2021届高考数学核按钮【新高考广东版】2.3 基本不等式

合集下载

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。

1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}【答案】B【考点】交集及其运算【解析】【解答】解:根据交集的定义易知A∩B是求集合A与集合B的公共元素,即{2,3},故答案为:B【分析】根据交集的定义直接求解即可.2.已知z=2-i,则( z(z⃗+i)=()A. 6-2iB. 4-2iC. 6+2iD. 4+2i【答案】C【考点】复数的基本概念,复数代数形式的混合运算【解析】【解答】解:z(z+i)=(2−i)(2+2i)=4+4i−2i−2i2=6+2i故答案为:C【分析】根据复数的运算,结合共轭复数的定义求解即可.3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2 √2C. 4D. 4 √2【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:根据底面周长等于侧面展开图弧长,设母线为l,底面半径为r,则有2πr=180°360°×2πl,解得l=2r=2√2故答案为:B【分析】根据底面周长等于侧面展开图弧长,结合圆的周长公式与扇形的弧长公式求解即可.4.下列区间中,函数f(x)=7sin( x−π6)单调递增的区间是()A. (0, π2) B. ( π2, π) C. ( π, 3π2) D. ( 3π2, 2π)【答案】A【考点】正弦函数的单调性【解析】【解答】解:由−π2+2kπ≤x−π6≤π2+2kπ得−π3+2kπ≤x≤2π3+2kπ,k∈Z,当k=0时,[−π3,2π3]是函数的一个增区间,显然(0,π2)⊂[−π3,2π3],故答案为:A【分析】根据正弦函数的单调性求解即可.5.已知F 1,F 2是椭圆C :x 29+y 24=1 的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A. 13 B. 12 C. 9 D. 6 【答案】 C【考点】基本不等式在最值问题中的应用,椭圆的定义【解析】【解答】解:由椭圆的定义可知a 2=9,b 2=4,|MF 1|+|MF 2|=2a=6, 则由基本不等式可得|MF 1||MF 2|≤|MF1||MF2|≤(|MF1|+|MF2|2)2=9 ,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故答案为:C【分析】根据椭圆的定义,结合基本不等式求解即可. 6.若tan θ =-2,则sin θ(1+sin2θ)sin θ+cos θ=( )A. −65 B. −25 C. 25 D. 65 【答案】 C【考点】二倍角的正弦公式,同角三角函数间的基本关系,同角三角函数基本关系的运用 【解析】【解答】解:原式=sinθ(sin 2θ+2sinθcosθ+cos 2θ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ)=sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθtan 2θ+1=25故答案为:C【分析】根据同角三角函数的基本关系,结合二倍角公式求解即可. 7.若过点(a,b)可以作曲线y=e x 的两条切线,则( ) A. e b <a B. e a <b C. 0<a<e b D. 0<b<e a 【答案】 D【考点】极限及其运算,利用导数研究曲线上某点切线方程【解析】【解答】解:由题意易知,当x 趋近于-∞时,切线为x=0,当x 趋近于+∞时,切线为y=+∞,因此切线的交点必位于第一象限,且在曲线y=e x 的下方. 故答案为:D【分析】利用极限,结合图象求解即可.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立 【答案】 B【考点】相互独立事件,相互独立事件的概率乘法公式,古典概型及其概率计算公式 【解析】【解答】解:设甲乙丙丁事件发生的概率分别为P(A),P(B),P(C),P(D), 则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16 ,对于A ,P(AC)=0;对于B ,P(AD)=16×6=136; 对于C ,P(BC)=16×6=136; 对于D ,P(CD)=0.若两事件X,Y 相互独立,则P(XY)=P(X)P(Y), 故B 正确. 故答案为:B【分析】根据古典概型,以及独立事件的概率求解即可二、选择题:本题共4小题。

第6章 第4讲基本不等式-2021版高三数学(新高考)一轮复习课件共55张PPT

第6章 第4讲基本不等式-2021版高三数学(新高考)一轮复习课件共55张PPT
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 新高考
返回导航
(2)ab-16=a+2b≥2 2ab,令 ab=t,
则 t2-2
2t-16≥0⇒t≥2
2+ 2
72=4
2,
故 ab≥32,即 ab 最小值为 32.(当且仅当 a=8,b=4 时取等号)故选 B.
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 新高考
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 新高考
返回导航
〔变式训练 1〕
(1)(角度 1)(2020·宁夏银川一中月考)已知正数 x、y 满足 x+y=1,则1x+1+4 y的最
小值为
(B )
A.2
B.92
C.134
D.5
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 新高考
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)令 t= x-1≥0,则 x=t2+1, 所以 y=t2+1+t 3+t=t2+tt+4. 当 t=0,即 x=1 时,y=0; 当 t>0 时,即 x>1 时,y=t+41t +1, 因为 t+4t ≥2 4=4(当且仅当 t=2 时取等号),所以 y=t+41t +1≤15, 即 y 的最大值为15(当 t=2,即 x=5 时 y 取得最大值).
返回导航
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 新高考
返回导航
知识梳理 • 双基自测
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 新高考
返回导航
知识点一 重要不等式 a2+b2≥____2_a_b____(a,b∈R)(当且仅当___a_=__b____时等号成立). 知识点二 基本不等式 ab≤a+2 b(均值定理) (1)基本不等式成立的条件:__a_>_0_,__b_>_0_; (2)等号成立的条件:当且仅当___a_=__b____时等号成立; (3)其中a+2 b叫做正数 a,b 的_算__术__平__均__数__, ab叫做正数 a,b 的__几__何__平__均__数__.

(广东专用)高考数学总复习 第六章第四节 基本不等式课件 理

(广东专用)高考数学总复习 第六章第四节 基本不等式课件 理
【解析】 ∵x>0,y>0,∴x+8y≥2 8xy=4 2xy, ∴xy≤312(当且仅当 x=8y=12时取“=”). 【答案】 1
32
9
利用基本不等式求最值
(1)已知 x>0,y>0,且 x+y=1,则3x+4y的最小值是________. (2)(2011·浙江高考)设 x,y 为实数,若 4x2+y2+xy=1,则 2x+y 的最大值是________. 【思路点拨】 (1)“1”的妙用,把3x+4y化为(x+y)(x3+4y). (2)4x2+y2+xy=(2x+y)2-3xy,再利用 3xy≤32×2xy≤23(2x+ 2 y)2 求解.
【提示】 当等号取不到时,可利用函数的单调性等知识来求 解. 2.若x2+y2=1,则xy有最大值还是最小值?试求之.
【提示】
xy
有最大值,xy≤x2+2 y2=12,当且仅当
x=y=±
2时等 2
号成立.
4
1.(教材改编题)用20 cm长的铁丝折成一个面积最大的矩形, 则矩形的长和宽分别是( )
A.7 cm,3 cm
∴x+1+x+4 1≥2 x+1·x+4 1=4,
当且仅当 x+1=x+4 1,即 x=1 时取“=”,
∴y=(x+1)+x+4 1+5≥9,
∴函数 y=x+x5+x1+2的最小值为 9.
14
(2)∵x>0,y>0,x3+4y=1, ∴x+y=(x+y)(3x+4y)=3xy+4yx+7≥2 3xy·4yx+7=7+4 3, 当且仅当3xy=4yx且3x+4y=1,即 x=3+2 3,y=4+2 3时等号成 立, ∴x+y 的最小值为 7+4 3.,
13
(1)本例(1)改为“若 x>-1,试求函数 y=x+x5+x1+2的最小 值.”

广东专用2024版高考数学总复习:基本不等式课件

广东专用2024版高考数学总复习:基本不等式课件
×
(5) “ 且 ”是“ ”的充分不必要条件.( )

2.(教材题改编)已知 , 且 ,下列各式中最大的是( )
A. B. C. D.
解:因为 , ,所以 , , , ,所以 , ,当 时,由均值不等式可知 ,所以 ,由上可知, , ,所以四个式子中 最大.故选D.
第一章 集合与常用逻辑用语、不等式
1.5 基本不等式
课程标准 有的放矢
必备知识 温故知新
自主评价 牛刀小试
核心考点 精准突破
课时作业 知能提升
掌握基本不等式 .结合具体实例,能用基本不等式解决简单的最大值或最小值问题.
【教材梳理】
1.基本不等式 如果 , ,那么_ __________,当且仅当 时,等号成立.该式叫基本不等式,其中,_ ___叫做正数 , 的算术平均数,_____叫做正数 , 的几何平均数.基本不等式表明:两个正数的算术平均数________它们的几何平均数.
【常用结论】
4.常用推论
(1) .
(2) .
(3) .
(4) . 即有:正数 , 的调和平均数≤几何平均数 算术平均数≤平方平均数.
5.三元均值不等式
(1) .
(2) . 以上两个不等式中 , , ,当且仅当 时等号成立.
不小于
2.几个重要不等式
重要不等式
使用前提
等号成立条件
_______
________
2
-2
3.基本不等式求最值
(1)设 , 为正数,若积 等于定值 ,那么当 时,和 有最小值_____(简记为:积定和最小).
(2)设 , 为正数,若和 等于定值 ,那么当 时,积 有最大值_____(简记为:和定积最大).

2021届高考数学核按钮【新高考广东版】2.1 不等式性质

2021届高考数学核按钮【新高考广东版】2.1 不等式性质

第二章 不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过一元二次函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式.3.基本不等式:a +b2≥ab (a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)能用基本不等式解决简单的求最大(小)值问题.2.1 不等式性质1.两个实数大小的比较 (1)a >b ⇔a -b________. (2)a =b ⇔a -b________.(3)a <b ⇔a -b________.2.不等式的性质(1)对称性:a >b ⇔__________.(2)传递性:a >b ,b >c ⇒__________. (3)不等式加等量:a >b ⇔a +c______b +c. (4)不等式乘正量:a >b ,c >0⇒__________, 不等式乘负量:a >b ,c <0⇒__________. (5)同向不等式相加:a >b ,c >d ⇒__________. ※(6)异向不等式相减:a >b ,c <d ⇒a -c >b -d. (7)同向不等式相乘:a >b >0,c >d >0⇒__________.※(8)异向不等式相除:a >b >0,0<c <d ⇒a c >b d . ※(9)不等式取倒数:a >b ,ab >0⇒1a <1b.(10)不等式的乘方:a >b >0⇒______________.(11)不等式的开方:a >b >0⇒______________.注:(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除. 自查自纠 1.>0 =0 <02.(1)b <a (2)a >c (3)> (4)ac >bc ac <bc (5)a +c >b +d (7)ac >bd (10)a n >b n (n ∈N 且n ≥2) (11)n a >nb (n ∈N 且n ≥2)1.下列说法正确的是 ( )A.若ab>1,则a >b B.一个不等式的两边加上或乘以同一个实数,不等号方向不变 C.一个非零实数越大,则其倒数就越大 D.a >b >0,c >d >0⇒a d >bc解:举反例易知A ,B ,C 均错误,c >d >0⇒1d >1c >0,故选项D 正确.故选D. 2.(2019·全国Ⅱ卷)若a >b ,则 ( ) A.ln(a -b )>0 B.3a <3b C.a 3-b 3>0 D.|a |>|b |解:a >b ⇒a 3>b 3,故C 正确,易知A ,B ,D 错误.故选C. 3.(北京市石景山区2019届高三3月统一测试)若x >0>y ,则下列各式中一定正确的是 ( ) A.sin x >sin y B.ln x <ln(-y )C.e x <e yD.1x >1y解:因为sin π=sin(-π),ln1=ln[-(-1)],e 1>e -1,所以A ,B ,C 均不正确;因为x >0,y <0,所以1x >0,1y <0,所以1x >1y,所以D 正确.故选D.4.设M =2a (a -2),N =(a +1)(a -3),则M ,N 的大小关系为________.解:因为M -N =2a (a -2)-(a +1)(a -3)=(a -1)2+2>0,所以M >N.故填M >N.5.(2018·南京模拟)若a ,b ∈R ,且a +|b |<0,则下列不等式中所有正确的序号是________.①a -b >0;②a 3+b 3>0;③a 2-b 2<0;④a +b <0.解:a +|b |<0⇒a <0且-a >|b |,由|b |≥-b 得-a >-b ⇒a -b <0,①错;由|b |≥b 得-a >b ⇒-a 3>b3⇒a 3+b 3<0,②错;由|a |=-a >|b |⇒a 2>b 2⇒a 2-b 2>0,③错;由-a >b ⇒a +b <0,④对.故填④.类型一 建立不等关系例1 下表为某运动会官方票务网站公布的几种球类比赛的门票价格.某球迷赛前准备用1 200元预订前提下,该球迷想预订上表中三种球类比赛的门票,其中篮球比赛门票数与乒乓球比赛门票数均为n (n ∈N *)张,且篮球比赛门票的费用不超过足球比赛门票的费用,写出关于n 的不等式(组),并求可以预订的足球比赛门票数.解:由题意,足球比赛门票预定(15-2n )张,则⎩⎪⎨⎪⎧80n +60n +100(15-2n )≤1 200,80n ≤100(15-2n ),2n <15.解得5≤n ≤7514,由n ∈N *,可得n =5,所以15-2n =5.所以可以预订足球比赛门票5张.点拨 解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”“不超过”等,从而建立相应的方程或不等式模型.变式1 (2017·北京卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数; ②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.解:设男学生人数、女学生人数、教师人数分别为a ,b ,c ,则2c >a >b >c ,a ,b ,c ∈N *.(1)若c =4,则2c =8,所以8>a >b >4,当a =7时,b =6或5;当a =6时,b =5.所以b max =6.(2)因为2c >a >b >c ,a ,b ,c ∈N *,所以c 与2c 之间至少有两个整数,所以2c -c ≥3,所以c ≥3,所以c min =3.当c =3时,有6>a >b >3,此时a =5,b =4,所以该小组人数的最小值为a +b +c =12. 故(1)填6;(2)填12.类型二 不等式的性质例2 (1)设a ,b ,c ,d 均为非零实数,则下列命题中所有正确的序号为________.①若bc -ad >0,c a -db >0,则ab >0;②若a <b <0,则1a -b >1b;③若a >b ,c >d ,则a -c >b -d ;④若a >b >1>d +1,则log a (b -d )<log b (a -d ).解:①正确,因为c a -d b =bc -adab >0,bc -ad >0,所以ab >0;②错误,因为a <b <0,令a =-2,b =-1,则a -b =-1,1a -b =-1,1b =-1,得1a -b =1b,所以1a -b >1b不一定成立; ③错误,因为a >b ,c >d ,所以令a =3,b =1,c =2,d =0,则a -c =b -d ,所以a -c >b -d 不一定成立;④正确,因为a >b >1>d +1,所以a -d >b -d >1,所以log a (b -d )<log a (a -d ). 又因为log a (a -d )<log b (a -d ),所以log a (b -d )<log b (a -d ).故填①④.(2)(甘肃省2019届高三二诊)若a >b ,ab ≠0则下列不等式恒成立的是 ( )A.a 2>b 2B.lg(a -b )>0C.1a <1bD.2a >2b 解:对于选项A ,a 2>b 2不一定成立,如a =1>b =-2,但是a 2<b 2,所以该选项是错误的;对于选项B ,a =12,b =13,a -b =16,lg 16<0,所以该选项是错误的;对于选项C ,1a -1b =b -aab ,因为b -a <0,ab符号不确定,所以1a <1b 不一定成立,所以该选项是错误的;对于选项D ,因为a >b ,所以2a>2b,所以该选项是正确的.故选D.点拨 利用不等式性质进行命题的判断时:①判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.②在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,判断的同时常常还要用到其他知识,比如对数函数、指数函数的性质等.变式2 (1)若a >b >0,c <d <0,则一定有 ( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c解:由c <d <0⇒-1d >-1c >0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <bc.故选D .(2)已知实数a ,b ,c 满足a >b >0>c ,则下列不等式中所有成立的序号为________.①a 2c >b 2c ;②a +c <b +c ;③a 3b >ab 3;④c b >ca;⑤a +1b >b +1a.解:①不成立,因为a >b >0,所以a 2>b 2,又因为c <0,所以a 2c <b 2c ;②不成立,由不等式的性质,a +c >b +c ; ③成立,因为a >b >0,所以a 2>b 2,ab >0,所以a 2·ab >b 2·ab ,即a 3b >ab 3;④不成立,因为a >b >0,所以1b >1a,又因为c <0,所以c b <c a;⑤成立,因为a >b >0,所以1b >1a ,所以a +1b>b+1b >b +1a. 故填③⑤.类型三 不等式性质的应用例3 (1)已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)解法一:设2x -3y =λ(x +y )+μ(x -y ) =(λ+μ)x +(λ-μ)y ,则⎩⎪⎨⎪⎧λ+μ=2,λ-μ=-3⇒⎩⎨⎧λ=-12,μ=52.所以2x -3y =-12(x +y )+52(x -y ),而-2<-12(x +y )<12,5<52(x -y )<152,所以3<2x -y <8,即2x -y ∈(3,8). 解法二:令⎩⎪⎨⎪⎧a =x +y ,b =x -y ,则⎩⎪⎨⎪⎧x =a +b 2,y =a -b 2,且-1<a <4,2<b <3.所以2x -3y =2·a +b 2-3·a -b 2=-a 2+52b ,因为-1<a <4,2<b <3, 所以-2<-a 2<12,5<52b <152,所以3<-a 2+52b <8,即2x +y ∈(3,8).故填(3,8).(2)若实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________.解法一:由3≤xy 2≤8,4≤x 2y≤9,可知x >0,y >0,且18≤1xy 2≤13,16≤x 4y 2≤81,得2≤x 3y4≤27,故x3y 4的最大值是27. 解法二:设x 3y4=⎝⎛⎭⎫x 2y m·(xy 2)n ,则x 3y -4=x 2m +n y 2n -m ,所以⎩⎪⎨⎪⎧2m +n =3,2n -m =-4,即⎩⎪⎨⎪⎧m =2,n =-1.又因为16≤⎝⎛⎭⎫x 2y 2≤81,18≤(xy 2)-1≤13,所以2≤x 3y 4≤27,故x 3y4的最大值为27.故填27.点拨 由a <f (x ,y )<b ,c <g (x ,y )<d ,求F (x ,y )的取值范围,可利用待定系数法解决,即设F (x ,y )=mf (x ,y )+ng (x ,y )(或其他形式),通过恒等变形求得m ,n 的值,再利用不等式的同向可加和同向同正可乘的性质求得F (x ,y )的取值范围.变式3 (1)(2018·河北模拟)已知-π2<α<β<π2,则α-β2一定不属于 ( )A.(-π,π)B.⎝⎛⎭⎫-π2,π2 C.(-π,0) D.(0,π)解:因为-π2<α<β<π2,所以-π2-π2<α-β<0,即-π<α-β<0,-π2<α-β2<0,所以α-β2一定不属于(0,π).故选D. (2)若-1≤lg x y ≤2,1≤lg(xy )≤4,则lg x 2y的取值范围是________.解:由1≤lg(xy )≤4,-1≤lg xy≤2,得1≤lg x +lg y ≤4,-1≤lg x -lg y ≤2,则lg x 2y =2lg x -lg y =12(lg x +lg y )+32(lg x -lg y ),所以-1≤lg x 2y≤5.故填[-1,5].类型四 比较大小例4 (1)(2018·上海徐汇模拟)若a <0,b <0,则p =b 2a +a 2b与q =a +b 的大小关系为 ( )A.p <qB.p ≤qC.p >qD.p ≥q解:p -q =b 2a +a 2b-a -b=b 2-a 2a+a 2-b 2b=(b 2-a 2)⎝⎛⎭⎫1a -1b=(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,即p =q ; 若a ≠b ,则p -q <0,即p <q. 综上,p ≤q.故选B.(2)已知a >0,b >0,且a ≠b ,试比较a a b b 与(ab )a +b 2的大小.解:因为a >0,b >0,所以a ab b (ab )a +b 2=a(a -a +b 2)b(b -a +b2)=aa -b 2bb -a 2=⎝⎛⎭⎫a b a -b 2,若a >b >0,则ab >1,a -b >0,由指数函数的性质知⎝⎛⎭⎫a b a -b2>1;若b >a >0,则0<ab <1,a -b <0,由指数函数的性质知⎝⎛⎭⎫a b a -b 2>1.综上知,a ab b (ab )a +b 2>1,又(ab )a +b 2>0,所以a ab b>(ab )a +b2.点拨 作差(商)比较法的步骤是:①作差(商);②变形:配方、因式分解、通分、分母(分子)有理化等;③判断符号(判断商和“1”的大小关系);④给出结论.变式4 (1)(2018·焦作模拟)设a >b >0,试比较a 2-b 2a 2+b 2与a -b a +b的大小. 解法一:(作差法) a 2-b 2a 2+b 2-a -ba +b=(a +b )(a 2-b 2)-(a 2+b 2)(a -b )(a 2+b 2)(a +b )=(a -b )[(a +b )2-(a 2+b 2)](a 2+b 2)(a +b )=2ab (a -b )(a 2+b 2)(a +b ). 因为a >b >0,所以a +b >0,a -b >0,2ab >0,a 2+b 2>0,所以2ab (a -b )(a 2+b 2)(a +b )>0,所以a 2-b 2a 2+b 2>a -ba +b. 解法二:(作商法)因为a >b >0,所以a 2-b 2a 2+b 2>0,a -ba +b >0,2ab>0,所以a 2-b 2a 2+b 2a -b a +b=(a +b )2a 2+b2=a 2+b 2+2ab a 2+b2=1+2aba 2+b 2>1, 所以a 2-b 2a 2+b 2>a -b a +b.(2)(2019·甘肃兰州模拟)设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是________.解法一:因为0<x <1,所以b -a =1+x -2x >1+x -2x =(x -1)2>0,所以b >a ,c -b =11-x -(1+x )=x 21-x >0,所以c >b ,所以c >b >a.所以c 最大.解法二:取x =18,则a =12,b =1+18,c =87=1+17,显然c 最大.故填c . 例5 (2019·广西联考)已知x =log 23-log 23,y =log 0.5π,z =0.9-1.1,则x ,y ,z 的大小关系为( )A.x <y <zB.z <y <xC.y <z <xD.y <x <z解:显然0<x =log 23<log 22=1,y =log 0.5π<log 0.51=0,z =0.9-1.1>1,所以y <x <z.故选D.点拨 比较大小的常用方法:①作差法;②作商法;③放缩法.在代数式的比较大小问题中,一般是通过放缩变形,得到一个中间的参照式(或数),放缩的手段可能是基本不等式、三角函数的有界性等.有时,等号成立的条件是比较大小的关键所在.变式5 设x >0,P =2x+2-x ,Q =(sin x +cos x )2,则 ( )A.P >QB.P <QC.P ≤QD.P ≥Q解:因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x +cos x )2=1+sin2x ,而sin2x ≤1,所以Q ≤2,则有P >Q.故选A.1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础. 2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.利用几个不等式来确定某个代数式的范围时要注意:“同向(异向)不等式的两边可相加(相减)”这种变形不是等价变形,若多次使用,则有可能使取值范围扩大,解决这一问题的方法是:先建立待求范围的整体与已知范围的整体的等量关系,再一次性地运用这种变形,即可求得正确的待求整体的范围.5.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.6.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.1.(2018·贵阳监测)下列命题中,正确的是 ( ) A.若a >b ,c >d ,则ac >bd B.若ac >bc ,则a >bC.若a c 2<bc2,则a <bD.若a >b ,c >d ,则a -c >b -d解:选项A :取a =2,b =1,c =-1,d =-2,可知A 错误;选项B :当c <0时,ac >bc ⇒a <b ,所以B 错误;选项C :因为a c 2<bc 2,所以c ≠0,又c 2>0,所以a <b ,C 正确;选项D :取a =c =2,b =d =1,可知D 错误.故选C.2.(2018·延安质检)若实数m ,n 满足m >n >0,则 ( )A.-1m <-1n B.m -n <m -nC.⎝⎛⎭⎫12m>⎝⎛⎭⎫12n D.m 2<mn解法一:由题意,1m <1n ⇒-1m >-1n,A 错误;m -n <m -n ,两边均大于0,平方得m+n -2mn <m -n ⇐n <mn ⇐n <m ⇐m >n >0,B正确; 易知y =⎝⎛⎭⎫12x 为减函数,m >n >0,所以⎝⎛⎭⎫12m<⎝⎛⎭⎫12n,C 错误;因为m >n >0,所以m ·m >mn ,即m 2>mn ,D 错误.解法二:取m =2,n =1,代入各选项验证A ,C ,D 不成立,只有B 项成立(2-1<2-1).故选B.3.(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:由a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件.故选A. 4.(2019·山东德州模拟)已知a <b <c 且a +b +c =0,则下列不等式恒成立的是 ( )A.a 2<b 2<c 2B.ab 2<cb 2C.ac <bcD.ab <ac 解法一:因为a <b <c 且a +b +c =0,所以a <0,c >0,因为a <b ,所以ac <bc.解法二:(赋值法)依据条件不妨取a =-2,b =0,c =2,可排除A ,B ,D.故选C.5.(2019·豫西南联考)如果a >0>b 且a 2>b 2,那么以下不等式中所有正确的序号是 ( )①a 2b <b 3;②1a >0>1b;③a 3<ab 2.A.①②B.②③C.①③D.①②③解:⎩⎪⎨⎪⎧a 2>b 2,b <0⇒a 2b <b 3,①正确;因为a >0,所以1a >0,又b <0,所以1b <0,所以1a >0>1b,②正确;⎩⎪⎨⎪⎧a 2>b 2,a >0⇒a 3>ab 2,③不正确.故选A. 6.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则 ( )A.(a -1)(b -1)<0B.(a -1)(a -b )>0C.(b -1)(b -a )<0D.(b -1)(b -a )>0解:因为a ,b >0且a ≠1,b ≠1,所以当a >1,即a -1>0时,不等式log a b >1可化为log a b >log a a ,则b >a >1,所以(a -1)(a -b )<0,(a -1)(b -1)>0,(b -1)(b -a )>0.当0<a <1,即a -1<0时,不等式log a b >1可化为log a b >log a a ,即0<b <a <1,所以(a -1)(a -b )<0,(a -1)(b -1)>0,(b -1)(b -a )>0.故选D.7.(2020届上海市七宝中学高三开学考试)已知集合M ={(x ,y )||x |+|y |≤1},若实数对(λ,μ)满足:对任意的(x ,y )∈M ,都有(λx ,μy )∈M ,则称(λ,μ)是集合M 的“嵌入实数对”,则以下集合中,不存在集合M 的“嵌入实数对”的是 ( )A.{(λ,μ)|λ-μ=2}B.{(λ,μ)|λ+μ=2}C.{(λ,μ)|λ2-μ2=2}D.{(λ,μ)|λ2+μ2=2}解:因为M ={(x ,y )||x |+|y |≤1},因为对任意的(x ,y )∈M ,都有(λx ,μy )∈M ,可得|λx |+|μy |≤1.因为⎩⎪⎨⎪⎧|x |+|y |≤1,|λx |+|μy |≤1,结合实数对(λ,μ)满足,对任意的(x ,y )∈M ,都有(λx ,μy )∈M.所以可得|λ|≤1,|μ|≤1,即-1≤λ≤1,-1≤μ≤1.对于A ,因为-1≤μ≤1,可得-1≤-μ≤1,根据⎩⎪⎨⎪⎧-1≤λ≤1,-1≤-μ≤1可得-2≤λ-μ≤2,所以存在集合M 的“嵌入实数对”使λ-μ=2.对于B ,因为⎩⎪⎨⎪⎧-1≤λ≤1,-1≤μ≤1可得-2≤λ+μ≤2,所以存在集合M 的“嵌入实数对”使λ+μ=2.对于C ,因为|λ|≤1,|μ|≤1,可得⎩⎨⎧0≤λ2≤1,-1≤-μ2≤0, 故-1≤λ2-μ2≤1,所以不存在集合M 的“嵌入实数对”使λ2-μ2=2.对于D ,因为|λ|≤1,|μ|≤1,可得⎩⎪⎨⎪⎧0≤λ2≤1,0≤μ2≤1, 故0≤λ2+μ2≤2.所以存在集合M 的“嵌入实数对”使λ2+μ2=2.综上所述,{(λ,μ)|λ2-μ2=2}不存在集合M 的“嵌入实数对.故选C.8.【多选题】(2020·枣庄市第三中学高三月考)如下的四个命题中真命题为( )A.已知实数a ,b ,c 满足b +c =7-4a +3a 2,c -b =5-4a +a 2,则c >b >aB.若-π2<α<β<π2,则α-β的取值范围是(-π,π)C.如果a =ln33,b =ln44,c =ln55,那么c <b <aD.若a <b <0,则不等式|b ||a |<|b |+1|a |+1一定成立解:对于A ,由c -b =a 2-4a +5=(a -2)2+1>0,所以c >b.再由b +c =3a 2-4a +7①, c -b =a 2-4a +5②,①-②得,2b =2+2a 2,即b =1+a 2.因为1+a 2-a =⎝⎛⎭⎫a -122+34, 所以b =1+a 2>a ,所以c >b >a ,故A 正确; 对于B ,因为-π2<β<π2,所以-π2<-β<π2,所以-π<α-β<π,又α-β<0,所以-π<α-β<0,故B 错误;对于C ,由y =ln xx ,得y ′=1-ln x x 2,当x >e 时,1-ln x <0,所以y =ln xx在(e ,+∞)上单调递减.因为e <3<4<5,所以ln33>ln44>ln55,所以c <b <a ,故C 正确;对于D ,要证不等式|b ||a |<|b |+1|a |+1成立,等价于证明(|a |+1)·|b |<|a |·(|b |+1)⇔|b |<|a |.因为a <b <0,所以|b |<|a |显然成立,故D 正确. 故选ACD.9.(2019·哈尔滨市呼兰区第一中学高一期中)已知α∈⎣⎡⎦⎤0,π2,β∈⎣⎡⎦⎤π2,π,则α-β2的取值范围是________.解:因为α∈⎣⎡⎦⎤0,π2,β∈⎣⎡⎦⎤π2,π,所以β2∈⎣⎢⎡⎦⎥⎤π4,π2,-β2∈⎣⎢⎡⎦⎥⎤-π2,-π4,因此α-β2∈⎣⎢⎡⎦⎥⎤-π2,π4.故填⎣⎡⎦⎤-π2,π4.10.(2019·北京高三期末)能够说明“设a ,b是任意非零实数.若ba>1,则b >a ”是假命题的一组整数a ,b 的值依次为________.解:要使“设a ,b 是任意非零实数.若ba >1,则b >a ”是假命题,只需满足b <a <0且a ,b ∈Z 即可,可取a =-1,b =-2.故填-1,-2(答案不唯一).11.(2018·昆明模拟)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围.解法一:设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b.则⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1,所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10, 即f (-2)的取值范围是[5,10].解法二:由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],所以f (-2)=4a -2b =3f (-1)+f (1).又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10, 即f (-2)的取值范围是[5,10].12.(1)设a >b >0,m >0,n >0,比较b a ,a b ,b +m a +m,a +nb +n的大小; (2)若0<a <b ,且a +b =1,比较a ,b ,12,2ab ,a 2+b 2的大小.解:(1)因为a >b >0,m >0,n >0,所以ba -b +m a +m =b (a +m )-a (b +m )a (a +m )=m (b -a )a (a +m )<0,所以b a <b +m a +m<1.因为a +nb +n -ab =b (a +n )-a (b +n )b (b +n )=n (b -a )b (b +n )<0,所以1<a +n b +n <a b .所以b a <b +m a +m <a +n b +n <ab.(2)因为0<a <b 且a +b =1,所以2a <a +b =1且1=a +b <2b ,所以0<a <12<b <1,所以2b >1且2a <1,所以a <2b ·a =2a (1-a )=-2a 2+2a =-2⎝⎛⎭⎫a -122+12<12,即a <2ab <12.又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12.a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,所以a 2+b 2-b <0,所以a 2+b 2<b.综上,a <2ab <12<a 2+b 2<b.13.(2020·上海市延安中学高一期中)现有A ,B ,C ,D 四个长方体容器,已知容器A ,B 的底面积均为x 2,高分别为x ,y ,容器C ,D 的底面积为y 2,高也分别为x ,y (x >0,y >0,x ≠y ).现规定一种两人游戏规则:每人从四个容器中取出两个分别盛满水,两个容器盛水的和多者为胜,若事先不知道x ,y 的大小,问如何取可以确保一定获胜?请说明理由.解:当x >y 时,x 3>x 2y >xy 2>y 3,即V A >V B >V C >V D. 当x <y 时,y 3>y 2x >yx 2>x 3,即V D >V C >V B >V A. 又x 3+y 3-(xy 2+x 2y )=(x 3-x 2y )+(y 3-xy 2)=(x -y )2(x +y )>0.所以在不知道x ,y 的大小的情况下,取A ,D 能够稳操胜券,其他取法都没有必胜的把握. 附加题 甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试判断谁先到教室?解:设从寝室到教室的路程为s ,甲、乙两人的步行速度为v 1,跑步速度为v 2,且v 1< v 2.甲所用的时间t 甲=s 2 v 1+s2 v 2=s (v 1+v 2)2 v 1 v 2,乙所用的时间t 乙满足:t 乙2·v 1+t 乙2·v 2=s ,则t乙=2sv 1+v 2, 所以t 甲t 乙=s (v 1+v 2)2 v 1 v 2·v 1+v 22s =(v 1+v 2)24 v 1 v 2=v 21+v 22+2v 1 v 24 v 1 v 2>4 v 1 v 24 v 1 v 2=1.因为t 甲>0,t 乙>0,所以t 甲>t 乙,即乙先到教室.。

2021年新课标新高考数学复习课件:§2.2 基本不等式与不等式的综合应用

2021年新课标新高考数学复习课件:§2.2 基本不等式与不等式的综合应用

(2)
ab
b +a
≥2(a,b同号).
(3)ab≤
a
b 2 2 (a,b∈R).
(4)
a2 b2 ≥ a b ≥
2
2
ab

1
2
1
(a,b∈R+).
ab
3.利用基本不等式求最值
已知x>0,y>0,
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最① 小 值② 2 p (简记:积定和最小).
解题导引 (1)主要是求半个圆柱的侧面积及两个半圆的面积之和,先求出 每个半圆柱型大棚的底面半径,再求每个半圆柱型大棚的表面积(不含与 地面接触的面). (2)设每个半圆柱型大棚的底面半径为r m,由已知条件知,n个半圆柱型大 棚间有(n-1)个1米宽的空地,分析出n,r之间的关系,即2nr+(n-1)×1=99,再把r 用n表示出来,将总建设造价均用n表示,求出费用关于n的函数关系,再求其 取最小值时n的值.
(1)若对于所有的实数x,不等式恒成立,求m的取值范围;
(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.
解析 (1)当m=0时,不等式mx2-2x-m+1<0可化为1-2x<0,显然对所有的实
数x,不等式不恒成立.∴m≠0.设f(x)=mx2-2x-m+1,
∵f(x)<0恒成立,∴

g g
(-1) 1 a 2a-2 (1) 1-a 2a-2
3a-1 a-1 0,
0,
解得a≤1 .
3
∴实数a的取值范围为
-
,
1 3
.

高考数学一轮复习讲义(新高考版) 第2章 第3讲 基本不等式

高考数学一轮复习讲义(新高考版) 第2章 第3讲 基本不等式

第3讲 基本不等式一、知识梳理 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b ,ab a ,b 的几何平均数.[点拨] 应用基本不等式求最值要注意:“一正、二定、三相等”.忽略某个条件,就会出错.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)[点拨] 在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 二、教材衍化1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C .xy ≤⎝⎛⎭⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C . 2.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝⎛⎭⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝⎛⎭⎫a +b 22成立的条件是ab >0.( )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( )(4)若a >0,则a 3+1a 2的最小值是2a .( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏常见误区| (1)忽视不等式成立的条件a >0且b >0; (2)忽视定值存在; (3)忽视等号成立的条件. 1.若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2解析:选D .因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5. 当且仅当x -1=4x -1,即x =3时等号成立.答案:53.设0<x <1,则函数y =2x (1-x )的最大值为________. 解析:y =2x (1-x )≤2⎝⎛⎭⎫x +1-x 22=12.当且仅当x =1-x ,即x =12时,等号成立.答案:12考点一 利用基本不等式求最值(基础型) 复习指导| 探索并了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题.核心素养:逻辑推理 角度一 通过配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2(5-4x )15-4x+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. 【答案】 (1)23(2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提.角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 【解析】 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫1+a +b a ⎝⎛⎭⎫1+a +b b =⎝⎛⎭⎫2+b a · ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立. 答案:4【迁移探究2】 (变条件)若本例条件变为:已知a >0,b >0,4a +b =4,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.解析:由4a +b =4得a +b4=1,⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b=⎝ ⎛⎭⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎫1+a +b 4b =⎝⎛⎭⎫2+b 4a ⎝⎛⎭⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号. 答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( )A .223B .23C .33D .233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x26x .由⎩⎨⎧x >0y >0即⎩⎨⎧x >01-x 26x>0解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.1.(2020·辽宁大连第一次(3月)双基测试)已知正实数a ,b 满足a +b =(ab )32,则ab 的最小值为( )A .1B . 2C .2D .4解析:选C .(ab )32=a +b ≥2ab =2(ab )12,所以ab ≥2,当且仅当a =b =2时取等号,故ab 的最小值为2,故选C .2.已知x ,y 为正实数,则4x x +3y +3y x 的最小值为( )A .53B .103C .32D .3解析:选D .由题意得x >0,y >0,4x x +3y +3y x =4xx +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立).3.已知x >0,y >0,且x +16y =xy ,则x +y 的最小值为________. 解析:已知x >0,y >0,且x +16y =xy .即16x +1y =1,则x +y =(x +y )·⎝⎛⎭⎫16x +1y =16+1+16y x +x y≥17+2 16y x ·xy=25,当且仅当x =4y =20时等号成立,所以x +y 的最小值为25. 答案:25考点二 利用基本不等式解决实际问题(应用型) 复习指导| 利用基本不等式解决实际问题,关键是把实际问题抽象出数学模型,列出函数关系,然后利用基本不等式求最值.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x-200=200, 当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.应用基本不等式解决实际问题的基本步骤(1)理解题意,设出变量,建立相应的函数关系式,把实际问题抽象为函数的最值问题; (2)在定义域内,利用基本不等式求出函数的最值; (3)还原为实际问题,写出答案.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计),则泳池的长设计为多少米时,可使总造价最低.解:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x+60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.[基础题组练]1.(2020·安徽省六校联考)若正实数x ,y 满足x +y =2,则1xy 的最小值为( )A .1B .2C .3D .4解析:选A .因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞)D .(-∞,-2] 解析:选D .因为1=2x +2y ≥22x ·2y =22x +y ,(当且仅当2x =2y =12,即x =y =-1时等号成立)所以2x +y ≤12,所以2x +y ≤14,得x +y ≤-2.3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4解析:选C .因为1a +2b =ab ,所以a >0,b >0,由ab =1a +2b≥21a ×2b=22ab, 所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2.4.(多选)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2ab B .1a +1b >1abC .b a +ab≥2D .a 2+b 2≥2ab解析:选CD .因为ab >0,所以b a >0,a b >0,所以b a +ab≥2b a ·ab=2,当且仅当a =b 时取等号.所以选项C 正确,又a ,b ∈R ,所以(a -b )2≥0,即a 2+b 2≥2ab 一定成立.5.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3解析:选C .因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y=2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )·⎝⎛⎭⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x3y=4,当且仅当x =3y =12时取等号,所以1x +13y的最小值为4.故选C .6.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.所以x +y 的最小值为2 2.答案:2 27.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.(2020·湖南岳阳期末改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为________,1a +2b的最小值为________. 解析:因为a >0,b >0,且a +2b -4=0,所以a +2b =4,所以ab =12a ·2b ≤12×⎝⎛⎭⎫a +2b 22=2,当且仅当a =2b ,即a =2,b =1时等号成立,所以ab 的最大值为2,因为1a +2b =⎝⎛⎭⎫1a +2b ·a +2b4=14(5+2b a +2a b )≥14⎝⎛⎭⎫5+2·2b a ·2a b =94,当且仅当a =b 时等号成立,所以1a +2b 的最小值为94. 答案:2 949.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x ≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0,所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,所以当x =1时,函数y =x (4-2x )的最大值为 2. 10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.[综合题组练]1.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A .16 B .9 C .4D .2解析:选C .在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2 (x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5,所以a ≥4. 2.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A .3 B .5 C .7D .9解析:选C .因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝⎛⎭⎫1x +1+1y (x +1+y )=2(1+1+y x +1+x +1y )≥2(2+2y x +1·x +1y )=8,当且仅当yx +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C .3.已知正实数x ,y 满足x +y =1,①则x 2+y 2的最小值为________;②若1x +4y ≥a 恒成立,则实数a 的取值范围是________.解析:因为x +y =1,所以xy ≤⎝⎛⎭⎫x +y 22=14,所以x 2+y 2=(x +y )2-2xy ≥1-14×2=12,所以x 2+y 2的最小值为12.若a ≤1x +4y 恒成立,则a 小于等于⎝⎛⎭⎫1x +4y 的最小值,因为1x +4y =⎝⎛⎭⎫1x +4y (x +y )=5+y x +4x y ≥5+2y x ×4x y =9,所以1x +4y的最小值为9,所以a ≤9,故实数a 的取值范围是(-∞,9]. 答案:12(-∞,9]4.(2020·洛阳市统考)已知x >0,y >0,且1x +2y =1,则xy +x +y 的最小值为________.解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )·(1x +2y )=7+6x y +2yx,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3. 答案:7+4 3教案、讲义、课件、试卷、PPT 模板、实用文案,请关注【春暖文案】,进店下载。

新高考 核心考点与题型 不等式 第2节 基本不等式及其应用 - 解析

新高考 核心考点与题型  不等式 第2节 基本不等式及其应用 - 解析

第2节 基本不等式及其应用1.重要不等式及几何意义重要不等式:如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”).基本不等式:如果,a b是正数,那么2a b+≥a b =时取等号“=”) 要点诠释:222a b ab +≥和2a b+≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。

(3)222a b ab +≥可以变形为:222a b ab +≤,2a b+≥2()2a b ab +≤. 2.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =这个圆的半径为2ba +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b = 时,等号成立. 3.2211222b a b a ab ba +≤+≤≤+,即平方平均数算数平均数几何平均数调和平均数≤≤≤,(均为正、b a ),可变形如下24)()2(2222b a b a ab b a ab +≤+≤≤+,即上式的平方形式,其中调和不常用。

4.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0>x 求xx y 32+= 的最小值。

此时若直接使用均值不等式,则xx y 32+= x 42≥右侧依然含有x ,则无法找到最值 (3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此① 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 基本不等式1.如果a >0,b >0,那么 叫做这两个正数的算术平均数. 2.如果a >0,b >0,那么 叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则 ,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a+b ,a 2+b 2有 ,即a +b ≥ ,a 2+b 2≥ .简记为:积定和最小. 6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即 ,亦即 ;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即 .简记为:和定积最大. 7.拓展:若a >0,b >0时,21a +1b ≤ ≤a +b 2≤ ,当且仅当a =b 时等号成立.自查自纠 1.a +b 2 2.ab 3.2ab 4.a +b 2≥ab 5.最小值 2ab 2ab 6.ab ≤⎝⎛⎭⎫a +b 22 ab ≤14(a +b )2ab ≤a 2+b 22 7.ab a 2+b 221.下列说法正确的是( ) A.a ≥0,b ≥0,则a 2+b 2≥2ab B.函数y =x +1x的最小值是2C.函数f (x )=cos x +4cos x ,x ∈⎝⎛⎭⎫0,π2的最小值等于4D.“x>0且y >0”是“x y +yx≥2”的充分不必要条件解:选项A 中,a =b =0.1时不成立;选项B中,当x =-1时y =-2;选项C 中,x ∈⎝ ⎛⎭⎪⎫0,π2时,0<cos x <1,f (x )=cos x +4cos x无最小值;选项D 中,当x y +y x ≥2时,需x y>0即xy >0,故“x >0且y >0”为充分不必要条件.故选D. 2.(2019·首都师范大学附中模拟)在各项均为正数的等比数列{}a n 中,a 6=3,则a 4+a 8 ( )A.有最小值6B.有最大值6C.有最大值9D.有最小值3解:因为a 6=3,所以a 4a 8=a 26=9,所以a 4+a 8≥2a 4a 8=6,当且仅当a 4=a 8=3时等号成立.故选A. 3.(2019·玉溪一中月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎡⎦⎤12,3上的最小值为 ( ) A.12 B.43C.-1D.0 解:因为x ∈⎣⎡⎦⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎡⎦⎤12,3,所以f (x )在⎣⎡⎦⎤12,3上的最小值为0.故选D. 4.(2019·北京高二期末)当且仅当x =________时,函数y =4x +1x (x >0)取得最小值. 解:由于x >0,由基本不等式可得y =4x +1x ≥24x ·1x =4,当且仅当4x =1x (x >0),即当x =12时,等号成立.故填12.5.(2019·河南高考模拟)若实数x ,y 满足2x +2y =1,则x +y 的最大值是________.解:由题得2x +2y ≥22x ·2y =22x +y (当且仅当x =y =-1时取等号), 所以1≥22x +y ,所以14≥2x +y ,所以2-2≥2x+y ,所以x +y ≤-2. 所以x +y 的最大值为-2.故填-2.类型一 利用基本不等式求最值例1 (1)已知a >0,b >0,且4a +b =1,则ab 的最大值为________.解法一:因为a >0,b >0,4a +b =1,所以1=4a +b ≥24ab =4ab ,当且仅当4a =b =12,即a=18,b =12时,等号成立.所以ab ≤14,ab ≤116,则ab 的最大值为116.解法二:因为4a +b =1,所以ab =14·4a ·b ≤14⎝ ⎛⎭⎪⎫4a +b 22=116,当且仅当4a =b =12,即a =18, b =12时等号成立,所以ab 的最大值为116.故填116. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.解:因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x +3=-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立.故填1.(3)(2020届山东滨州高三9月期初考试)已知a >0,b >0,且2a +b =ab ,则2a +b 的最小值为________.解:因为a >0,b >0,由2a +b =ab ⇒2b +1a=1,故2a +b =(2a +b )⎝⎛⎭⎫2b +1a =4+4a b +ba≥4+4=8.当且仅当4a b =ba ,即b =2a =4时等号成立.另解:因为a >0,b >0,所以ab =2a +b ≥22ab ,解得ab ≥8,当且仅当2a =b 时等号成立.故填8.点拨 利用基本不等式解决最值的关键是构造和为定值或积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:拆项法、变系数法、凑因子法、换元法、整体代换法等.②条件变形,进行“1”的代换求目标函数最值.注意:使用基本不等式求最值,“一正、二定、三相等”三个条件缺一不可.变式1 (1)(2019·济南联考)若a >0,b >0且2a+b =4,则1ab的最小值为 ( )A.2B.12C.4D.14解:因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号).又因为2a +b =4,所以22ab ≤4⇒0<ab ≤2,所以1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立).故选B.(2)设0<x <32,则函数y =4x (3-2x )的最大值为________.解:y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92,当且仅当2x =3-2x ,即x =34时,等号成立.因为34∈⎝⎛⎭⎫0,32,所以函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92.故填92. (3)(2019·潍坊调研)函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n 为正数,则1m +1n 的最小值为________.解:因为曲线y =a 1-x 恒过定点A ,x =1时,y =1,所以A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0),可得m +n =1,所以1m +1n =⎝⎛⎭⎫1m +1n ·(m +n )=2+n m +mn≥2+2n m ·m n =4,当且仅当n m =m n且m +n =1(m >0,n >0),即m =n =12时,取得等号.故填4.类型二 利用基本不等式求参数的值或范围例2 (1)(2019·黑龙江哈尔滨市第六中学期末)若对任意x >0,都有4xx 2+x +1≤a 恒成立,则实数a的取值范围是________.解:因为x >0,所以x +1x≥2(当且仅当x =1时取等号),所以4x x 2+x +1=41x+x +1≤42+1=43,即4x x 2+x +1的最大值为43,即实数a 的取值范围是⎣⎡⎭⎫43,+∞.故填⎣⎡⎭⎫43,+∞.(2)已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.解:因为x >0,a >0,所以f (x )=4x +a x ≥24x ·ax=4a ,当且仅当4x =ax ,即4x 2=a 时,f (x )取得最小值.又因为f (x )在x =3时取得最小值,所以a =4×32=36.故填36.点拨 求解含参不等式的策略:①观察题目特点,利用基本不等式确定相关不等式成立的条件,从而得参数的值或取值范围.②对含参的不等式求范围问题通常采用分离变量,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式的等价命题:a >f (x )恒成立⇔a >f (x )max ;a <f (x )恒成立⇔a <f (x )min ;a >f (x )有解⇔a >f (x )min ;a <f (x )有解⇔a <f (x )max .变式2 (1)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.8解:因为(x +y )⎝⎛⎭⎫1x +a y =1+ax y +yx +a ≥a +1+2a ,当且仅当ax y =yx时等号成立.要使原不等式恒成立,则只需a +1+2a ≥9恒成立,所以(a -2)(a +4)≥0,解得a ≥4, 所以正实数a 的最小值是4.故选B.(2)(2019·厦门模拟)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( )A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1) 解:由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x +23x .又3x +23x ≥22(当且仅当3x =23x ,即x =log 32时,等号成立),所以k +1<22,即k <22-1.故选B.类型三 利用基本不等式解决实际问题例3 (2019·上海高三单元测试)某文化创意公司开发出一种玩具(单位:套)进行生产和销售.根据以往经验,每月生产x 套玩具的成本p 由两部分费用(单位:元)构成:①固定成本(与生产玩具套数x 无关),总计一百万元;②生产所需的直接总成本50x +1100x 2.(1)该公司每月生产玩具多少套时,可使得平均每套所需成本费用最少?此时每套玩具的成本费用是多少?(2)假设每月生产出的玩具能全部售出,但随着x 的增大,生产所需的直接总成本在急剧增加,因此售价也需随着x 的增大而适当增加.设每套玩具的售价为q 元,q =a +xb(a ,b ∈R ).若当产量为15 000套时利润最大,此时每套售价为300元,试求a ,b 的值.(利润=销售收入-成本费用) 解:(1)由题意知,生产成本为p =1 000 000+50x +1100x 2,p x =x 100+1 000 000x +50≥2x 100·1 000 000x +50=250,当且仅当x 100=1 000 000x ,即x =10 000时,取等号.故该公司生产1万套玩具时,使得每套平均所需成本费用最少,此时每套的成本费用为250元.(2)设利润为s ,则s =qx -p =x ⎝⎛⎭⎫a +x b -⎝⎛⎭⎫1 000 000+50x +1100x 2 =⎝⎛⎭⎫1b -1100x 2+(a -50)x -1 000 000,根据题意,有1b -1100<0,a +15 000b =300,且-a -502⎝⎛⎭⎫1b -1100=15 000,解得a =250,b =300.点拨 建立关于x 的函数关系式是解决本题的关键,在运用基本不等式求最小值时,除了“一正,二定,三相等”以外,在最值的求法中,使用基本不等式次数要尽量少,最好是在最后一步使用基本不等式,如果必须使用几次,就需要查看这几次基本不等式等号成立的条件是否有矛盾,有矛盾则应调整解法.变式3 (1)(2019·阜新市高级中学高一月考)某公司一年需要购买某种原材料400吨,计划每次购买x 吨,已知每次的运费为4万元,一年总的库存费用为4x 万元.为了使总运费与总库存费用之和最小,则x 的值是________.解:由题意,总的费用y =400x×4+4x =4⎝⎛⎭⎫400x +x ≥4×2400x ×x =160,当x =20时取“=”.故填20.(2)在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为200 m 2的矩形区域(如图所示),按规划要求:在矩形内的四周安排2 m 宽的绿化,绿化造价为200元/m 2,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/m 2.设矩形的长为x (m),总造价为y (元).(Ⅰ)将y 表示为关于x 的函数; (Ⅱ)当x 取何值时,总造价最低,并求出最低总造价. 解:(Ⅰ)由矩形的长为x ,得矩形的宽为200x , 则中间区域的长为x -4,宽为200x-4,则定义域为(4,50), 则y =100⎣⎡⎦⎤(x -4)⎝⎛⎭⎫200x -4+200[200-(x -4)⎝⎛⎭⎫200x -4], 整理得y =18 400+400⎝⎛⎭⎫x +200x ,x ∈(4,50). (Ⅱ)x +200x ≥2x ·200x=202, 当且仅当x =200x时取等号,即x =102∈(4,50).所以当x =10 2 m 时,总造价最低,且为18 400+8 0002元.1.基本不等式的变式和推广①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22; ③ab ≤14(a +b )2;④⎝⎛⎭⎫a +b 22≤a 2+b 22;⑤(a +b )2≥4ab ;⑥ab ≥21a +1b;⑦a +b +c 3≥3abc ;⑧abc ≤a 3+b 3+c 33,等等.对于以上各式,要明了其成立的条件和取“=”的条件.2.在利用基本不等式求最值时,要注意一正、二定、三相等.“一正”是指使用均值不等式的各项(必要时,还要考虑常数项)必须是正数;“二定”是指含变数的各项的和或积必须是常数;“三相等”是指具备等号成立的条件,使待求式能取到最大或最小值.3.基本不等式的应用在于“定和求积,定积求和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、配凑、常数代换、运算(指数、对数运算、平方等)构造“和”或者“积”,使之为定值.4.求1a +1b型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决. 5.基本不等式除具有求最值的功能外,还具有将“和式”转化为“积式”以及将“积式”转化为“和式”的放缩功能,常用于比较数(式)的大小或证明不等式,解决问题的关键是抓住不等式两边的结构特征,找准利用基本不等式的切入点.1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R ,故必要性不成立.故选A.2.(2018·北京高三期中)某人从甲地到乙地往返的速度分别为a 和b (0<a <b ),其全程的平均速度为v ,则 ( )A.v =a +b 2 B. v =ab C.a < v <ab D.ab < v <a +b 2 解:设从甲地到乙地距离为s ,往返的时间分别为t 1=s a ,t 2=sb(a <b ),其全程的平均速度为v =2s t 1+t 2=2s s a +s b =21a +1b<ab ,因为0<a <b ,所以1a >1b ,1a +1b <2a ,v >22a =a ,所以a < v <ab.故选C.3.(2019·河北高三月考)已知函数f (x )=log 2(x 2+1-x ),若对任意的正数a ,b 满足f (a )+f (3b -1)=0,则3a +1b的最小值为 ( )A.6B.8C.12D.24解:因为x 2+1-x >x 2-x ≥x -x =0,所以定义域为R ,因为f (-x )=log 2(x 2+1+x ),所以f (x )=-f (-x ),则f (x )为奇函数.又x >0时,f (x )=log 21x 2+1+x单调递减,f (0)=0,f (x )为奇函数,所以f (x )为减函数,因为f (a )+f (3b -1)=0,所以f (a )=-f (3b -1)=f (1-3b ),则a =1-3b ,即a +3b =1,所以3a +1b =⎝⎛⎭⎫3a +1b (a +3b )=9b a +ab+6, 因为9b a +a b ≥29b a ×a b =6,所以3a +1b≥12⎝⎛⎭⎫当且仅当a =12,b =16时,等号成立. 故选C.4.(2019·江苏省如皋中学高一月考)0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是 ( )A.a 1b 1+a 2b 2B.a 1a 2+b 1b 2C.a 1b 2+a 2b 1D.12解:因为0<a 1<a 2,0<b 1<b 2,a 1+a 2=b 1+b 2=1,所以a 1a 2+b 1b 2<⎝⎛⎭⎪⎫a 1+a 222+⎝ ⎛⎭⎪⎫b 1+b 222=12,又a 1b 1+a 2b 2-(a 1b 2+a 2b 1)=(a 1-a 2)b 1-(a 1-a 2)b 2=(a 2-a 1)(b 2-b 1)>0,所以a 1b 1+a 2b 2>a 1b 2+a 2b 1,而1=(a 1+a 2)(b 1+b 2)=a 1b 1+a 2b 2+a 1b 2+a 2b 1<2(a 1b 1+a 2b 2),故a 1b 1+a 2b 2>12.综上可得a 1b 1+a 2b 2最大.故选A.5.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是 ( )A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)解:因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝⎛⎭⎫1a +9b =10+b a +9ab≥10+2b a ·9a b =16,当且仅当b a =9ab ,即a =4,b =12时取等号.依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立.又x 2-4x -2=(x -2)2-6≥-6,所以-6≥-m ,即m ≥6.故选D.6.(2019·宜春昌黎实验学校高一月考)关于x 的方程9x +(a -2)3x +4=0有解,则实数a 的取值范围是 ( )A.(-2,+∞)B.(-∞,-4)C.(-∞,-2]D.[-4,+∞)解:因为9x +(a -2)3x +4=0,所以(a -2)3x =-(9x +4),所以a -2=-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4(当且仅当3x =43x ,即x =log 32时,等号成立),故a ≤-2,实数a 的取值范围是(-∞,-2].故选C.7.(2019·湖南师大附中模拟)已知△ABC 的面积为m ,内切圆半径也为m ,若△ABC 的三边长分别为a ,b ,c ,则4a +b+a +b c 的最小值为 ( )A.2B.2+2C.4D.2+22 解:因为△ABC 的面积为m ,内切圆半径也为m ,所以12(a +b +c )×m =m ,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b+a +b c =2+2c a +b+a +b c ≥2+22,当且仅当a +b =2c ,即c =22-2时,等号成立,所以4a +b +a +b c 的最小值为2+22.故选D.8.【多选题】(2019·海南东方市民族中学高一期中)已知a ,b 均为正实数,则下列不等式不一定成立的是 ( )A.a +b +1ab ≥3 B.(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥a +b D.2ab a +b≥ab解:对于A ,a +b +1ab ≥2ab +1ab≥22<3,当且仅当a =b =22时取等号; 对于B ,(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·b a=4,当且仅当a =b 时取等号;对于C ,a 2+b 2ab ≥(a +b )22ab ≥(a +b )2a +b=a +b ,当且仅当a =b 时取等号;对于D ,当a =12,b =13时,2aba +b =1356=215, ab =16,16>215, 此时2ab a +b <ab.当a =b =1时,22≥1成立.综上知,选项A ,D 中的不等式不一定成立.故选AD.9.(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________.解:因为a 3=7,a 9=19, 所以d =a 9-a 39-3=19-76=2,所以a n =a 3+(n -3)d =7+2(n -3)=2n +1, 所以S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)×9n +1=3,当且仅当n =2时取等号.故S n +10a n +1的最小值为3.故填3.10.(2019·上海模拟)设x ,y 均为正实数,且32+x+32+y=1,则xy 的最小值为________. 解:32+x +32+y =1可化为xy =8+x +y ,因为x ,y 均为正实数,所以xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故填16.11.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +25y 的最小值.解:(1)因为x >0,y >0,所以由基本不等式,得2x +5y ≥210xy.因为2x +5y =20,所以210xy≤20,xy ≤10,当且仅当⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,即⎩⎪⎨⎪⎧x =5,y =2时,等号成立.此时xy 有最大值10.所以u =lg x +lg y =lg(xy )≤lg10=1.则当x =5,y =2时,u =lg x +lg y 有最大值1. (2)因为x >0,y >0,所以1x +25y =⎝⎛⎭⎫1x +25y ·2x +5y20=120⎝⎛⎭⎫4+5y x +4x 5y ≥120⎝⎛⎭⎫4+25y x ·4x 5y =25,当且仅当⎩⎪⎨⎪⎧2x +5y =20,5y x =4x 5y,即⎩⎪⎨⎪⎧x =5,y =2时,等号成立.所以1x +25y 的最小值为25.12.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y≥28x ·2y =8xy,得xy ≥64, 当且仅当x =4y ,即x =16,y =4时等号成立.(2)解法一:由2x +8y -xy =0,得x =8yy -2,因为x >0,所以y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.解法二:由2x +8y -xy =0,得8x +2y=1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y )=10+2x y +8yx≥10+22x y ·8y x=18,当且仅当y =6,x =12时等号成立.13.(2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?解:(1)设n 年获取纯利润为y 万元. n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n (n -1)2×2=n 2,又投资81万元,n 年共收入租金30n 万元,所以利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,所以n 2-30n +81<0, 解得3<n <27(n ∈N *),所以从第4年开始获取纯利润.(2)方案①:年平均利润t =30n -81-n 2n=30-81n -n =30-⎝⎛⎭⎫81n +n ≤30-281n·n =12(当且仅当81n=n ,即n =9时取等号), 所以年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元).方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *),当n =15时,纯利润总和最大,为144万元, 所以纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元),两种方案盈利相同,但方案①时间比较短,所以应选择方案①.附加题 (宁夏石嘴山市第三中学2019届高三四模)点M (x ,y )在曲线C :x 2-4x +y 2-21=0上运动,t =x 2+y 2+12x -12y -150-a ,且t 的最大值为b ,若a ,b ∈R +,则1a +1+1b的最小值为________.解:曲线C 可整理为:(x -2)2+y 2=25, 则曲线C 表示圆心为(2,0),半径为5的圆, t =x 2+y 2+12x -12y -150-a =(x +6)2+(y -6)2-222-a ,设d =(x +6)2+(y -6)2,则d 表示圆C 上的点到(-6,6)的距离,则d max =(2+6)2+(0-6)2+5=15,所以t max =152-222-a =b ,整理得,a +1+b=4.所以1a +1+1b =14⎝ ⎛⎭⎪⎫1a +1+1b [(a +1)+b ]=14×⎝ ⎛⎭⎪⎫1+ba +1+a +1b +1. 又b a +1+a +1b ≥2b a +1·a +1b=2(当且仅当b a +1=a +1b ,即a =1,b =2时取等号).所以1a +1+1b ≥14×4=1,即1a +1+1b 的最小值为1.故填1.。

相关文档
最新文档