高中数学竞赛基本知识集锦

合集下载

高中学数学竞赛(自主招生)必备的高等数学知识

高中学数学竞赛(自主招生)必备的高等数学知识

高中学数学竞赛决赛(自主招生)必备的高等数学知识集合集合的概念:我们把所要研究的事物全体称为集合,构成集合的事物称为元素,集合一般用大写字母A、B、C……表示,元素一般用小写字母a、b、c……表示。

如果元素是集合A中的元素,记,否则记有限集:只有有限个元素的集合。

无限集:有无穷多个元素的集合。

空集:不含有任何元素的集合叫空集,记集合的表示方法列举法:如,描述法:如,子集:如果集合A中的元素都是B的元素,称A是B的子集(或称A包含于B),记如:,,则。

并集:集合A与集合B的元素放在一起构成的集合,称为A与B的并集。

记,即如:则:交集:记集合A与集合B的公共元素构成的集合,称为A与B的交集,记。

如:,则:绝对值与绝对值不等式几何意义:点到原点的距离。

几何意义:点到点的距离。

性质:1), 2), 3);4)设,;5);6)7)例1:解下列不等式1), 2), 3)4), 5)解:1) 2)3)或或4)5)或区间与邻域设为实数,,称为以、为端点的开区间,称为以、为端点的闭区间,,以上为有限区间,以上为无穷区间称为点的邻域,为对称中心,为半径。

称为点的去心邻域。

函数的定义设有两个变量与,当变量在实数某范围任取一值时,变量按确定的规则有确定的值与之对应,那么称是的函数,记。

叫自变量,叫因变量,的取值范围称为函数的定义域,记。

对称为函数在点的函数值,所有函数值的集合称为值域。

记。

说明:(1)定义中的记号表示自变量与因变量的对应法则。

(2)函数的两要素:定义域与对应法则。

与表示同一函数;与表示同一函数;与表示不同的函数;与表示不同函数。

(3)单值函数与多值函数对于函数,如果对自变量的一个取值,函数只有一个数值与之对应,则称函数是单值函数;如果对自变量的一个取值,函数有两个或更多个数值与之对应,则称函数是多值函数;如:是单值函数,是多值函数。

(4)定义域实际问题中建立的函数关系,其定义域要根据实际问题来确定,而用数学式表达的函数,当不表示任何实际意义时,其定义域由函数表达式来确定。

数学竞赛一试知识点

数学竞赛一试知识点

数学竞赛一试知识点数学竞赛是一项对学生数学能力的综合考察,常常涉及到各个数学领域的知识点。

在这篇文章中,我们将介绍一些常见的数学竞赛知识点,包括数列与数列极限、函数与方程、概率与统计、解析几何等。

一、数列与数列极限数列是数学中常见的概念,它是由一系列按照一定规律排列的数所组成的。

数列的极限是指当数列中的数趋向于某个值时,这个值就是数列的极限。

在数学竞赛中,常常需要求解数列的极限,掌握数列的性质和求解方法是很重要的。

二、函数与方程函数是一种特殊的关系,它将一个变量的值映射到另一个变量的值。

在数学竞赛中,常常需要分析函数的性质,求解函数方程以及利用函数的性质解决问题。

掌握函数的性质、方程的求解方法以及函数图像的特点对于解题非常有帮助。

三、概率与统计概率与统计是数学中的一个分支,它研究的是随机事件和数据的规律。

在数学竞赛中,常常需要计算概率、分析统计数据以及利用概率和统计的方法解决问题。

掌握概率的计算方法、统计数据的分析技巧以及概率与统计在实际问题中的应用是很重要的。

四、解析几何解析几何是数学中的一个分支,它将几何问题转化为代数问题来求解。

在数学竞赛中,常常需要利用解析几何的方法解决几何问题,例如求解直线和曲线的交点、求解几何图形的面积和体积等。

掌握解析几何的基本概念、常见解析几何问题的求解方法以及解析几何在实际问题中的应用是很重要的。

五、数论与组合数学数论是研究整数性质的数学分支,组合数学是研究离散结构的数学分支。

在数学竞赛中,常常需要利用数论和组合数学的方法解决问题,例如证明数论定理、计算组合数等。

掌握数论和组合数学的基本概念、常见问题的解决方法以及数论和组合数学在实际问题中的应用是很重要的。

数学竞赛一试涵盖了数学的各个领域,包括数列与数列极限、函数与方程、概率与统计、解析几何、数论与组合数学等。

掌握这些知识点,并灵活运用于解题过程中,将有助于提高数学竞赛的成绩。

希望同学们能够加强对这些知识点的学习和理解,为数学竞赛的取得好成绩打下坚实的基础。

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

容斤原理。

极端原理。

集合的划分。

高中数学竞赛知识点整理

高中数学竞赛知识点整理

高中数学竞赛知识点整理
一、代数知识
1.一元二次方程:
(1)一元二次方程的解法:
a、利用求根公式:解一元二次方程的根:
若ax2 + bx + c = 0,则x1 = (-b + √(b2 - 4ac))/2a,x2 = (-b -
√(b2 - 4ac))/2a
b、利用因式分解法:
将一元二次方程化为两个一元一次方程,求解。

2.一元一次方程:
(1)一元一次方程的解法:
a、利用移项法:把一元一次方程化为一元一次不等式,求解。

b、利用乘除法:将一元一次方程的系数化简,求解。

3.二元一次方程组:
(1)二元一次方程组的解法:
a、利用消元法:把二元一次方程组化为一元一次方程组,求解。

b、利用代入法:将一个方程的解代入另一个方程,求解。

4.不等式:
(1)一元一次不等式的解法:
a、利用移项法:将一元一次不等式化为一元一次方程,求解。

b、利用乘除法:将一元一次不等式的系数化简,求解。

二、几何知识
1.直线与圆:
(1)直线与圆的位置关系:
a、直线与圆有共点:直线与圆相切;
b、直线与圆无共点:直线与圆相交;
c、直线与圆有共线:直线与圆相离;
2.三角形:
(1)三角形的性质:
a、直角三角形:有两条直角边;
b、等腰三角形:有两条等长边;
c、等边三角形:三条边。

高二数学竞赛题知识点

高二数学竞赛题知识点

高二数学竞赛题知识点在高二数学竞赛中,学生们通常会遇到各种各样的数学问题和题目。

为了取得好成绩,竞赛选手需要了解并掌握一些重要的数学知识点。

本文将介绍一些高二数学竞赛中常见的知识点和相应的解题技巧。

一、函数与方程1. 一元二次方程一元二次方程是高中数学中的重要内容。

解一元二次方程可以使用求根公式和配方法。

在竞赛中,对于一元二次方程的解法要熟练掌握,并注意考虑方程是否有唯一解或无解的情况。

2. 指数与对数函数指数与对数函数是高中数学中的另一重要内容。

学生们需要了解指数与对数的基本性质,掌握指数与对数函数的图像和性质,以及指数方程与对数方程的解法。

二、平面几何1. 相似三角形相似三角形是平面几何中的重要概念。

学生们需要知道相似三角形的基本定义和性质,能够判断两个三角形是否相似,并应用相似三角形的性质解决相关问题。

2. 圆的性质圆是平面几何中的基本图形,学生们需要了解圆的圆心、半径、直径等基本概念,以及圆的切线、弦、弧、扇形等性质。

在竞赛中,对于圆的性质的掌握十分重要。

三、立体几何1. 空间几何体的体积、表面积与相关性质学生们需要掌握立方体、长方体、圆柱体、圆锥体、球体等常见几何体的体积和表面积的计算方法,了解它们的相关性质,并能够应用这些知识解题。

2. 空间向量空间向量是高中数学中的重要概念,学生们需要掌握向量的加法、减法和数量积的计算方法,了解向量的共线与垂直关系等基本性质。

在竞赛中,向量的应用常常涉及平面向量和空间向量的结合。

四、概率与统计1. 排列与组合排列与组合是概率与统计中的基本内容,学生们需要熟练掌握排列与组合的计算方法,并能够应用它们解决相关问题。

2. 概率的计算概率是概率与统计的核心内容,学生们需要掌握概率的基本定义、性质和计算方法,能够利用概率解决实际问题,例如计算事件的概率、条件概率和独立事件等。

总结:高二数学竞赛题目涉及的知识点广泛且深入,要取得好成绩,学生们需要充分准备。

本文介绍了一些高二数学竞赛题常见的知识点和解题技巧,包括函数与方程、平面几何、立体几何以及概率与统计。

高一数学竞赛知识点

高一数学竞赛知识点

高一数学竞赛知识点一、集合与函数1. 集合的概念:集合是由一些确定的、互不相同的对象组成的整体。

2. 集合的表示方法:列举法、描述法、区间表示法等。

3. 集合的运算:并集、交集、差集、补集等。

4. 函数的概念:函数是一种特殊的关系,将一个集合的每个元素映射到另一个集合的元素上。

5. 函数的性质:单射、满射、一一对应、复合函数等。

二、数列与数列极限1. 数列的概念:数列是按照一定规律排列的一系列数。

2. 等差数列:数列中的任意两项之差都相等。

3. 等比数列:数列中的任意两项之比都相等。

4. 通项公式:数列中的第n项与n的关系式。

5. 数列极限:数列随着项数无限增加,趋向于一个确定的值。

6. 数列极限的性质:唯一性、保序性、四则运算性质等。

三、函数的性质与图像1. 函数的奇偶性:奇函数和偶函数的定义与性质。

2. 函数的周期性:周期函数的定义与性质。

3. 函数的单调性:增函数和减函数的定义与判定方法。

4. 函数的极值:局部极大值和局部极小值的概念与求解方法。

5. 函数的图像:函数的图像与坐标轴的交点、拐点、对称轴等。

四、数学归纳法1. 数学归纳法的原理:从已知条件推导出未知结论的一种方法。

2. 数学归纳法的基本步骤:证明基本情况、假设成立、推导出下一步结论。

3. 数学归纳法的应用:证明数列、不等式、恒等式等的成立性。

五、平面几何1. 平面几何的基本概念:点、线、面、角等的定义与性质。

2. 直线和平面的关系:相交、平行、垂直等的判定方法。

3. 三角形的性质:内角和、外角和、中位线、高线等的性质。

4. 相似三角形:相似三角形的判定条件、比例关系及其应用。

5. 圆的性质:圆心角、弧长、弦长、切线等的性质。

6. 圆锥曲线:椭圆、双曲线、抛物线的定义与性质。

六、概率与统计1. 随机事件:随机事件的概念、必然事件、不可能事件及其运算。

2. 概率的计算:频率概率、几何概率、古典概型等的计算方法。

3. 条件概率:事件A在事件B发生的条件下发生的概率。

高二数学竞赛考的知识点

高二数学竞赛考的知识点

高二数学竞赛考的知识点高二数学竞赛是一项对学生数学能力的全面考核,并且考察的知识点涵盖了高一和高二的数学课程内容。

在这篇文章中,我们将详细介绍高二数学竞赛考试中涉及的各个知识点。

1.函数与方程函数与方程是高中数学的基础,也是竞赛中经常考察的内容。

其中包括线性函数、二次函数、指数函数、对数函数以及三角函数等。

考生需要理解各种函数的性质、图像特点,以及函数之间的关系。

此外,求解各种方程及不等式也是必备的技能。

2.数列与数列极限数列是一种特殊的函数,是将自然数映射到实数的一种方式。

高二数学竞赛中经常涉及到数列的性质、递推公式、通项公式等。

同时,数列极限也是重点考察的内容,包括数列的极限存在性、极限计算、极限的性质等。

3.概率与统计概率与统计是数学中的应用部分,也是高二数学竞赛中的重要内容。

其中包括事件的概率、条件概率、随机变量与概率分布以及统计图表的分析等。

考生需要掌握概率计算的方法和技巧,同时能够灵活运用统计学的基本理论进行问题求解。

4.立体几何立体几何是高中数学中的一大难点,也是高二数学竞赛中的考点之一。

重点包括立体图形的投影、表面积和体积的计算。

此外,还需要理解立体几何中的一些定理和推理思路,并能够应用到复杂的立体几何问题中。

5.平面向量平面向量是高二数学竞赛中的重要知识点,也是数学与物理结合的桥梁。

平面向量包括向量的性质、向量的加法与减法、数量积和向量积等。

考生需要掌握向量的运算方法和性质,并能够运用向量进行几何证明和问题求解。

6.三角函数与三角恒等式三角函数与三角恒等式是高二数学中的重要内容,也是竞赛考点之一。

考生需要熟练掌握三角函数的基本定义、性质和图像,以及能够灵活运用三角函数的恒等式解决各种三角函数的计算和证明题。

7.数学证明数学证明是高中数学中的重要部分,也是高二数学竞赛中的要求之一。

考生需要具备一定的证明思维能力,能够独立完成数学证明题。

在证明过程中,要注重逻辑严谨、推理准确,并能够灵活运用所学知识和定理。

数学竞赛知识基本知识集锦

数学竞赛知识基本知识集锦

数学竞赛知识基本知识集锦数学竞赛一直以来都是学生们展现自己数学能力和解题思维的舞台。

参加数学竞赛不仅能够提升数学水平,还能培养逻辑思维和解决问题的能力。

本文将为大家整理数学竞赛的基本知识,希望对参加数学竞赛的同学们有所帮助。

一、基础概念与定理1. 数列与数列的性质:数列是按照一定规律排列的数的序列。

常见的数列有等差数列、等比数列等。

掌握数列的通项公式及常见性质,能够更好地解决与数列相关的问题。

2. 平面几何与立体几何:平面几何主要涉及图形的性质、坐标系以及三角形、四边形等形状的性质。

立体几何则关注空间图形的特征与性质。

定理的掌握和灵活应用是解决几何问题的关键。

3. 三角函数与三角恒等式:三角函数是解决三角形问题的基础,包括正弦、余弦、正切等。

同时,熟悉三角恒等式的应用,能够简化计算过程,提高解题效率。

4. 数论基础知识:数论是研究整数性质的学科,涉及素数、约数、同余等概念。

对数论基础知识的掌握,对于解决一些特定的数学竞赛问题非常有帮助。

5. 初等代数与高等代数:初等代数包括方程、函数等基本概念与运算,高等代数则讨论向量、矩阵等更为复杂的代数运算。

掌握代数运算的方法和技巧是解决代数题的关键。

二、解题技巧与方法1. 抽象问题的具体化:遇到一些抽象的问题时,可以尝试将其具体化,通过构建具体的例子或者特殊情况来分析问题,从而找到解题的思路和方法。

2. 推理与演绎:在解决一些需要推理和演绎的问题时,可以采用逆向思维,从题目要求出发,逆向推导,找到问题的根源和解决方法。

3. 规律与模式的寻找:许多数学竞赛问题都存在一定的规律和模式,通过观察、总结,找到问题的规律,可以更加高效地解决问题。

4. 分析与综合:分析题目的条件和要求,将问题进行拆解,寻找其中的关联与规律,再进行综合运用,能够更好地解决复杂的数学竞赛问题。

三、参考书目与学习资源1. 《挑战杯数学竞赛》2. 《高中数学竞赛经典题解》3. 《奥林匹克数学教程》除了参考书籍,互联网上也有许多数学竞赛的学习资源,例如在线课程、数学竞赛论坛等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛基本知识集锦一、三角函数常用公式由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。

但是由于现在的教材中常用公式删得太多,有些还是不能不写。

先从最基础的开始(这些必须熟练掌握): 半角公式2cos 12sinαα-±= 2cos 12cos αα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan +=-=+-±=积化和差()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin和差化积2cos2sin2sin sin βαβαβα-+=+ 2sin2cos2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+ 2sin2sin 2cos cos βαβαβα-+-=- 万能公式ααα2tan 1tan 22sin += ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=三倍角公式()()αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()()αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3二、某些特殊角的三角函数值除了课本中的以外,还有一些三、三角函数求值给出一个复杂的式子,要求化简。

这样的题目经常考,而且一般化出来都是一个具体值。

要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子求值:76cos74cos 72cosπππ++ 提示:乘以72sin 2π,化简后再除下去。

求值:︒︒-︒+︒80sin 40sin 50cos 10cos 22题目:设n 为正整数,求证nn n i ni 21212sin1+=+∏=π 四、三角不等式证明最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。

例1.求证:x 为锐角,sinx+tanx<2x2.设12π≥≥≥z y x ,且2π=++z y x ,求乘积z y x cos sin cos 的最大值和最小值。

1给递推式求通项公式(1)常见形式即一般求解方法注:以下各种情况只需掌握方法即可,没有必要记住结果,否则数学就变成无意义的机械劳动了。

①q pa a n n +=+1若p=1,则显然是以a 1为首项,q 为公差的等差数列, 若p ≠1,则两边同时加上1-p q ,变为⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n 显然是以11-+p qa 为首项,p 为公比的等比数列 ②()n f pa a n n +=+1,其中f(n)不是常数 若p=1,则显然a n =a 1+()∑-=11n i i f ,n ≥2若p ≠1,则两边同时除以p n+1,变形为()111++++=n n n n n p n f p a p a 利用叠加法易得()∑-=++=1111n i i n n p i f p a p a ,从而()⎥⎦⎤⎢⎣⎡+=∑-=-1111n i i n n p i f a p a注:还有一些递推公式也可以用一般方法解决,但是其他情况我们一般使用其他更方便的方法,下面我们再介绍一些属于数学竞赛中的“高级方法”。

(2)不动点法当f(x)=x 时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。

典型例子:da c ba a a n n n +⋅+⋅=+1注:我感觉一般非用不动点不可的也就这个了,所以记住它的解法就足够了。

我们如果用一般方法解决此题也不是不可以,只是又要待定系数,又要求倒数之类的,太复杂,如果用不动点的方法,此题就很容易了 令dx c b x a x +⋅+⋅=,即()02=--+b x a d cx ,令此方程的两个根为x 1,x 2, 若x 1=x 2 则有p x a x a n n +-=-+11111其中k 可以用待定系数法求解,然后再利用等差数列通项公式求解。

注:如果有能力,可以将p 的表达式记住,p=da c+2 若x 1≠x 2则有212111x a x a q x a x a n n n n --⋅=--++其中k 可以用待定系数法求解,然后再利用等比数列通项公式求解。

注:如果有能力,可以将q 的表达式记住,q=21cx a cx a --(3)特征根法特征根法是专用来求线性递推式的好方法。

先来了解特征方程的一般例子,通过这个来学会使用特征方程。

①n n n qa pa a +=++12特征方程为x 2=px+q ,令其两根为x 1,x 2则其通项公式为nn n x B x A a 21⋅+⋅=,A 、B 用待定系数法求得。

②n n n n ra qa pa a ++=+++123特征方程为x 3=px 2+qx+r ,令其三根为x 1,x 2,x 3则其通项公式为nn n n x C x B x A a 321⋅+⋅+⋅=,A 、B 、C 用待定系数法求得。

注:通过这两个例子我们应当能够得到特征方程解线性递归式的一般方法,可以试着写出对于一般线性递归式的特征方程和通项公式,鉴于3次以上的方程求解比较困难,且竞赛中也不多见,我们仅需掌握这两种就够了。

(4)数学归纳法简单说就是根据前几项的规律猜出一个结果然后用数学归纳法去证。

这样的题虽说有不少但是要提高不完全归纳的水平实在不易。

大家应当都会用数学归纳法,因此这里不详细说了。

但需要记得有这样一个方法,适当的时候可以拿出来用。

(5)联系三角函数三角函数是个很奇妙的东西,看看下面的例子2112nnn a a a -=+ 看起来似乎摸不着头脑,只需联系正切二倍角公式,马上就迎刃而解。

注:这需要我们对三角函数中的各种公式用得很熟,这样的题目竞赛书中能见到很多。

例数列{}n a 定义如下:21=a ,2142n n a a --=+,求{}n a 通项注:这个不太好看出来,试试大胆的猜想,然后去验证。

(6)迭代法先了解迭代的含义()()()()()()()()()() ,,,,x f f f x f x f f x fx f x f x x f ====3210f 右上角的数字叫做迭代指数,其中()x fn-是表示()x f n 的反函数再来了解复合的表示:()()()x g f x g f = ,()()()()x h g f x h g f = 如果设()()x g f gx F 1-=,则()()x g f g x F nn 1-=,就可以将求F(x)的迭代转变为求f(x)的迭代。

这个公式很容易证明。

使用迭代法求值的基础。

而在数列中我们可以将递推式看成()n n a F a =+1,因此求通项和求函数迭代就是一样的了。

我们尽量找到好的g(x),以便让f(x)变得足够简单,这样求f(x)的n 次迭代就很容易得到了。

从而再得到F(x)的n 次迭代式即为通项公式。

练习{}n n n n n n n a a a a a a a a a 212221221221221++-+=+===,,,满足已知数列,试求数列的通项公式。

题目:已知数列{}n a 满足1021==a a ,,()11-++⋅=n n n a a n a ,求该数列的通项公式。

2数列求和求和的方法很多,像裂项求和,错位相减等等,这些知识就算单纯应付高考也应该都掌握了,这里不再赘述。

主要写竞赛中应当掌握的方法——阿贝尔恒等式。

阿贝尔(Abel )恒等式 有多种形式,最一般的是()∑∑-=+=+-=1111n k n n k k k nk kk b S b b S ba其中∑==ki kk aS 1注:个人认为,掌握这一个就够了,当然还有更为一般的形式,但是不容易记,也不常用。

Abel 恒等式就是给出了一个新的求和方法。

很多时候能简化不少。

例:假设021≥≥≥≥n a a a ,且∑==n i i a 121,求证:∑=≥-+ni i i i a 111计数问题1抽屉原则我第一次接触抽屉原则,是在一本奥赛书的答案上,有一步骤是:由抽屉原则可得……,于是我就问同学,什么是抽屉原则,同学告诉我,三个苹果放进两个抽屉,必有一个抽屉里至少有两个苹果。

后来才发现,抽屉原则不只是这么简单的,它有着广泛的应用以及许多种不同的变形,下面简单介绍一下抽屉原则。

抽屉原则的常见形式一,把n+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有两个物体。

二,把mn+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有m+1个物体。

三,把m 1+m 2+…+m n +k (k ≥1)个物体以任意方式全部放入n 个抽屉中,那么后在一个抽屉里至少放入了m 1+1个物体,或在第二个抽屉里至少放入了m 2+1个物体,……,或在第n 个抽屉里至少放入了m n +1个物体 四,把m 个物体以任意方式全部放入n 个抽屉中,有两种情况:①当n|m 时(n|m 表示n 整除m ),一定存在一个抽屉中至少放入了n m 个物体;②当n 不能整除m 时,一定存在一个抽屉中至少放入了[nm]+1个物体([x]表示不超过x 的最大整数)五,把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。

注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。

理解它们的含义最重要。

在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。

一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。

例:从自然数1,2,3,…99,100这100个数中随意取出51个数来,求证:其中一定有两个数,它们中的一个是另一个的倍数.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现. 2容斥原理容斥原理常常使用,其实说简单点,就是从多的往下减,减过头了在加回来,又加多了再减,减多了再加……,最终得到正确结果。

对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。

相关文档
最新文档