨损特性热容量及温升计算 (30)

3.9.1盘式制动器磨损特性计算 (30)

3.9.2 制动器的热容量和温升的核算 (31)

3.9.3 盘式制动器制动力矩的校 (32)

第四章 制动器主要零部件的结构设计 (35)

4.1 制动盘 (35)

4.2 制动钳 (35)

4.3 制动块 (36)

4.4 摩擦材料 (36)

第五章 液压制动驱动机构的设计计算 (38)

5.1前轮制动轮缸直径与工作容积的设计计算 (38)

5.2制动主缸与工作容积设计计算: (39)

5.3制动踏板力与踏板行程 (40)

5.3.1制动踏板力p F (40)

5.3.2制动踏板工作行程x p (40)

第六章 制动性能分析计算 (42)

6.1 制动性能评价指标 (42)

6.2制动器制动力分配曲线分析 (43)

6.3制动减速度的计算 (44)

6.4驻车制动计算 (45)

结 论 (47)

致 谢 (48)

参考文献 (49)

附录 (50)

第一章绪论

1.1制动系统概述

汽车制动器是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停止的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动器性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。

1.1.1 汽车制动系统的功用及其组成:

1) 制动系的功用:

(1)使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车.

(2)使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车.

(3)使下坡行驶的汽车速度保持稳定。

2)制动系的组成:

(1)供能装置:也就是制动能源,包括供给、调节制动所需能量以及各个部件,产生制动能量的部分称为制动能源。

(2)控制装置:包括产生制动动作和控制制动效果的部件。

(3)传动装置:包括把制动能量传递到制动器的各个部件。

(4)制动装置:产生阻碍车辆运动或者运动趋势的力的部件。汽车的制动装置又可分为行车、驻车、应急和辅助制动四种装置。

1.1.2 制动系的一般工作原理

行驶中的汽车具有一定的动能。根据物理学知识,汽车的动能

E

=1/2(1+δ)mv2 (1-1)

k

式中:m为汽车的重质量;v为汽车的行驶速度;δ为考虑汽车回转部件动能的系数。

图 1.1

耗散动能最简便的方汽车行车制动减速度实质上就是要耗散汽车的动能E

k

法就是通过摩擦将动能变成热能扩散到大气中去。一个简单的制动系统如图1.1所示,用以说明系统的工作原理。他由制动器和液压传动机构组成。车轮制动器主要由旋转部分、固定部分和张开机构组成。旋转部分是制动鼓,他固定在车轮轮毂上,随车轮一起旋转,它的工作面是内圆柱面。固定部分包括制动蹄和制动底板等,制动底板用螺栓与转向节凸缘(前轮)或桥壳凸缘(后轮)固定在一起。在固定不动的制动底板上,有两个支撑销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片,上端用制动蹄回位弹簧拉紧压靠在轮缸活塞上。制动蹄可用凸轮或液压轮缸等张开机构使其张开。液压轮缸也安装在制动底板上。

传动机构主要由制动踏板、推杆、制动主缸、制动轮缸和油管等组成。装在车架上的制动主缸用油管与制动轮缸相连通。制动主缸活塞由驾驶员通过制动踏板来操纵。

(1)制动系不工作时,制动鼓的内圆面与制动蹄上摩擦片的外圆面之间有一定的间隙,车轮和制动鼓可以自由旋转。

(2)制动时,驾驶员需踩下制动踏板,迫使制动主缸内的油液流入制动轮缸,推动两制动蹄绕支承销转动,使制动蹄摩擦片紧贴到制动鼓内圆面上。这样,制动鼓上便产生摩擦力矩M u阻止车轮转动。其方向与车轮旋转方向相反。制动鼓将该力矩传到车轮后,由于车轮与路面间的附着作用,车轮即对路面作用一个向前的周缘力Fμ。同时,路面也会给车轮一个反作用力F B,方向与汽车行驶方向相反。这个力就是车轮受到的制动力。各车轮上制动力的和就是汽车受到的总制

动力。制动力由车轮经车桥和悬架传给车架及车身,迫使整个汽车产生一定的减速度,甚至停车。由于车轮与地面间的附着左右,路面上产生了切向反作用力F B 。F B 一方面要迫使车轮继续滚动,造成制动蹄与制动鼓间相对运动而产生摩擦,消耗汽车的动能;另一方面它又作为制动力促使整个汽车减速行驶。

(3)解除制动时,放松制动踏板,在回位弹簧的作用下,制动蹄回到原位。同时蹄鼓间隙得到恢复,因而制动作用被解除。

1.1.3 制动系的类型

制动系根据功用、能源等不同可分为以下几类:

(1) 按制动系统的作用

制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。

(2)按制动操纵能源

制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。

(3)按制动能量的传输方式

制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。

(4)按传能介质的传输回路方式

制动系统可分为单回路制动系和双回路制动系。

1.1.4 汽车制动器设计要求

(1)能适应有关标准和法规的规定。各项性能指标除应满足设计任务书的规定和国家标准、法规制定的有关要求外,也应考虑销售对象国家和地区的法规和用户要求。我国的强制性标准是GB12676-1999《汽车制动系结构、性能和试验方法》、GB7258《机动车运行安全技术条件》。

(2)具有足够的制动效能,包括行车制动效能和驻坡制动效能。行车制动效能是用在一定的制动初速度下或最大踏板力下的制动减速度和制动距离两项指标来评定,它是制动性能最基本的评价指标。表1-1给出了欧、美、日等国的有关标准或法规对这两项指标的规定。

表1-1 欧、美、日等国的制动效能标准

续表1-1

(3)工作可靠。汽车至少应有行车制动和驻车制动两套制动装置,且它们的制动驱动机构应是各自独立的。行车制动装置的制动驱动机构至少应有两套独立的管路,当其中一套失效时,另一套应保证汽车制动效能不低于正常值的30%;驻车制动装置应采用工作可靠的机械式制动驱动机构。

(4)制动效能的热稳定性好。汽车的高速制动、短时间内的频繁重复制动,尤其是下长坡时的连续制动,都会引起制动器的温升过快,温度过高。特别是下长坡时的频繁制动,可使制动器摩擦副的温度达300℃~400℃,有时甚至高达700℃。此时,制动摩擦副的摩擦系数会急剧减小,使制动效能迅速下降而发生热衰退现象。制动器发生热衰退后,经过散热、降温和一定次数的和缓使用使摩擦表面得到磨合,其制动效能可重新恢复,这称为热恢复。提高摩擦材料的高温摩擦稳定性,增大制动鼓、盘的热容量,改善其散热性或采用强制冷却装置,都是提高抗热衰退的措施。一般要求在初速为最高车速的80%时,以约0.3g的减速度重复进行15~20次制动到初速度的1/2的衰退试验后,其热态制动效能应达到冷态制动效能的80%以上。

(5)制动效能的水稳定性好。制动器摩擦表面浸水后,会因水的润滑作用使摩擦系数急剧减小而发生所谓的“水衰退”现象。一般规定在出水后反复制动5~15次,即应恢复其制动效能。良好的摩擦材料吸水率低,其摩擦性能恢复迅速。也应防止泥沙、污物等进入制动器工作表面,否则会使制动效能降低并加速磨损。某些越野汽车为了防止水和泥沙侵入而采用封闭的制动器。

(6)制动时的操纵稳定性好。即以任何速度制动,汽车都不应当失去操纵性和方向稳定性。一般要求在进行制动效能试验时,车辆的任何部位不得偏出3.7m

的试验道。为此,汽车前、后轮制动器的制动力矩应有适当的比例,最好能随各轴间载荷转移情况而变化;同一轴上左、右车轮制动器的制动力矩应相同。否则当前轮抱死而侧滑时,将失去操纵性;后轮抱死而侧滑甩尾,会失去方向稳定性;当左、右轮的制动力矩差值超过15%时,会发生制动时汽车跑偏。

(7)制动踏板和手柄的位置和行程符合人机工程学要求,即操作方便性好,操纵轻便,舒适,能减少疲劳。踏板行程:对轿车应不大于150mm;对货车应不大于170mm,其中考虑了摩擦衬片或衬块的容许磨损量。制动手柄行程应不大于160~200mm。各国法规规定,制动的最大踏板力一般为500N(轿车) ~700N(货车)。设计时,紧急制动(约占制动总次数的5%~10%)踏板力的选取范围:轿车为200~300N;货车为350~550N,采用伺服制动或动力制动装置时取其小值。应急制动时的手柄拉力以不大于400~500N为宜;驻车制动的手柄拉力应不大于500N(轿车) ~700N(货车)。

(8)作用滞后的时间要尽可能地短,包括从制动踏板开始动作至达到给定制动效能水平所需的时间(制动滞后时间)和从放开踏板至完全解除制动的时间(解除制动滞后时间)。一般要求这个时间尽可能短,对于气制动车辆不得超过0.6s,对于汽车列车不得超过0.8s。

(9)制动时不应产生较大的振动和噪声,制动时不应有异响。

(10)与悬架、转向装置不产生运动干涉,在车轮跳动或汽车转向时不会引起自行制动。

(11)制动系中应有音响或光信号等警报装置以便能及时发现制动驱动机件的故障和功能失效;制动系中也应有必要的安全装置,例如一旦主、挂车之间的连接制动管路损坏,应有防止压缩空气继续漏失的装置;在行驶过程中挂车一旦脱挂,亦应有安全装置驱使驻车制动将其停驻。

(12)能全天候使用,气温高时液压制动管路不应有气阻现象;气温低时气制动管路不应出现结冰

(13)制动系的机件应使用寿命长、制造成本低;对摩擦材料的选择也应考虑到环保要求。

防止制动时车轮被抱死有利于提高汽车在制动过程中的转向操纵性和方向稳定性,缩短制动距离,所以近年来防抱死制动系统(ABS)和电子制动力分配

(EBD)在汽车上得到了很快的发展和应用。此外,由于含有石棉的摩擦材料存在石棉有公害问题,已被淘汰,取而代之的无石棉材料。

1.2 汽车制动系统的研究现状及发展趋势

1)制动控制系统的现状

当考虑基本的制动功能量,液压操纵仍然是最可靠、最经济的方法。即使增加了防抱制动(ABS)功能后,传统的“油液制动系统”仍然占有优势地位。但是就复杂性和经济性而言,增加的牵引力控制、车辆稳定性控制和一些正在考虑用于“智能汽车”的新技术使基本的制动器显得微不足道。

传统的制动控制系统只做一样事情,即均匀分配油液压力。当制动踏板踏下时,主缸就将等量的油液送到通往每个制动器的管路,并通过一个比例阀使前后平衡。而ABS或其他一种制动干预系统则按照每个制动器的需要时对油液压力进行调节。

目前,车辆防抱制动控制系统(ABS)已发展成为成熟的产品,并在各种车辆上得到了广泛的应用,但是这些产品基本都是基于车轮加、减速门限及参考滑移率方法设计的。方法虽然简单实用,但是其调试比较困难,不同的车辆需要不同的匹配技术,在许多不同的道路上加以验证;从理论上来说,整个控制过程车轮滑移率不是保持在最佳滑移率上,并未达到最佳的制动效果。

滑移率控制的难点在于确定各种路况下的最佳滑移率,另一个难点是车辆速度的测量问题,它应是低成本可靠的技术,并最终能发展成为使用的产品。对以滑移率为目标的ABS而言,控制精度并不是十分突出的问题,并且达到高精度的控制也比较困难;因为路面及车辆运动状态的变化很大,多种干扰影响较大,所以重要的问题在于控制的稳定性,即系统鲁棒性,应保持在各种条件下不失控。防抱系统要求高可靠性,否则会导致人身伤亡及车辆损坏。

因此,发展鲁棒性的ABS控制系统成为关键。现在,多种鲁棒控制系统应用到ABS的控制逻辑中来。除传统的逻辑门限方法是以比较为目的外,增益调度PID控制、变结构控制和模糊控制是常用的鲁棒控制系统,是目前所采用的以滑移率为目标的连续控制系统。模糊控制法是基于经验规则的控制,与系统的

模型无关,具有很好的鲁棒性和控制规则的灵活性,但调整控制参数比较困难,无理论而言,基本上是靠试凑的方法。然而对大多数基于目标值的控制而言,控制规律有一定的规律。

车轮的驱动打滑与制动抱死是很类似的问题。在汽车起动或加速时,因驱动力过大而使驱动轮高速旋转、超过摩擦极限而引起打滑。此时,车轮同样不具有足够的侧向力来保持车辆的稳定,车轮切向力也减少,影响加速性能。由此看出,防止车轮打滑与抱死都是要控制汽车的滑移率,所以在ABS的基础上发展了驱动防滑系统(ASR)。

ABS只有在极端情况下(车轮完全抱死)才会控制制动,在部分制动时,电子制动使可控制单个制动缸压力,因此反应时间缩短,确保在任一瞬间得到正确的制动压力。近几年电子技术及计算机控制技术的飞速发展为EBS的发展带来了机遇。德国自20世纪80年代以来率先发展了ABS/ASR系统并投入市场,在EBS 的研究与发展过程中走到了世界的前列。

2)制动控制系统的发展

今天,ABS/ASR已经成为欧美和日本等发达国家汽车的标准设备。

车辆制动控制系统的发展主要是控制技术的发展。一方面是扩大控制范围、增加控制功能;另一方面是采用优化控制理论,实施伺服控制和高精度控制。

经过了一百多年的发展,汽车制动系统的形式已经基本固定下来。随着电子,特别是大规模、超大规模集成电路的发展,汽车制动系统的形式也将发生变化。如凯西-海斯(K-H)公司在一辆实验车上安装了一种电-液(EH)制动系统,该系统彻底改变了制动器的操作机理。通过采用4个比例阀和电力电子控制装置,K-H 公司的EBM就能考虑到基本制动、ABS、牵引力控制、巡航控制制动干预等情况,而不需另外增加任何一种附加装置。EBM系统潜在的优点是比标准制动器能更加有效地分配基本制动力,从而使制动距离缩短5%。一种完全无油液、完全的电路制动BBW(Brake-By-Wire)的开发使传统的液压制动装置成为历史。

第二章制动器的结构型式方案分析与选择

2.1 汽车制动器形式方案分析

除了辅助制动装置时利用发动机排气或其他缓速措施对长下坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,即是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。按照摩擦副中旋转件的不同,可分为盘式和鼓式制动器两大类。

盘式摩擦副的旋转元件是制动盘,其工作表面是圆盘的端面。鼓式摩擦副的旋转元件为制动鼓,其工作表面是圆柱面;旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器,一般用于行车制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器,一般用于驻车制动器。

2.1.1 盘式制动器

按摩擦副中的固定摩擦元件的结构,盘式制动器分为钳盘式和全盘式制动器两大类。

钳盘式制动器的固定摩擦元件是两块带有摩擦衬块的制动块,后者装在以螺栓固定于转向节或桥壳上的制动钳体中。两块制动块之间有作为旋转元件的制动盘,制动盘是用螺栓固定于轮毂上。制动块的摩擦衬块与制动盘的接触面积很小,在盘上所占的中心角一般仅约30°~50°,因此这种盘式制动器又称为点盘式制动器。其结构较简单,质量小,散热性较好,借助于制动盘的离心力作用易于将泥水、污物等甩掉,维修也方便。但由于摩擦衬块的面积较小,单位压力很高,摩擦材料面的温度较高,故对摩擦材料的要求较高。

全盘式制动器的固定摩擦元件和旋转元件均为圆盘形,制动时各盘摩擦表面全部接触。其工作原理如摩擦离合器,故又称为离合式制动器。用得较多的是多片全盘式制动器,以便获得较大的制动力。但这种制动器的散热性能较差,故多为油冷式,结构较为复杂。

钳盘式制动器按制动钳的结构型式又可分为固定钳式盘式制动器和浮动钳

式盘式制动器。

1)固定钳式盘式制动器

固定钳盘式制动器结构如下图2.1所示,其制动钳体固定在转向节(或桥壳)上,在制动钳体上有两个液压油缸,其中各装一个活塞。跨置在制动盘上的制动钳体固定安装在车桥上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞分别位于制动盘的两侧。其结构如下图所示;

制动时,制动油液由制动总泵(制动主缸)经进油口进入钳体中两个相通的液压腔中,将两侧的制动块压向与车轮固定连接的制动盘从而产生制动。

当放松制动踏板使油液压力减少时,回位弹簧则将两制动块总成及活塞推离制动盘。 图2.1固定钳盘式制动器 固定钳盘式制动器的制动钳刚度好,除活塞和制动块外无其他滑动件。但由于需采用两个油缸并分置制动盘的两侧,因而必须用跨越制动盘的内部油道或外部油管来连通。这就使得制动器的径向和轴向尺寸都较大,因而在车轮中,特别是车轮轮距小的微型车的前轮中的布置比较困难;需两组高精度的液压缸和活塞,成本较高;制动产生的热经制动钳体上的油路传给制动油液,易使其由于温度过高而产生气泡,影响制动效果。紧凑型中低端轿车从结构和经济性上考虑都活塞

制动钳体

制动块

车桥 进油口

制动盘

缺点:油缸多、复杂、制动钳尺寸

大。

盘加热易汽化

不适用固定钳式盘式制动器,故前轮不采纳固定钳式盘式制动器。

2)浮动钳式盘式制动器

浮动钳盘式制动器的制动钳体是浮动的。其浮动方式有两种,一种是制动钳体可作平行滑动,另一种的制动钳体可绕一支撑销摆动。但它们的制动油缸都是单侧的,且与油缸同侧的制动块总成为活动的,而另一侧的制动总成则固定在钳体上。

浮动钳盘式制动器结构如下图2.2所示,制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。

制动时,液压油通过进油口进入制动油缸,推动活塞及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动,直到两侧的制动块总成的受力均等为止。

图2.2浮动钳盘式制动器

浮动钳盘式制动器只在制动盘的一侧装油缸,其结构简单,造价低廉,易于布置,结构尺寸紧凑,可将制动器近一步移近轮毂,同一组制动块可兼用于行车制动和驻车制动。由于浮动钳没有跨越制动盘的油道或油管,减少了油液受热机会,单侧油缸又位于盘的内侧,受车轮遮蔽较小,使冷却条件较好。另外单侧油车桥

导向销 活塞 制动钳

制动块

制动盘

缸的活塞比两侧油缸的活塞要长,也增大了油缸的散热面积,因此制动油液温度比固定钳式的低30°~50°,汽化的可能性较小。相比于固定钳式浮动钳式可将油缸和活塞等精密件减去一半,造价大为降低。

浮钳盘式制动器除了上述特点外,与鼓式制动器相比,还具有盘式制动器共同的优缺点。

1)热稳定性好,由于制动盘暴露在外,散热快,所以基本无热衰退现象,连续多次使用制动力矩变化小;一般无自行増力作用,衬块摩擦表现压力分布较鼓式中的衬片更为均匀,此外,制动鼓在受热膨胀后,工作半径增大,使其只能与蹄的中部接触,从而降低了制动效能,这称为机械衰退,制动盘的轴向膨胀极小,径向膨胀根本与性能无关,故无机械衰退问题,因此,前轮采用盘式制动器。汽车制动时不易跑偏。

2)水稳定性好,制动盘对盘的单位压力高,易将水挤出,并且由于衬块对盘的擦拭作用和旋转离心甩水作用,使得比蹄式制动器排水容易得多,浸水后制动效率降低不多;出水后只需经一,二次制动即能恢复正常。鼓式制动器则需经十余次制动方能恢复。

3)制动力矩比较平稳,与车辆运动方向无关,而且由于没有如蹄式制动器的增力作用,因此摩擦系数变化对制动效率没有多大影响。

4)制动衬块上压力分布均匀,磨损均匀,比蹄式制动器使用寿命长,维修方便。

5)衬块与制动盘之间的间隙小(0.05-0.15mm),从而缩短了制动协调时间。

此外由于钳盘式制动器在轮毅外,所以更换衬块比较方便,本身结构上具有自动调整衬块和盘之间间隙的功能,不需要经常调整间隙。

当然,钳盘式制动器也有以下缺点:

1)摩擦面积小,单位压力高,造成工作温度高,因此要求摩擦材料能耐高压和高温。

2)暴露在外难以防止尘土、沙粒,易磨损和锈蚀。

3)没有增力作用.制动效率系数低。

结合车型及其盘式结构尺寸、造价成本、及其实用性,制动器设计前轮采用

浮动钳盘式制动器。

2.1.2 鼓式制动器

鼓式制动器可按其制动蹄张开时的转动方向与制动鼓的旋转方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。鼓式制动器按蹄的属性分为:领从蹄式制动器、双领蹄式制动器、双向双领蹄式制动器、单向增力式制动器、双向增力式制动器。由于本设计主要是设计前轮盘式制动器,而后轮采用的是领从蹄式制动器,所以在此主要介绍领从蹄式制动器。

如图2.3所示,若图上方的旋转方向箭头代表汽车前进是制动鼓的旋转方向(制动鼓正向旋转)。汽车倒车时制动鼓的旋转方向改变,变为反向旋转,随之领蹄与从蹄也就相互对调了。这种制动鼓正、反向旋转时总有一个领蹄和一个从蹄的内张型鼓式制动器,称为领从蹄制动器。

图2.3领从蹄式制动器

领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。

领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进与倒车时的制动性能不变,且结构简单,造价较低,也便于附装驻车制动机构,故这种结构仍广泛用于中、重型载货汽车的前、后轮制动器及轿车的后轮制动器。

2.2 制动驱动机构的结构型式选择

根据制动力源的不同,制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式和气压-液压式的区别。

2.2.1 简单制动系

简单制动系即人力制动系,是靠司机作用于制动塌板上或手柄上的力作为制动力源。而传力方式有、又有机械式和液压式两种。

机械式的靠杆系或钢丝绳传力,其结构简单,造价低廉,工作可靠,但机械效率低,因此仅用于中、小型汽车的驻车制动装置中。

液压式的简单制动系通常简称为液压制动系,用于行车制动装置。其优点是作用滞后时间短(0.1s—0.3s),工作压力大(可达10 MPa—12MPa),缸径尺寸小,可布置在制动器内部作为制动蹄的张开机构或制动块的压紧机构,使之结构简单、紧凑,质量小、造价低。但其有限的力传动比限制了它在汽车上的使用范围。另外,液压管路在过度受热时会形成气泡而影响传输,即产生所谓“汽阻”,使制动效能降低甚至失效;而当气温过低时(-25℃和更低时),由于制动液的粘度增大,使工作的可靠性降低,以及当有局部损坏时,使整个系统都不能继续工作。液压式简单制动系曾广泛用于轿车、轻型及以下的货车和部分中型货车上。但由于其操纵较沉重,不能适应现代汽车提高操纵轻便性的要求,故当前仅多用于微型汽车上,在轿车和轻型汽车上已极少采用。

2.2.2 动力制动系

动力制动系是以发动机动力形成的气压或液压势能作为汽车制动的全部力源进行制动,而司机作用于制动踏板或手柄上的力仅用于对制动回路中控制元件的操纵。在简单制动系中的踏板力与其行程间的反比例关系在动力制动系中便不复存在,因此,此处的踏板力较小且可有适当的踏板行程。

动力制动系有气压制动系、气顶液式制动系和全液压动力制动系3种。

1)气压制动系

气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3s—0.9s),因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件——继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为0.5MPa—0.7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。

2)气顶液式制动系

气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。它兼有液压制动和气压制动的主要优点。由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为9t—11t的中型汽车上也有所采用。

3)全液压动力制动系

全液压动力制动系除具有一般液压制动系统的优点外,还具有操纵轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。但其结构复杂、精密件多,对系统的密封性要求也较高,故并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上。

2.2.3 伺服制动系

伺服制动系是在人力液压制动系的基础上加设一套出其他能源提供的助力装置.使人力与动力可兼用,即兼用人力和发动机动力作为制功能源的制动系。在正常情况下,其输出工作压力主要由动力伺服系统产生,而在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。因此,在中级以上的轿车及轻、中型客、货汽车上得到了广泛的应用。

按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服制动系之分。其伺服能源分别为真空能(负气压能)、气压能和液压能。

2.3 制动主缸型式

为了提高汽车的行驶安全性,根据交通法规的要求,一些轿车的行车制动装置均采用了双回路制动系统。双回路制动系统的制动主缸为串列双腔制动主缸,单腔制动主缸已被淘汰。如图2.8所示,该主缸相当于两个单腔制动主缸串联在一起而构成。储蓄罐中的油经每一腔的进油螺栓和各自旁通孔、补偿孔流入主缸的前、后腔。在主缸前、后工作腔内产生的油压,分别经各自得出油阀和各自的管路传到前、后制动器的轮缸。

1)主缸不制动时,前、后两工作腔内的活塞头部与皮碗正好位于前、后腔内各自得旁通孔和补偿孔之间。

2)当踩下制动踏板时,踏板传动机构通过制动推杆推动后腔活塞前移,到皮碗掩盖住旁通孔后,此腔油压升高。在液压和后腔弹簧力的作用下,推动前腔活塞前移,前腔压力也随之升高。当继续踩下制动踏板时,前后腔的液压继续提高,使前后制动器制动。

图2.4

3)撤出踏板力后,制动踏板机构、主缸前、后腔活塞和轮缸活塞在各自的回位弹簧作用下回位,管路中的制动液在压力作用下推开回油阀流回主缸,于是解除制动。

若与前腔连接的制动管路损坏漏油时,则踩下制动踏板时,只有后腔中能建

立液压,前腔中无压力。此时在液压差作用下,前腔活塞迅速前移到活塞前端顶到主缸缸体上。此后,后缸工作腔中的液压方能升高到制动所需的值。若与后腔连接的制动管路损坏漏油时,则踩下制动踏板时,起先只有后缸活塞前移,而不能推动前缸活塞,因后缸工作腔中不能建立液压。但在后腔活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。

由此可见,采用这种主缸的双回路液压制动系,当制动系统中任一回路失效时,串联双腔制动主缸的另一腔仍能工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大提高了工作的可靠性。

其对制动液要求如下:

(1) 高温下不易汽化,否则将在管路中产生气阻现象,使制动系统失效

(2) 低温下有良好的流动性

(3) 不会使与之经常接触的金属件腐蚀,橡胶件发生膨胀、变硬和损坏

(4) 能对液压系统的运动件起良好的润滑作用

(5) 吸水性差而溶水性良好,即能使渗入其中的水汽化形成微粒而与之均匀混合,否则将在制动液中形成水泡而大大降低汽化温度

目前使用的制动液大部分是植物制动液,用50%左右的蓖麻油和50%左右的溶剂(酒精或甘油等)配成。由于植物制动液的汽化温度不够高,(且在70℃的低温下易凝结),蓖麻油又是贵重的化工原料,植物制动液逐渐被合成制动液和矿物制动液所取代。合成制动液,汽化温度>190℃,-35℃的低温流动性好,对金属无腐蚀,对橡胶无伤害,溶水性好,但成本高;矿物制动液,溶水性差,使普通橡胶膨胀。

2.4 制动管路型式选择

为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应是双回路系统,也就是说应将汽车的全部行车制动器的液压或气压管路分成两个或更多个相互独立的回路,以便当一个回路发生故障失效时,其他完好的回路仍能可靠地工作。如下图2.9不同型式的制动管路。

图2.5不同形式制动管路

2.4 .1 II型回路

前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,简称II 型。其特点是管路布置最为简单,可与传统的单轮缸(或单制动气室)鼓式制动器相配合,成本较低。这种分路布置方案在各类汽车上均有采用,但在货车上用得最广泛。这一分路方案总后轮制动管路失效,则一旦前轮制动抱死就会失去转弯制动能力。对于前轮驱动的轿车,当前轮管路失效而仅由后轮制动时,制动效能将明显降低并小于正常情况下的一半,另外,由于后桥负荷小于前轴,则过大的踏板力会使后轮抱死而导致汽车甩尾。

2.4 .2 X型回路

后轮制功管路呈对角连接的两个独立的回路系统,即前轴的一侧车轮制动器与后桥的对侧车轮制动器同属于一个回路,称交叉型,简称X型。其特点是结构也很简单,一回路失效时仍能保持50%的制动效能,并且制动力的分配系数和同步附着系数没有变化,保证了制动时与整车负荷的适应性。此时前、后各有一侧车轮有制动作用,使制动力不对称,导致前轮将朝制动起作用车轮的一侧绕主销转动,使汽车失去方向稳定性。因此,采用这种分路力案的汽车,其主销偏移距应取负值(至20 mm),这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性。

文献综述-车用盘式电磁制动器的仿真分析

车用盘式电磁制动器的仿真分析 叶春晖 (黑龙江工程学院) 摘要:本文利用Matlab软件中的Simulink模块对所设计的车用盘式电磁制动器建立了数学仿真模型,并进行仿真分析,为这种技术的设计和实现提供了理论依据。 关键词:电磁制动器;建模与仿真; Abstract:this paper use of Matlab software to design the Simulink module of automotive disc electromagnetic brakes establishes the mathematical simulation model and simulation analysis for this technology, provides the design and implementation of the theoretical basis. Keywords: electromagnetic brakes;Modeling and simulation; 当今很多汽车公司在概念车的设计中都采用了线控技术,线传操控技术的核心是智能机电传动装置,这些装置将原先操控车辆的机械手段改由线传电子控制。一切的命令都通过电子信号进行传递,最终转变为机械动作。另一方面,车辆的反馈信息也通过电子信号反映给驾驶者,使得其可以对车辆状况了如指掌。线控将是未来汽车的核心内容,这将要求汽车的各个组成部分发生革命性的变化,在汽车的制动系统部分就得到了充分的体现,如电磁制动器就是制动系统的一个发展方向。本文对所设计的车用盘式电磁制动器进行仿真分析。 1电磁制动器的结构 汽车电磁制动器是一种新型非接触式制动器,它利用电磁阻力的原理将汽车的动能转化为热能耗散在空气中,使汽车获得减速度。其制动效能和工作可靠性、持久性都高于其他传统的汽车制动系统,是国际上汽车制动系统的发展方向。 汽车电磁制动器是根据电磁铁原理,利用电磁吸力将电能转化为机械能,然后使制动盘两侧的制动块夹紧制动盘,从而使车轮制动。 设计的电磁制动器如图1所示。 此汽车制动器的结构与传统液压浮动钳盘式制动器的结构基本相同:制动盘以螺栓固定在轮毂上,带有摩擦衬块的制动块装在制动钳体内,制动块只可以沿轴向滑动,但不能转动;汽车制动时,给电磁线圈供电,使其通一定量的电流,电磁铁产生电磁吸力。电磁铁产生的电磁力比较小,不足以使汽车制动,利用增力机构将力放大,利

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

微型载货汽车盘式制动器设计

微型载货汽车盘式制动器设计 本科生毕业设计 第1章绪论 1.1 研究的目的和意义 盘式制动器具有散热性好、制动效能稳定、抗水衰退能力强、易于保养和维修等优点,可广泛应用于飞机、铁路、车辆和工程机械。对盘式制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 高速行驶的轿车,由于频繁使用制动,制动器的摩擦将会产生大量的热,使制动器温度急剧上升,这些热如果不能很好地散出,就会大大影响制动性能,出现所谓的制动效能热衰退现象,制动器直接关乎生命。因此,制动器的设计是汽车的设计过程中非常重要的一环,确定制动器结构类型,设计制动器中传动的主要零部件,对主要零部件进行校核,对优化汽车制动性能和经济性能,培养我们严谨的设计能力及规范的设计程序具有重要意义,使我们在机械加工工艺规程编制、编写技术文件及查阅技术文献等各个方面受到一次综合性的训练,通过零件图、装配图绘制,使我们对AutoCAD绘制软件的使用能力得到进一步的提高。 1.2 制动系统国内外现状及发展趋势 汽车制动系是汽车总要组成部分,其作用是将行驶中的汽车减速或停车。汽车制动系直接影响着汽车行驶的安全性和停车的可靠性。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性良好、制动系工作可靠的汽车,才能从份发挥其动力性能。

汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车还应有自动制动装置。 汽车制动装置用于使行驶中的汽车强制减速或停车,并使汽车在下短坡时保持适当的稳定车速。构常采用双回路或多回路机构,以保证其工作可靠。 驻车制动装置用于汽车可靠而无时间限制的停驻在一定位置甚至在斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不是用液压或气压驱动,以免其产生故障。 应急制动装置用于当行车制动装置意外发生故障而失效时,则可以用机械力源(如 1 本科生毕业设计 强力压缩弹簧)实现汽车制动。应急制动装置不必是独立的制动系统,它可利用行车制动装置或驻车制动装置的某些制动器件。应急制动装置也不是每车必备的,因为普通的手力驻车制动器也可以起到应急制动的作用。 辅助制动装置用在山区行驶的汽车上,利用发动机排气制动或电涡流制动等的辅助制动装置,可使汽车下长坡时间而维持地减低或保持稳定车速,并减轻或解除行车制动器的负荷。通常,在总质量不大于5t可客车上和总质量不大于12t的载货汽车上装备这种辅助制动-减速装置。 汽车制动系应满足如下要求。 (1)应能适应有关标准和法规的规定。各项性能指标除应满足规定和国家标准、法规制定的有关要求外、也应考虑销售对象所在对象在国家和地区的法规和用户要求; (2)具有足够的制动效能,包括行车制东效能和驻车制动效能,行车制动

龙门起重机文献综述

毕业设计(论文) 文献综述 题目轨道式龙门起重机 专业机械设计制造及其自动化 班级06级1班 学生陈成 指导教师周老师 西南交通大学 2010-4-27 年

1、轨道式集装箱龙门起重机国内发展现状 在我国集装箱港口的装卸作业中,通常采用岸边集装箱起重机加轮胎式集装箱龙门起重机的装卸方案,以轮胎式集装箱龙门起重机作为后方堆场的主要装卸机械。几年,随着港口的发展,轨道式集装箱龙门起重机在港口的使用越来越多。其电控系统、管理系统等方面以达到现有的港口机械水平,完全能满足现代港口集装箱的需要。 目前我国已能批量生产具有上个世纪90年代国际先进水平的岸边集装箱起重机和轮胎式集装箱龙门起重机,轨道式集装箱龙门起重机的研究与开发能力也越来越强。 由于大车行走和小车行走属于一般负载,没有特殊要求,因此变频器在V/F模式下即可正常工作,不需要做特殊设置就能投入使用,而主副钩吊属于重型负载,要求起钩和松钩都能保证不溜钩,上下行平稳迅速,要求在直流制动后马上投入制动器进行制动。 2、轨道式集装箱龙门起重机国外发展现状 长期以来,轨道式集装箱龙门起重机仅小车运行机构采用交流驱动,近年来,起升机构和大车运行也相继采用了交流驱动技术,这样减少了维护和修理费,降低了营运成本。日本三井公司最早成功地采用了交流变频调速装置,解决了起升机构位势负载和车轮支承压力变化导致车轮转速变化的关键技术,达到了集装箱堆6层作业的使用要求。派纳公司将其在自动控制领域所拥有的丰富经验成功地应用在大型轨道式集装箱龙门起重机上,满足了现代化集装箱堆场对自动化控制的需要。欧洲联合码头公司应用光缆传输技术,可靠地将轨道式集装箱龙门起重机与港站管理计算机联网,实现了无人装卸作业和堆场全盘自动化。 据统计,欧洲作为传统上的轮胎式集装箱龙门起重机的大订户,1995年订购的轨道式集装箱龙门起重机多达58台,从一个侧面反映出轨道集装箱龙门起重机的市场潜力和应用前景。另一方面,从世界一些著名的港口的发展趋势看,轨道式集装箱龙门起重机将向大型化、高效化、自动化方向发展。 目前,一些先进设计思想逐渐被采用,一些先进设计手段也被引入轨道式集装箱龙门起重机领域。如果有限元分析、结构优化设计、机电液一体化技术、CAD设计模块化技术、可靠性设计方法、机械结构动态设计等。这些方法在轨

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

盘式制动器文献综述

文献综述 题目汽车盘式制动器设计学院机械工程学院 专业机电技术教育 学生吕其法 学号1664120215 指导教师张春燕 安徽科技学院 2016.3.15

1.盘式制动器的概述 制动器,俗称闸,又叫刹车。它可以使汽车在需要的情况下,保持稳定的车速(如下坡路)。在遇到紧急情况时,其也可以使汽车迅速减速甚至是停车,从而确保了行车的安全。并且还可以防止车子后溜,平稳的停在原地。其结构笼统地讲,主要包括制架、制动件等操纵装置。 盘式制动器,其主要部件包括制动盘、摩擦块、导向销、制动钳体等。 在盘式制动器中,将端面作为摩擦副进而来完成旋转工作的工作圆盘,称之为制动盘。在它的固定支架摩擦幅面上,一般由其金属底板及二至四块摩擦片所组成的制动块,摩擦片的体积一般很小。装在横跨制动盘两侧的夹紧钳形支架中的制动块与加紧装置,构成了制动钳。诸如此类由制动盘、制动钳所组成的制动器也称为钳盘式制动器。在小型轿车、豪华客车、货车等车型上,盘式制动器已经得到了极其广泛的应用。 2.国内汽车盘式制动器的应用情况 伴随着我国汽车工业的飞速发展,在国外先进技术的渗入和影响下,盘式制动器在我国的汽车工业上所应用的比重在逐年提高。由于盘式制动器的应用,大大提高了整车的性能、提高了舒适性、满足了人们对汽车要求的标准。 在轿车、轻卡、微型车及SUV等方面:目前,采用混合制动的车子的比重越来越大。因为人们观念正在逐步转变,经济性、实用性开始主导着人类的思想。混合制动的车子,前轮一般采用盘式制动的形式,而后轮往往采用鼓式的。制动时,在惯性的影响下,车子前轮所承受的负荷很大,往往会占到整车全部负荷的70%至80%。故,前轮制动力远远大于后轮。所以出于成本上的考虑,生产厂家为了降低成本,一般采用混合匹配的方式。目前的大部分轿车、皮卡及SUV等采用的是前盘后鼓式混合制动器。相关部门统计,在2004年,我国共生产混合制动的车子约为110万辆。但随着人们对汽车要求的提高以及道路交通状况的改观,尤其在国家强制性的法规出台后,无论前轮还是后轮都采用盘式制动器终将成为主流。 大型客车在制动器方面的应用:气压盘式制动器、电磁制动器以及液压制动器产品可靠性总体良好,技术先进性明显。我国于1997年在大客车及载重车上首推了AB 防抱死系统和盘式制动器。但由于大多数都是进口的,所以价格相对来说比较昂贵,

机械设计文献综述最终版

1课题的背景和意义 扫描式三维形貌检测系统即为三坐标测量机,是经过40多年发展起来的一种高效率的新型精密测量仪器,有着非常广泛的用途。 20世纪60年代以来,工业生产有了很大的发展,特别是机床、机械、汽车、航空航天和电子工业兴起后,各种复杂零件的研制和生产需要先进的检测技术与仪器,因而体现三维测量技术的三坐标测量机应运而生,并迅速发展和日趋完善。作为近40年发展起来的一种高效率的新型精密测量仪器,三坐标测量机已广泛地用于机械制造、电子、汽车和航空航天等工业中。它可以进行零件和部件的尺寸、形状及相互位置的检测,例如箱体、导轨、涡轮和叶片、缸体、凸轮、齿轮、形体等空间型面的测量。此外,还可用于划线、定中心孔、光刻集成线路等,并可对连续曲面进行扫描及制备数控机床的加工程序等。由于它的通用性强、测量范围大、精度高、效率高、性能好、能与柔性制造系统相连接,已成为一类大型精密仪器,故有“测量中心”之称。 三坐标测量机主要由四大部分组成:主机机械系统(X、Y、Z三轴或其它)、测头系统、电气控制硬件系统、数据处理软件系统(测量软件)。 三坐标测量机的出现是标志计量仪器从古典的手动方式向现代化自动测试技术过渡的一个里程碑。三坐标测量机在下述方而对三维测量技术有重要作用: (1)解决了复杂形状表面轮廓尺寸的测量,例如箱体零件的孔径与孔位、叶片与齿轮、汽车与飞机等的外廓尺寸检测; (2)提高了三维测量的精度,目前高精度的坐标测量机的单轴精度,每米长度内可达1μm以内,三维空间精度可达1μm一2μm。对于车间检测用的三坐标测量机,每米测量精度单轴也可达3μm一4μm; (3)由于三坐标测量机可与数控机床和加工中心配套组成生产加工线或柔性制造系统,从而促进了自动化生产线的发展; (4)随着三坐标测量机的精度不断提高,自动化程度不断发展,促进了三维测量技术的进步,大大地提高了测量效率。尤其是电子计算机的引入,不但便于数据处理,而且可以完成CNC的控制功能,可缩短测量时间达95%以上。 2本课题相关技术的国内外发展概况 2.1三坐标测量机的发展历程 三坐标测量机是集机械、光学、控制技术、计算机技术为一体的大型的精密测量仪器,由于它的通用性强,测量范围大、精度高、效率高、性能好,因此自1959年

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

文献综述

摘要 矿井提升机是重要的矿山设备之一,它肩负着井上,井下联系的重要任务在整个矿井中占有非常重要的地位。由此可见,解决提升机行程、速度监视问题,是防止提升机严重事故的关键。但目前,国内矿山大多采用机械式装置监测提升机的提升速度和行程,但此类设备精度不高,可靠性差,维护量大,这些都与煤矿的安全形势和采矿业的发展不相适应。针对这一现状,开发一套简单、适用的监控系统是非常必要的。 本文从煤矿工业现场的实际情况出发,通过对矿井提升系统和矿井提升机监控系统功能的综合分析,提出了完整的设计方案。选用实用测量方法测量钢丝绳张力、选用激光测距的方式精确的确定提升机的位置、选用适当的传感器监测提升机速度及制动系统温度。在硬件设计上系统采用了微控制器AT89S52作为主处理器,软件采用单片机汇编语言编制,由主程序和若干个子程序构成。设计中充分考虑到监控系统恶劣的使用环境,使整机性能稳定。系统对各个传感器产生的脉冲信号进行采样,由主处理器进行计算、判断,结果送入显示。当提升过程中出现超速等故障时,实现安全制动。 本文对矿井提升机监控系统的设计进行了全方位考虑,能基本满足矿山生产的需要,达到了预想的效果,今后的任务是要在此基础上对系统进行完善。1.传统矿井提升机的现状和问题及走向 传统的矿井提升机大多数采用绕线型异步电动机转子串电阻的交流调速系统,这种方法初期投资少,维护容易。但是这些提升机都是上个世纪60年代到70年代的产品,各项保护都采用机械机构与继电机的材料在性能上容易被破坏。使电机在运行中不明原因的故障增加。修理人员在修理时无从下手,从而增加了修理难度,电机的使用寿命也会严重降低,在可能的条件下最好不要采用。随着PLC 技术日臻成熟地出现,给矿井提升机电气控制系统的发展提供了稳固的安全保障。矿井交流提升机电气控制系统由20世纪60-70年代直流发电机组调速,到20

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

轿车制动器性能试验台设计--文献综述

制动系统是汽车中不可缺少的一部分。因为汽车在行驶过程中会遇到一系列不同的情况,它需要汽车的驾驶者不断的去调整汽车以期能够平稳的前行,因此,汽车上必须设一系列的装置,对汽车进行一定程度的强制制动。这一系列的专职就是制动系统。而制动器是制动系统中用以产生阻碍车辆运动或运动趋势的部件。制动器的优越的性能一定程度决定了制动系统的优越,也更能保障驾驶员的驾驶安全。在各类汽车所使用的摩擦制动器可分鼓式制动器和盘式制动器。 汽车的制动性是确保车辆行驶的主、被动安全性和提升车辆行驶的动力性的决定因素之一。重大交通事故往往与制动距离太长、紧急制动时发生侧滑等情况有关,故汽车的制动性是汽车安全行驶的重要保障。而制动器是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全部件,所以它的工作性能就显得尤为重要。因此,进行制动器试验,检铡其装配质量,评价它的综合性能,成为改善制动器制动性能不可或缺的一部分。所以,研制一种模拟性能好、试验精度高的制动器试验台十分必要. 近年来,随着车辆技术的进步和汽车行驶速度的提高,制动器的重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。制动装置需要转换和吸收的动能,与汽车制动初速度的平方和总质量成正比;其需要产生的制动力则与汽车总质量成正比,与制动初速度相对来说关系不大。在汽车的发展过程中,速度和总质量两个参数始终处于不断攀高的状态,这就要求制动装置在更短的时间内吸收越来越大的能量,并产生接近车轮滑移界限的制动力。汽车速度的提高对制动器的性能提出了更高的要求,不断改善汽车的制动性,始终是汽车设计制造和使用部门的重要任务。同时,世界各国和制动器制造企业对制动器制动性能都提出了各种标准。为了制动器的性能达到更高的水平,以尽量提高汽车的安全性和可靠性,这对制动器试验台的准确性和高精度性提出了更高的要求。因此制动器试验台的设计具有广泛的应用前景。 相对于道路试验检测来说,台架检测方法具有许多突出的优点: 1)检测过程简单,时间短。2)设备占地面积小,可以作为一个单独的工位加装在目前我国正在普遍使用的汽车性能检测线上。 3)检测过程受环境因素影响较小。由于台架检测是在室内进行,所以不会受到天气、侧向风等自然条件的影响;4)设备耗资低,根据市场需求可实行产业化生产。

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

制动系统文献综述

燕山大学 本科毕业设计文献综述 课题名称:汽车制动系统 学院(系):车辆与能源学院 年级专业:车辆工程 学生姓名:户仕源 指导教师:张润生 完成日期: 2014年3月20日

一、课题国内外现状 随着汽车安全性的日益提高,汽车制动系统也经历了数尺变迁和改进。从最初的皮革摩擦制动,到后来的鼓式、盘式制动器,再到机械式ABS制动系统,紧接着伴随电子技术的发展又出现了模拟电子ABS制动系统、数字式电控ABS制动系统,等等。近10年来,西方发达国家又兴起了对汽车线控系统的研究,线控制动系统应运而生,并开展了对电控机械制动系统的研究。简单来说,电控机械制动系统就是把原来液压或者压缩空气驱动的部分改为电动机驱动,借以提高响应速度,增加制动效能,同时大大简化了结构,降低了装备和维护的难度。 由于人们对制动系统的要求不断提高,传统的液压或者空气制动系统在加入大量电子控制系统(如ABS、TCS、ESP)后,结构和管路布置越来越复杂,加大了液压(空气)回路泄漏的隐患,同时装配和维修的难度也随之提高;因此,结构相对简单、功能集成可靠的电控机械制动系统越来越受到青睐。 二、研究主要成果 液压制动现在已经是非常成熟的技术,随着汽车技术的进步,一些提高制动性能的技术如防抱死制动系统、驱动防滑控制系统、电子稳定性控制程序等已经融人到制动系统当中。 电液复合制动系统是从传统制动向电子制动的一种有效的过渡方案,采用液压制动和电制动两种制动系统。这种制动系统既应用了传统的液压制动系统以保证足够的制动效能和安全性,又利用再生制动电机回收制动能量和提供制动力矩,提高汽车的燃料经济性,同时降低排放,减少污染。 三、发展趋势: 液压制动系统的结构越来越复杂,增加了液压回路泄漏的可能以及装配、维修的难度。制动系统要求结构简单,功能全面,可靠性高。因此电子技术的应用是大势所趋。目前制动系统的各个组成部分,都不同程度地实现了电子化。人作为控制能源,只是启动制动系统,发出制动信号;采用全新的电子制动器和集中控制的电子控制单元(ECU)进行制动系统的整体控制,每个制动器有各自的控制单元。机械连接逐渐减少,制动踏板和制动器之间动力传递分离开来,之间是电线连接,电线传递能量,数据线传递信号,这种制动

盘式制动器毕业设计说明书

盘式制动器毕业设计说明书 目录 摘要................................................................ I Abstract ............................................................. II 1 绪论. (1) 1.1 制动器的作用 (1) 1.2 制动器的种类 (1) 1.3 制动器的组成 (1) 1.4 对制动器的要求 (3) 1.5 制动器的新发展 (4) 2 制动器的结构形式及选择 (4) 2.1 制动器的种类 (4) 2.2 盘式制动器的结构型式及选择 (6) 3 汽车整车基本参数计算 (8) 4 制动系的主要参数及其选择 (9) 4.1 制动力与制动力分配系数 (9) 4.2 同步附着系数 (9) 4.3 制动强度和附着系数利用率 (10) 4.4 制动器最大制动力矩 (10) 4.5 制动器因数 (11) 5 盘式制动器的设计 (11) 5.1 盘式制动器的结构参数与摩擦系数的确定 (11) 5.2 制动衬块的设计计算 (12) 5.3 摩擦衬块磨损特性的计算 (13) 5.4 制动器主要零件的结构设计 (14) 6 制动驱动机构的结构型式选择与设计计算 (15) 6.1 制动驱动机构的结构型式选择 (15) 6.2制动管路的选择 (15) 6.3 液压制动驱动机构的设计计算 (16) 7 盘式制动器的优化设计 (18)

7.2 解决优化设计问题的一般步骤及几何解释 (18) 7.3 常用优化方法 (19) 7.4 制动系参数的优化 (19) 8 结论 (21) 致谢 (22) 参考文献 (23) 附录 (24)

汽车液压盘式制动器设计研究

2009年第10期 科技经济市场 1汽车工业的发展 在人类历史发展的过程中,“衣”、“食”、“住”、“行”始终是人类生存的四大需要,是人类发展、进步的最重要的基本条件。而在“四大需要”中,“行”或“交通”的变化,在人类社会发展过程中 是最突出的,它对社会进步的影响也是最大的。 汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的“行”的手段。因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步象征及文明形态的一种代表。中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥巨大的作用。 2汽车零部件的工业现状及水平 在汽车行驶过程中,其零部件承受的载荷的大小和性质受着许多因素的影响。汽车的可靠性与在其使用期间作用在其零部件上的实际载荷有关。由于汽车的使用条件非常复杂,时间也不固定,有影响且变化的因素很多,致使在零件中的应力值会在很大的范围内变动,甚至应力性质也会改变。因此,确定汽车零部件所承受的实际载荷要比确定其他机械产品的载荷复杂很 多。而引起零件产生应力的力有些是恒定的(例如重力、 零件装配时产生的预紧力或过盈力),有些是不定的(例如汽车起步时和制动时产生的力,零件制造误差引起的力,发动机工作工况改变而引起转矩及力的改变,行驶阻力引起的力等等)。在设计中为了校核零件的静强度,首先就要确定其危险断面及其所承受的最大载荷;为了校核零件的疲劳强度,除了可按相关文献给出的计算方法进行疲劳强度的计算校核外,还常常以其实测的载荷谱为基础编制加载语并按加载谱的加载程序加载,在疲劳试验台上进行试验验证。可见,在设计中为了进行零部件的强度设计,首先要弄清其载荷工况、破坏机理,以便采取相应的强度计算方法进行有效的设计。 3汽车设计技术的发展 汽车设计技术在近百年中也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段,进而自60年代中期在设计中引入电子计算机后又形成了计算机辅助设计(CAD)等新方法,并使设计逐步实现半自动化和自动化。参阅相关权威资料了解到汽车设计的直接目的有以下三点: (1)提高汽车的技术水平,使其承载能力更强,使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少; (2)改善汽车的外观造型,特别对轿车来讲改善车身艺术效果,使其更美观、更科学、更新颖、更有时代感,往往是车型设计 的重要目的,也是提高市场竞争力的重要手段; (3)改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。 电子计算机的出现和在工程设计中的推广应用,使汽车设 计技术飞跃发展,设计过程完全改观。 汽车结构参数及性能参数等的优化选择与匹配、 零部件的强度核算与寿命预测、产品有关方面的模拟计算或仿真分析、车身的美工造型等等设计方案的选择及定型、设计图纸的绘制,均可在计算机上进行。 4盘式制动器设计、计算分析模块4.1概述 在轿车和中小型客车的设计中,一般其结构形式为前轮制动器采用浮钳式制动器,后轮制动器采用领从蹄自动定义浮销式鼓式制动器。而对总重大于20KN-40KN 的客车而言,前轮也有采用固定钳式盘式制动器,后轮采用自增力自动定义浮销式鼓式制动器。 在根据汽车的整车参数分析了汽车的制动力、制动力矩之后,就可以根据具体的制动器结构形式作相关设计、计算、分析等工作。 4.2基本原理(1)确定柱式制动器制动钳体主要结构参数的计算方法:在初步计算制动器制动钳体结构参数时,盘式制动器效能因数BF 的值可定为0.8。根据汽车前轮所需的最大理论制动力矩,初步选取制动钳体缸孔直径D 1可由下面的公式算出: M μ1=(P 1-P 10)Awc 1ηa .BF 1r 1……………1-1式中:Awc 1—盘式制动器制动钳体缸也的工作面积:(mm 2) BF 1—盘式制动器制动效能因数;P 10—前制动管路的开启压力;(M pa 或N/mm 2)ηa —主缸以后的机械效率;r l —制动盘有效半径;(m)P 1—前制动管压;(M pa 或N/mm 2)(2)确定盘式制动器计算用的最大制动力矩: 由于考虑到汽车实际制动时的最大输出制动力矩与理论值受很多因素影响而发生改变,如制动衬片与制动盘接触时不一定非常均匀使加制动力、制动衬片的摩擦系数受温度变化而发生改变等一些因素。这样用于计算的最大制动力矩应由下面公式算出: M 'u 1max=1.2M u 1max …………………1-2式中:M 'u 1max —用于计算的最大制动力矩(N.m ) M u 1max —单个前轮制动器理论最大制动力矩(N.m ) 作者简介:王亮,在读硕士,现工作在淮阴工学院,承担汽车服务工程专业的课程讲授工作。 汽车液压盘式制动器设计研究 王 亮关荣 (淮阴工学院,江苏淮安223001) 摘 要:本文主要是研究汽车液压盘式制动器设计计算程序, 通过运用V isual B asic 6.0软件和A ccess 数据库实现制动系的计算机辅助设计,基于制动器中的零部件数目较多,在掌握了汽车工业发展的历史和现状、 汽车设计技术理论知识构成以及汽车零部件的工业现状及水平的基础上,选取具有代表性的汽车液压盘式制动器设计、计算分析模块。从模块功能的概述、基本原理以及程序设计流程三个方面进行完整的模块设计说明。从而实现汽车液压盘式制动器设计的自动化,提升整车的安全性能。 关键词: 制动系;程序库;盘式制动器;模块技术平台 趤趽

相关文档
最新文档