进化基因组学研究进展

合集下载

基因组学研究进展与展望

基因组学研究进展与展望

基因组学研究进展与展望基因组学是现代生物学领域的重要研究方向之一,涉及的范围非常广泛,包括基因组结构和功能、基因调控、遗传变异、进化和物种起源等诸多方面。

近年来,随着高通量测序技术和生物信息学分析方法的不断发展,基因组学研究正日益深入和广泛,为人类健康、农业、生态环境等领域的发展带来了很多的机遇和挑战。

本文将介绍近年来基因组学研究的主要进展和展望。

一、基因组测序技术的发展基因组序列是研究基因组学的重要基础。

早期的基因组测序技术主要是Sanger序列技术,但是这种技术的速度和成本都很高,限制了基因组研究的规模和深度。

随着高通量测序技术的不断发展,人类基因组计划在2001年完成了人类基因组的测序工作,显示了高通量测序技术的巨大潜力。

目前,高通量测序技术已经成为基因组学研究的主流技术之一,技术不断升级,性能不断提升,序列数据生成速度越来越快,同时测序成本也不断降低,已经成为基因组学研究不可或缺的技术手段之一。

二、基因组结构和功能的研究基因组结构和功能是基因组学研究中的重要方向之一。

通过基因组测序技术的不断进步,我们已经可以对许多生物的基因组结构和组成进行全面和深入地分析。

同时,基因组的功能研究也在不断深入,涉及到许多重要的生物学过程如基因表达、蛋白质合成、信号传递等方面。

通过对基因组结构和功能的深入研究,我们可以更好地理解生命的本质和进化的机制,同时为疾病的预防和治疗提供更加全面和准确的基础知识。

三、基因调控的研究进展基因调控是基因组学研究中一个非常重要的方向,通过研究基因调控机制,我们可以更好地理解基因表达的调控过程,同时也为疾病的防治提供更加全面和准确的基础思路。

近年来,研究人员利用高通量测序技术和生物信息学工具,对基因调控网络进行了深入的研究,发现了许多重要的调控因子和调控机制。

例如,超级增强子的发现为我们揭示了基因组调控中的新机制,通过超级增强子的调控,可以实现基因的快速和高效的表达。

基因组学研究为我们提供了更多精准的调控方法和技术,有望为疾病的治疗和预防提供更加全面和精准的治疗方案。

人类基因组学的研究进展

人类基因组学的研究进展

人类基因组学的研究进展人类基因组学是揭示人类本质、探究疾病成因、研究人类进化等重要领域的基础学科之一。

近年来,随着高通量测序技术的发展和普及,人类基因组学研究进展迅速,为人类健康和生活带来了重大影响。

本文将就人类基因组学研究进展进行综述。

一、人类基因组计划人类基因组计划是人类基因组学研究的重要里程碑,1990年启动,2003年完成。

该计划最终确定了人类基因组序列,并发现了一些致病基因和调控元件。

二、GWAS与疾病基因基因组宽关联分析(GWAS)是在人类基因组计划以后被广泛应用的一种研究人类和其他生物物种基因与疾病关系的方法。

经过大规模的人群研究,GWAS已经鉴定了许多与多种疾病有关的基因、单核苷酸多态性和复杂性状。

这些发现可以促进我们深入了解疾病的遗传机制和开发相应的治疗方案。

三、CRISPR-Cas9基因编辑技术近年来,CRISPR-Cas9基因编辑技术已成为人类基因组学研究的重要工具之一。

该技术可以精准地修改基因组序列,从而探究基因的功能、研究疾病机制、开发基因治疗等。

尽管CRISPR-Cas9基因编辑技术存在一些伦理和安全问题,但其前景依然非常广阔。

四、人类进化历程人类基因组学研究也对人类的进化历程提供了一定的启示。

通过对人类和其他灵长类动物基因组的比较研究,我们可以发现一些人类进化的重要步骤和途径,例如人类大脑进化和语言能力的形成等。

五、个性化医疗人类基因组学研究的一个重要应用是个性化医疗。

通过对个体基因组的检测和分析,医生可以根据患者的基因信息制定出更精准的治疗方案。

目前,一些癌症、遗传性疾病以及心血管疾病的个性化诊治已经应用于临床实践。

六、全基因组测序在人类基因组计划之后,全基因组测序技术得到了长足发展,成为人类基因组学研究的重要手段之一。

全基因组测序可以全面、准确地识别基因组中的每个碱基,为后续的基因功能研究和个性化医疗提供了重要数据基础。

综上所述,人类基因组学的研究进展涉及基因组计划、GWAS、CRISPR-Cas9基因编辑技术、人类进化历程、个性化医疗、全基因组测序等多个方面。

基因组学的研究进展和应用

基因组学的研究进展和应用

基因组学的研究进展和应用基因组学是现代生物科学中的一个重要研究领域,它通过对生物体遗传信息的高通量测序、分析和解读,揭示了一系列新的生物基础知识,也为其他生命科学研究提供了强有力的支持。

随着技术的进步和生物信息学的发展,基因组学正不断发展和推广应用。

一、基因组学的研究现状1、高通量测序技术的应用。

高通量测序技术是基因组学研究的一个重要支撑,它通过平行处理多条DNA分子序列,大大加快了分析的速度和效率。

高通量测序技术的应用已经广泛涉及到基因表达、DNA甲基化、RNA剪接、基因变异等研究。

2、全基因组关联分析技术(GWAS)的发展。

GWAS技术是探究人类疾病基因的一种方法,通过比较健康人群和某种疾病患者人群的基因型,发现可能与该疾病相关的基因位点。

GWAS可以实现全基因组探索,为疾病的预防、诊断和治疗提供了有力的后盾。

3、跨物种比较基因组学研究的进展。

跨物种比较基因组学是一种比较不同物种之间遗传学上的相似性和差异性的研究方法,包括对基因家族、功能转化和调控因素等方面进行比较。

跨物种比较基因组学研究可以揭示不同物种之间的遗传关系和演化历程,为研究物种特性和生物进化提供支持。

4、人类基因编辑技术的突破。

人类基因编辑技术基于CRISPR/Cas9的系统,通过改变人类基因组中某些区域的序列,来修正或者改造生物体。

这种技术为基因治疗、疾病预防和其他领域的研究提供了新的思路和途径,但也可能伴随一定的风险和待解决的问题。

二、基因组学的应用前景1、大数据、互联网和人工智能的融合。

随着互联网和人工智能的飞速发展,基因组学的研究数据也得到了广泛的积累和共享。

未来,大数据、互联网和人工智能的融合将为基因组学的研究提供更强有力的支持,更快速地解决问题,提高预测和分析的准确性。

2、免疫治疗和个体医疗的进步。

通过对个体基因组信息的深入研究,我们可以为每个病人提供个体化的医疗策略,包括预测患病风险、个体化诊断以及个体化治疗。

同时,免疫治疗也开辟了新的治疗途径,尤其是针对癌症等疾病。

基因组学在人类进化历史研究中的应用与改进

基因组学在人类进化历史研究中的应用与改进

基因组学在人类进化历史研究中的应用与改进基因组学是生物学的一个重要领域,它研究基因组的结构、功能和演化等方面。

近年来,随着技术的不断发展和突破,基因组学在人类进化历史研究中扮演着重要的角色。

本文将探讨基因组学在人类进化历史研究中的应用以及可能的改进。

一、基因组学在人类进化历史研究中的应用1. 祖先基因组比较:通过对各类生物的基因组进行比较,可以揭示它们之间的亲缘关系和进化历史。

在人类进化历史研究中,基因组比较可以帮助我们了解人类与其他灵长类动物的共同祖先以及与现代人猿之间的差异。

2. 突变分析:基因组学研究可以通过分析基因组中的突变来还原人类进化历史中的某些关键事件。

通过对不同人群基因组的比较,可以揭示不同地理区域人群的迁徙和扩散历史,以及各种环境因素对人类基因组的影响。

3. 遗传变异对人类进化的影响:借助基因组学的技术,我们可以研究不同种群、不同地区人群的遗传变异,从而了解这些变异对人类进化的影响。

例如,对疾病易感基因的研究可以揭示疾病发生和传播的规律,进一步了解人类进化历史中对抗疾病的演化过程。

4. 基因组学与考古学的结合:基因组学与考古学的结合,可以通过对史前人类遗骨或古代DNA的研究,还原出古代人类的基因组信息,从而揭示古代人类的迁徙历史、文化交流以及与其他人类亚种的关系等。

二、基因组学在人类进化历史研究中的改进1. 单细胞基因组学:传统的基因组研究通常依赖于大量的细胞样本,而且在整个分析过程中存在一定的误差。

而单细胞基因组学的发展使得我们能够更准确地分析单个细胞的基因组信息,为研究人类进化历史提供了更精确的数据基础。

2. 后代测序技术的改进:随着高通量测序技术的不断改进,我们可以更迅速、更准确地测序和分析基因组数据。

这将加速人类进化历史研究的进程,为我们揭示更多关于人类基因组的信息。

3. 大数据和人工智能的应用:基因组学研究产生了海量的数据,而如何从这些数据中得出有意义的结论成为一个挑战。

进化生物学的新发现

进化生物学的新发现

进化生物学的新发现近年来,进化生物学领域不断涌现出新的发现,为我们了解生命的起源和演化提供了更深入的认识。

在这篇文章中,我将介绍一些最新的进化生物学研究成果,并探讨它们对我们对生命之谜的认知产生了哪些影响。

一、基因组学的进展基因组学的发展为我们提供了一个更全面的理解生物演化的框架。

一个突破性的发现是:人类基因组与其他物种有86%的相似性,根据这一结论,我们可以推断人类和其他不同物种之间的演化历程。

近几年来,基因测序技术的不断进步,为我们呈现出了更多物种基因组的细节。

目前为止,已经有了许多基因组计划,这些计划使得我们能够掌握大量的物种基因组信息。

此外,对基因间相互作用和基因调控网络的研究,对于我们的理解物种之间的演化关系也有着十分重要的作用。

基因组学也让我们对生物进化的速度有了更好的了解。

通过比较遗传物质的变化,我们可以推断出不同物种进化的速度和漂移,这些都引发着我们对于没有现存种类的生命形式的探索。

二、结构生物学的发现结构生物学旨在研究蛋白质及其它生命分子的组成和三维结构,为揭示生命结构和功能奠定了基础。

研究人员们通过构建各种蛋白质的结构模型,已经成功地破译了众多基因在细胞内的功能。

一个引人注目的例子就是,人类发现了一种名为“重复蛋白质”的新物质。

这些蛋白质通常有极长的一段短序列的重复,它可能在对心脏疾病,中风和阿尔兹海默症的治疗方面有着巨大的作用。

这也正是结构生物学在医学和生命科学中的应用范围。

三、不可或缺的微生物微生物在地球上至少存在了32亿年,是地球上许多生命过程的关键角色。

微生物从我们的肠道到土壤,从海洋到空气,无所不在。

最新研究表明微生物可以直接使用空气中的氮,而不需要通过植物进行转化,这对我们对氮循环和生态系统的研究产生了影响。

微生物的活动也对生命的多样性起着至关重要的作用。

微生物从单细胞生物到复杂的有机体都扮演着至关重要的角色。

此外,通过对不同微生物之间进行比较,研究人员还能够更深刻了解物种的起源和演化过程。

基因组学技术在人类进化研究中的应用

基因组学技术在人类进化研究中的应用

基因组学技术在人类进化研究中的应用一、基因组学技术的概念和发展基因组学是研究基因组结构、组织、功能、演化等方面的学科。

近年来,随着高通量测序技术的不断革新,也为基因组学研究提供了前所未有的机会和挑战,开启了大规模人类基因组研究的新时代。

二、人类进化的研究人类进化始于非洲,至少距今已有200万年的历史。

人类近亲包括黑猩猩、大猩猩和猩猩等,距今约6000万年前,黑猩猩和人类分离。

随着时间的推移,人类进化逐渐演变为现代人类。

三、基因组学技术在人类进化研究中的应用1. 古人类基因组检测近年来,基因组学技术的发展不断推进,某些研究成果甚至揭示了人类进化的历史。

比如通过对人类化石、古人类牙齿、骨骼等样本提取DNA的方式,可以进行古人类基因组检测。

这种方法可以获得古DNA,并在其中分离出真正属于人类的DNA片段。

通过对这些片段的测序,可以揭示这些人类的族群特征,甚至还可以揭示人类的起源、演化过程以及混血等情况。

2. 人类基因组演化的机制研究基因组学技术可以揭示人类的基因组结构、组织和功能等方面的信息,在这些信息的基础上进一步研究人类基因组演化的机制。

比如近些年来的研究表明,人类基因组的演化中存在大量选择性压力的作用,即在人类基因组演化的过程中,一些有益的基因通过自然选择不断得以保存和积累。

而在另一些基因上,由于不利的突变被淘汰了。

这种发现不仅有助于我们深入了解人类基因组的演化历程,还可以为人类进化和传播疾病的机制研究提供重要的理论基础。

四、总结综上所述,在人类基因组研究中,基因组学技术发挥了重要的作用。

大规模的基因组测序项目既可以揭示人类基因的组成,又可以帮助我们了解人类基因组演化的机制,进一步推动人类基因组学研究的发展,为人类的进化、生理学、生理病理学等多个领域的研究提供了重要支持。

生物进化学的研究进展

生物进化学的研究进展

生物进化学的研究进展生物进化是一个复杂而又广泛的范畴,涉及到从分子层面到群体层面的各个方面。

在许多领域,如医学、生态学和农业等,都需要对生物进化过程进行深入研究。

因此,生物进化学在近年来取得了许多取得越来越重要的进展。

1. 基因组学和宏基因组学的发展基因组学是研究基因及其相互作用的一门科学。

自1990年人类基因组计划启动以来,自动测序技术的发展推动了基因组学的蓬勃发展。

基因组测序技术的高速发展使我们能够更好地了解生物多样性和生物进化的特征。

即使对于非模式生物,一旦测定了其基因组,也可以进行更深入的研究。

宏基因组学的发展则是对单个细胞或组织的基因组信息进行研究。

这项技术可以帮助我们更好地了解微生物的生态学和进化。

2. 生物体内不同层次的多样性多样性是指物种之间的差异。

在生物体内,多样性存在于不同层次:从基因到物种,在每个级别上都有多样性。

基因、蛋白质和整个生物体的多样性都为生物进化过程提供了更广泛和更深远的视角,这种丰富的多样性有助于我们理解生物进化的机理。

例如,人们在基因组的表观遗传变异和后代突变上的研究,帮助我们更好地了解生物遗传与环境之间的互动机制。

3. 对生物进化机制的理解基础生物学和分子生物学给我们提供了许多工具,用以深入研究生物的进化过程。

例如,基于遗传标记的方式研究生物进化是非常有效的。

对某一物种,我们可以通过对其基因组特征的分析、线粒体地位变异和单核苷酸多态性等方面进行深入研究,而了解它的进化历史。

另一方面,对于精细的生物行为和群体结构的分析,我们可以通过系统学研究,包括物种分类、生态学和变化研究,以了解生物体内进化机制的作用范围。

4. 生物进化对全球变化的响应全球变化的影响在某些方面过于明显,例如气候变化和人类活动的影响等。

生物体系统可以产生不同的响应,这些响应涉及到历史上发生的生物进化过程和现代生物体内数量和分布的变化。

通过对不同地点和时间的物种分类进行长期的研究,我们可以了解生物进化和自然环境之间的不同关系,并预测未来可能出现的生物体的变化。

人类基因组学研究现状与未来趋势

人类基因组学研究现状与未来趋势

人类基因组学研究现状与未来趋势基因,是人体中能够传递遗传信息的基本因子,每个人的基因不尽相同。

人类基因组学研究是对人类基因组的科学探索,它涉及到我们的遗传情况、疾病发生的机理、药物治疗的个体化等重要领域,也在不断地推动新药研发、科学医疗和个体化医疗的发展。

本文将介绍人类基因组学研究的现状与未来趋势。

一、研究现状1.基因组测序技术的进步随着科技的不断发展,基因组测序技术也在逐渐进步。

第一份人类基因组极速服务于2001年公布,这一过程耗费了十多年的时间,费用超过十亿美元。

而如今的基因组测序技术则迅速提速,并大幅缩短了检测时间和费用。

现在,我们只需花费数百美元就能在几天内完成基因测序。

这大大推动了基因组学研究的进展,也使更多的人有了机会进行基因检测。

2.遗传病的筛查和预测基因组测序技术的提升,为遗传病的筛查和预测提供了新的手段。

这种技术的发展使得更多的人能够知悉自己携带的基因,包括一些可遗传疾病的信息。

举个例子,BRCA1和BRCA2基因是增加乳腺癌和卵巢癌风险的重要基因,通过基因组测序就可以对这种遗传风险进行筛查,利用这些信息,个体化预防、治疗措施才能更加精准。

3.跨领域的研究基因组学的发展也推动了其他领域的发展,如社会学、人类学等。

通过对人类基因的研究,可以更好地解释人类起源、人类进化和遗传迁移等问题。

此外,基因研究还可以在食品安全、犯罪侦查、生态和环境保护等方面发挥重要作用。

二、未来趋势1.精准医疗的发展基因研究是精准医疗的核心技术之一。

目前,基因组测序技术的提升和成本的降低,为精准医疗提供了基础条件。

精准医疗需要从个体基因层面出发,开发针对个体特点的治疗方案。

基因组学研究的不断深入,可以更好地指引临床治疗,为个体制定更精准的治疗方案,从而提升治疗效果和预后预测。

2.国际合作的加强基因组学属于跨国性的重要研究领域,多国的科学家和研究机构必须加强合作以更好地利用基因组学的技术与成果。

在国际上,已经有不少跨国的基因组计划在进行中,一方面加快了研究进程,另一方面也让研究可以跨越国界,实现更多方面的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

进化基因组学研究进展刘超(山东大学生命科学学院济南250100)摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。

随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。

进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。

本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。

关键词:进化基因组学系统进化比较基因组学新基因前言随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。

近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。

1进化基因组学研究内容研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。

针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。

在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。

在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。

图1 进化基因组学主要研究内容目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。

例如生物进化的本质和目前重建系统进化树方法的限制[1]。

2研究进化基因组学的方法研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产生和演化两种。

2.1利用基因组数据进行系统进化分析利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。

(如图2)图2 利用基因组数据进行系统进化分析[1]基于基因序列的方法需要利用ClustalW等工具将直向同源基因对齐并进行多样基因序列的校直,并对直向同源基因明显校直位点进行分析(如利用Gblocks)。

一旦这个关键步骤实现,能够从不同基因(经常是不同长度或包含不同的物种集合)的校直中利用两种不同的方法继续进行系统进化的推测:一是超矩阵法,倾向于分析成串的个体基因;另一个是超树分析,倾向于从个体基因的分析中结合所得的最优化的进化树。

基于全基因特征的方法是通过对全基因组进行分析并预测系统进化树,如分析基因含量、基因序列等。

2.2进化基因组学与比较基因组学进化基因组学中对于基因组数据的分析主要利用了比较基因组学的方法。

比较基因组学(comparative genomics)是在基因组图谱和测序的基础上, 利用某个基因组研究获得的信息推测其他原核生物、真核生物类群中的基因数目、位置、功能、表达机制和物种进化的学科[4]。

在基因组间进行比较可以了解不同基因组在核苷酸组成、同线性关系和基因顺序方面的异同,进而可以得到基因分析预测与定位、生物系统发生进化关系等方面的信息。

当在两种以上的基因组间进行序列比较时,实质上就得到了序列在系统发生树中的进化关系[4]。

基因组信息的增多使得在基因组水平上研究分子进化、基因功能成为可能。

2.3新基因的产生与演化新基因指在基因组中新近形成的基因,在研究基因组中基因最初产生的分子机制和基因在群体中扩散并最终固定下来的群体动力学过程有重要意义[5]。

新基因产生的机制主要:基因重复(fgene duplication)、外显子重(exon shuffling)、逆转座(retrotransposition)、可移动元件(mobile elements)、基因水平转移(fgene lateral transfer)和基因分裂与融合(gene fission and fusion)等[5]。

对于新基因在群体中的固定,目前研究的一些模型在一定程度上了描述了中性选择、正选择在进化过程中的作用。

Walsh和Ohta认为中性选择与正选择两者都会在新基因形成过程中起作用,特别在一个大群体中,选择将大大增加形成新基因的概率[5]。

但对于新基因产生中的实际群体动力学仍不得而知。

2.3.1利用生物信息学鉴定新基因随着生物信息学的快速发展,产生了大量可利用的基因组信息和分析软件,充分这些数据和工具在鉴定新基因有重要作用。

目前克隆新基因的主要方法基于有EST的电子克隆和定位克隆[6]。

其中电子克隆技术是加速基因克隆的一条有效途径。

电子克隆或称cDNA文库筛选,主要采用生物信息学方法延伸EST序列,获得基因的部分乃至全长cDNA序列。

定位候选克隆策略是利用细胞生物学、分子遗传学以及人类基因组计研究的最新结果,分离鉴定染色体特定位置上功能基因的方法。

目前充分利用整个基因组数库,EST数据库等资源可以进行网上克隆,进而分析和鉴定新基因。

3进化基因组学研究进展截止2008年,全球已有将近730种物种的完全基因组被测定(82种真核生物,597种细菌和51种古细菌),而且超过2759个基因组计划提上议程。

[7]这些基因组数据为进化基因组的发展提供了大量的材料,近年来进化基因组学取得了飞速的发展。

3.1细菌进化基因组学细菌在三域生物界中独占一域,在了解生命起源、系统进化等方面有重要意义。

另外其基因组小,已知数据充足的特点,使细菌在进化基因组学方面的研究提供了可能。

通过对细菌进化基因组的研究,对于研究细菌生境适应、毒力进化、耐药性产生蔓延等方面有重要意义。

宾文,金齐[8]通过对痢疾志贺氏菌亚群(Shigella dysenteriae)的比较基因组学研究对其进行了进化分析。

他们制备了包含有大肠杆菌K12 MG1655株全基因组ORFs、痢疾志贺菌(S. dysenteriae)A1型Sd51197株特异性ORFs的DNA芯片,并其他12型痢疾志贺氏菌代表株杂交,较深入地对痢疾志贺氏菌亚群内各型间进行了比较以及进化基因组学分析。

通过分析他们构建了痢疾志贺氏菌的系统进化树,证明志贺氏菌在起源和进化关系上与大肠杆菌关系密切。

痢疾志贺氏菌亚群在漫长的进化过程中,通过基因水平转移,其基因组正经历着种内平行进化过程。

外源基因的获得以及基因的不断缺失导致痢疾志贺氏菌亚群内的剧烈分化,推动了其基因组的进化,如Ⅱ型蛋白分泌系统的演变。

一些在肠道中生存必需的基因在没有生存压力的选择下逐渐退化,如鞭毛相关基因。

在进化过程中,痢疾志贺氏菌不仅获得了质粒上的毒力相关基因,而且还通过缺失丢掉了某些基因,在染色体上形成不可逆转的“黑洞”,从而增强毒力。

痢疾志贺氏菌亚群在进化过程中的多样性还反映在很多方面,如如铁离子转运系统的差别。

通过对多种细菌的进化基因组学研究发现,基因水平转移和基因缺失是细菌基因组进化的主要策略;基因组片段的倒位、重复、移位可造成基因组大小、所载荷基因的排列和功能及相互关系的变化[9]。

正是采用前述多种进化策略,细菌具有高度的生物多样性,不同细菌间在代谢特征、细胞构造、生活方式等表型特征上分化明显,即便在亲缘关系很近的细菌种类甚至同种不同生态型间也是如此,分别适应于不同的生态位宿主和自然环境。

3.2酵母进化基因组学酵母是真核生物中研究进化基因组学的一个理想的材料,因为它的基因组小而且简单,并且酵母中包含了较多的物种,在进化基因组的研究中有广泛的利用。

Bernard Dujon,David Sherman[10]等人利用半子囊菌(Hemiascomycelaceae)中四种酵母进行了进化基因组学的研究,包括光滑假丝酵母(Candida glabrata)、(Kluyveromyces lactis)、解脂耶氏酵母(Yarrowia lipolytica)、汉氏德巴利氏酵母(Debaryomyces hansenii)。

他们首先得到这四种酵母的全基因组数据,通过对四种酵母全基因组序列的比较、利用CAAT-Box系统进行基因组注释、非编码RNA 基因比较、对蛋白质进行家族归类、对重复区域和同线性簇进行鉴定、鉴定串联阵列等方法对酵母的进化基因组学进行了研究。

通过研究,他们得到了四种酵母和酿酒酵母的进化树(如图3)。

由于拥有较大的基因组和较高的基因冗余,解脂耶氏酵母表现出较强的定位扩散的趋势,这种扩散在多种水平上得以体现,例如几乎没有重复区域,拥有较高数量的共生同源基因、tRNA基因和rDNA位点。

相反其他种的酵母拥有严格限定大小的基因组,其很可能与他们能够有序的进行基因复制的能力有关,从而出现了基因组中重复区域和串联重复基因,这种趋势在汉氏德巴利氏酵母中尤为明显。

另外其他三种酵母在进化中也取得了新的特征,如三倍的盒式MAT、短的着丝粒。

与拥有最短最小冗余基因组的乳酸克鲁维酵母相比,酿酒酵母、光滑假丝酵母仍然保留从他们共同祖先中继承来的性状。

酵母基因相对与光滑假丝酵母丢失了部分重复基因。

尽管在五种酵母的基因组中有显著的组织性区别,但是所有的结果都符合他们的系统进化树。

图 3 5种酵母的系统进化树[10]通过对几种酵母的进化分析,我们可知虽然他们在形态学和生物学方面相似,但是它们包含了一个和整个脊索动物门一样大的进化范围[10]。

与这个广泛的进化范围相比,现在完整的或部分测序的酵母的数目仍然受到限制。

总之,酵母仍是一个有效的实验系统。

3.3果蝇进化基因组学在过去的一个世纪中,果蝇在动物发育和遗传学基础性研究中逐渐成为模式生物。

在过去的10年中,果蝇的基因组逐渐测序完毕,为进化基因组学提供了良好的材料,果蝇在其他方面广泛的研究也更容易将进化基因组学结果与发育、遗传等方面结合。

在进化基因组学的研究特别是新基因的发现方面,果蝇研究取得巨大的成就。

从1993年龙漫远等人[11]在果蝇中发现了第一个新基因—精卫基因(jingwei),其后又有多个新基因在果蝇中被发现。

Alexander Stark, Michael F. Lin[12]等人通过对12种果蝇基因组测序结果比较,进行进化基因组学研究,分析了果蝇的基因和基因组的进化和它们与果蝇生物学特点和适应性的关联。

相关文档
最新文档