一次函数的图像与性质教学设计

合集下载

一次函数性质与图像教案

一次函数性质与图像教案

一次函数性质与图像教案教学目标:1. 理解一次函数的定义和性质;2. 学会绘制一次函数的图像;3. 能够分析一次函数的图像特征。

教学重点:1. 一次函数的定义和性质;2. 一次函数图像的绘制方法;3. 一次函数图像的特征分析。

教学准备:1. 教学课件或黑板;2. 练习题;3. 绘图工具(如直尺、圆规等)。

教学过程:第一章:一次函数的定义与性质1.1 引入一次函数的概念1. 解释一次函数的定义;2. 举例说明一次函数的形式。

1.2 学习一次函数的性质1. 引导学生观察一次函数的图像,分析其斜率和截距的性质;2. 探讨一次函数的增减性和过原点的情况。

1.3 巩固练习1. 给出一些一次函数的表达式,让学生判断其斜率和截距;2. 让学生绘制一次函数的图像,并分析其性质。

第二章:一次函数图像的绘制2.1 学习一次函数图像的绘制方法1. 介绍一次函数图像的绘制步骤;2. 演示如何绘制一次函数图像。

2.2 实践绘制一次函数图像1. 让学生自主绘制一次函数图像;2.3 巩固练习1. 给出一些一次函数的表达式,让学生绘制其图像;2. 分析一次函数图像的特征。

第三章:一次函数图像的特征分析3.1 学习一次函数图像的特征1. 解释一次函数图像的斜率和截距对图像形状的影响;2. 探讨一次函数图像与坐标轴的交点情况。

3.2 分析一次函数图像的案例1. 给出一些一次函数图像,让学生分析其特征;2. 引导学生通过图像判断斜率和截距的关系。

3.3 巩固练习1. 给出一些一次函数的表达式,让学生分析其图像特征;2. 让学生通过绘制图像来验证一次函数的性质。

第四章:一次函数图像的应用4.1 学习一次函数图像的应用1. 解释一次函数图像在实际问题中的应用;2. 举例说明一次函数图像解决实际问题的方法。

4.2 实际问题案例分析1. 给出一些实际问题,让学生运用一次函数图像解决;2. 引导学生通过图像来分析和解答问题。

4.3 巩固练习1. 给出一些实际问题,让学生运用一次函数图像解决;1. 回顾一次函数的定义和性质;5.2 复习练习1. 给出一些一次函数的相关问题,让学生进行复习;2. 让学生通过绘制一次函数图像来巩固所学知识。

一次函数的图象和性质教案人教版

一次函数的图象和性质教案人教版
一次函数的图象和性质教案 人教版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教材分析
本节课的教学内容是“一次函数的图象和性质”,所使用的是人教版教材。该章节内容主要涉及一次函数的图象特点、斜率与截距的概念、以及一次函数的性质。学生在学习本节课之前,应已掌握一次函数的基本概念,如函数、自变量、因变量等。
- 自主阅读预习资料:按照预习要求,自主阅读预习资料,理解一次函数的基本概念。
- 思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
三、学习者分析
1. 学生已经掌握了哪些相关知识:在开始本节课之前,学生应该已经学习了初中阶段的一次函数、直线方程等相关知识,对于函数的基本概念、自变量与因变量的关系有一定的了解。他们应该能够理解函数的基本性质,如单调性、连续性等,并能够运用这些知识解决一些简单的问题。
2. 学生的学习兴趣、能力和学习风格:学生的兴趣可能在于通过观察和实验来发现一次函数的图象和性质,他们可能对通过实际例子来理解数学概念感兴趣。在学习能力方面,学生可能需要通过具体的例子和实践活动来理解和掌握一次函数的图象和性质。他们的学习风格可能偏向于动手操作和合作学习。
3. 实践评价:通过实践活动,了解学生对一次函数的应用能力,及时发现问题并进行解决。教师可以通过设计实践活动,如小组讨论、实验等,了解学生对一次函数的应用能力,针对存在的问题进行针对性教学。
4. 期末评价:通过期末考试,了解学生对一次函数的图象和性质的掌握程度,及时发现问题并进行解决。期末考试是对学生学习成果的一次全面检验,教师应认真分析考试结果,针对存在的问题进行针对性教学。

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。

2. 让学生能够绘制一次函数的图像,理解图像的性质。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点1. 一次函数的概念及表示方法。

2. 一次函数图像的性质。

三、教学难点1. 一次函数图像的性质的理解和应用。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。

2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。

3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。

4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。

5. 练习:让学生绘制一些一次函数的图像,并分析其性质。

7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。

8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。

六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。

2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。

七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。

八、课后作业1. 完成练习册上的一次函数相关习题。

2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。

九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。

2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。

十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。

2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。

3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇一次函数篇一11.2 一次函数§11.2.1正比例函数教学目标1.认识正比例函数的意义。

2.掌握正比例函数解析式特点。

3.理解正比例函数图象性质及特点。

4.能利用所学知识解决相关实际问题。

教学重点1.理解正比例函数意义及解析式特点。

2.掌握正比例函数图象的性质特点。

3.能根据要求完成转化,解决问题。

教学难点正比例函数图象性质特点的掌握。

教学过程ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环。

4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30某4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。

函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。

即y=200某45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。

尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

类似于y=200x这种形式的函数在现实世界中还有很多。

它们都具备什么样的特征呢?我们这节课就来学习。

ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长l随半径r的大小变化而变化。

3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化。

.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
(四)课堂练习,500字
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。

一次函数性质与图像教案

一次函数性质与图像教案

一次函数性质与图像教案教学目标:1. 理解一次函数的定义和性质;2. 能够绘制一次函数的图像;3. 能够分析一次函数的图像特征;4. 能够应用一次函数的性质和图像解决实际问题。

教学重点:1. 一次函数的定义和性质;2. 一次函数图像的绘制和分析。

教学准备:1. 教学PPT或黑板;2. 教学用具(如直尺、圆规等);3. 练习题和答案。

教学过程:第一章:一次函数的定义1.1 引入:通过实际例子引导学生思考如何用数学方式表示实际问题中的线性关系;1.2 讲解:定义一次函数,解释一次函数的形式和参数含义;1.3 互动:让学生举例说明一次函数的应用场景,并进行讨论;1.4 练习:让学生完成一些一次函数的例子,并解释其含义。

第二章:一次函数的性质2.1 引入:通过图像引导学生观察一次函数的性质;2.2 讲解:讲解一次函数的斜率和截距的性质,包括正比例函数和反比例函数的特殊情况;2.3 互动:让学生通过实际例子来说明一次函数的性质,并进行讨论;2.4 练习:让学生完成一些关于一次函数性质的练习题。

第三章:一次函数的图像3.1 引入:通过实际例子引导学生思考如何绘制一次函数的图像;3.2 讲解:讲解一次函数图像的特点和绘制方法;3.3 互动:让学生通过实际例子来说明如何绘制一次函数的图像,并进行讨论;3.4 练习:让学生完成一些绘制一次函数图像的练习题。

第四章:一次函数图像的分析4.1 引入:通过实际例子引导学生思考如何分析一次函数图像;4.2 讲解:讲解如何通过一次函数图像来分析函数的性质和行为;4.3 互动:让学生通过实际例子来说明如何分析一次函数图像,并进行讨论;4.4 练习:让学生完成一些关于一次函数图像分析的练习题。

第五章:一次函数的应用5.1 引入:通过实际例子引导学生思考如何应用一次函数解决实际问题;5.2 讲解:讲解一次函数在实际问题中的应用方法和步骤;5.3 互动:让学生通过实际例子来说明如何应用一次函数解决实际问题,并进行讨论;5.4 练习:让学生完成一些关于一次函数应用的练习题。

一次函数的图象和性质教案

一次函数的图象和性质教案

一次函数的图象和性质教案一、教学目标1. 让学生理解一次函数的图象和性质,掌握一次函数的图象特征和函数值的计算方法。

2. 培养学生运用一次函数解决实际问题的能力,提高学生的数学应用意识。

3. 培养学生合作学习、积极探究的学习态度,提高学生的自主学习能力。

二、教学内容1. 一次函数的图象特征2. 一次函数的性质3. 一次函数在实际问题中的应用三、教学重点与难点1. 教学重点:一次函数的图象特征,一次函数的性质,一次函数在实际问题中的应用。

2. 教学难点:一次函数的图象与系数的关系,一次函数在实际问题中的灵活应用。

四、教学方法1. 采用问题驱动法,引导学生探究一次函数的图象和性质。

2. 利用数形结合法,让学生直观地理解一次函数的图象特征。

3. 运用实例分析法,培养学生运用一次函数解决实际问题的能力。

五、教学过程1. 导入新课:引导学生回顾一次函数的一般形式,提出本节课要研究的一次函数的图象和性质。

2. 探究一次函数的图象特征:让学生分组讨论,总结一次函数图象的斜率和截距与函数图象的关系。

3. 讲解一次函数的性质:结合图象,讲解一次函数的单调性、增减性、对称性等性质。

4. 应用练习:给出几个实际问题,让学生运用一次函数解决问题,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。

6. 布置作业:布置一些有关一次函数图象和性质的练习题,巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的准确性以及与同学的互动情况,评价学生的学习态度和理解程度。

2. 练习完成情况评价:通过学生完成的练习题,评估学生对一次函数图象和性质的理解及应用能力。

3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、问题探究能力和创新思维。

七、教学资源1. 教学PPT:制作包含一次函数图象和性质的PPT,用于课堂演示和讲解。

2. 练习题库:准备一系列一次函数图象和性质的练习题,用于课堂练习和学生课后自学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究一次函数的图像与性质教学设计及说明
一、教材分析
函数是中学数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型。

它贯穿于整个中学阶段的始末,同时也是历年中考、高考必考的内容之一。

初二数学中的函数又是中学函数知识的开端,是学生正式从常量世界进入变量世界,因此,努力上好初二函数部分的内容显得尤为重要。

一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

为此,在教学中,通过设置问题,引导学生观察探索,让学生在学习过程中体验、感悟函数思想等思想方法,从而激发学生学习函数的信心和兴趣,这也是教学目标。

本节课安排在正比例函数与一次函数的概念和函数图像画法之后。

目的是通过这一节课的学习使学生掌握正比例函数和一次函数图像和性质,并能简单应用性质。

它既是探究其他函数性质的基础,又是后续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。

本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。

作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

二、学情分析
我所执教的班数学基础较好,有较强的实验探究能力。

学生已经学习了一次函数和正比例函数的定义、一次函数的图像形状以及会
选择两点来画直线。

会使用几何画板软件画函数图像和一定的探究能力。

三、教学目标的确定
基于以上对教材、学情分析和新课标的要求,特制定制定的本节课的教学目标:
知识与技能目标:经历探索由一次函数图像观察归纳一次函数性质的过程,掌握并应用性质解决问题。

过程与方法目标:经历观察、猜想、实验、归纳、推理、交流等数学活动过程,使学生体会和学会探索问题的一般方法,同时渗透数形结合、数学建模、
类比和分类讨论数学思想。

情感态度价值观目标:通过数学实验、自主探究和合作交流,增强团队意识和大胆猜想、乐于探究的良好品质,体验成功的喜悦。

四、教学重点和难点
教学重点是一次函数的图像和性质
教学难点是由一次函数的图像实验归纳出一次函数的性质及对性质的理解。

五、教学方法:数学实验法、自主探究式教学方法
六、教学手段:几何画板软件及自制几何画板课件
七、教学过程设计
① 当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上;
b 相同,直线交于一点
学生探究后,教师及时给予点拨指导,并用课件配合演示b 的变化对直线的影响。

实验探究三:K 、b 对函数y=kx+b 的图像位置的影响 启发学生根据K 、b 的符号,探究画图,得出结论: ①如图(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);
②如图(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限);
③如图(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、
四象限(直线不经过第一象限).
给学生留有足够的时间与空间进行实验探索,让学生
都是通过学生自主探究,合作交流得到的。

这个内容不是大纲要求内容,但对于实验
班的同学,是有可能探究出来的,而且对于理解斜率的概念和高中进一步研究函数很有帮助。

让学生学会分类讨
论和数形结合思想
自己发现错误、自行纠错,力求使学生在充分的思维冲突中,强化对性质的理解和把握,学会研究问题的方法。

教学方式:自主探索——组内交流——师生共同探讨。

思维升华应用新知1.解决前面提出的问题
画出各自的图像,用描点发画图。

注意观察学生画的是直线还是线段、射线,教师及时给予
纠正点拨。

教师配合演示。

结合图像,教师提出问题:由图像你能看出什么?引导学
生思考几个关键点如:与坐标轴的交点,两条直线的交点
等实际含义是什么?
2.用抢答的形式选题解答。

备选习题如下(视课上的时间
决定做几道题)
1.下列函数中
①x
y2
-
=②x
y
5
1
=③1
2+
-
=x
y
④2
-
=x
y⑤3
2
1
-
-
=x
y
y随着x值的增大而增大的函数有
教学生学会观察图形、
分析图形、获得信息和
应用图像解决问题的
能力。

设置由浅入深的系列
分层练习,进一步帮助
学生理解建构一次函
数的性质及其应用。

1.判断函数的增减性
y随着x值的增大而减小的函数有
直线交x轴负半轴的有
2.(1)直线6
2+
=x
y和6
+
-
=x
y的位置关系如何?
(2)直线x
y-
=与6+
-
=x
y的位置关系如何?
(3)由直线x
y-
=如何得到直线6+
-
=x
y
3. 请写出一个一次函数,使它的图象与直线
6
3+
-
=x
y平行,且经过点(0,-3).
4.根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图
中k、b的符号:
5.已知一次函数y=(3-k)x-2k+18.
(1)k为何值时,它的图象经过原点?
(2)k为何值时,它的图象经过点(0,-2)?
(3)k为何值时,它的图象与y轴的交点在x轴的上方?
(4)k为何值时,它的图象平行于直线y=-x?
(5)k为何值时,y随x的增大而减小?
2.根据函数解析式,
判断直线的位置关
系。

3.根据位置关系,写
函数解析式。

4.图像,判断k、b 的
符号。

5.根据图像的信息,
确定字母的取值。

总结
收获
提出问题:谈谈本节课的收获和体会?
学生发言,互相补充,教师点评完善。

呼应复习引入,培养学
生反思的习惯。

反思
提高
作业
布置
巩固
落实
实验探究四:探究k对图像倾斜程度影响
给出图像,如何判断它的解析式?这是学生课堂上自
然生成的问题,用软件画完多个图像后,可能找不到图像
和函数解析式的对应关系。

教师及时提出问题:已知四个函数:2
3-
-
=x
y,
2
3
1
-
=x
y,2
3
1
+
-
=x
y,2
3
2
+
-
=x
y和四个图像,到底如何
把它们对应上?
这个实验留作课
后作业,既是对本节课
知识的有效巩固,又是
对课堂知识的自然延
伸,让学生带着问题进
课堂,又带着问题出课
堂。

相关文档
最新文档