整式的乘法及公式
整式运算公式范文

整式运算公式范文整式是指只包含有限个非负整数次幂的数学式子,其中每一项都是常数乘以一个或多个自变量的幂的乘积。
整式运算就是对整式进行加法、减法、乘法和除法的操作,下面分别介绍这四种运算公式。
一、整式的加法运算公式设有两个整式:A = a1x^n + a2x^(n-1) + ... + anx + a(n+1)B = b1x^m + b2x^(m-1) + ... + bmx + b(m+1)其中,ai、bi为常数系数,n、m为非负整数。
整式A与B的加法运算公式为:A +B = (a1 + b1)x^n + (a2 + b2)x^(n-1) + ... + (an + bn)x + (a(n+1) + b(m+1))即将A与B的对应项的系数相加,然后按照降幂排列。
二、整式的减法运算公式设有两个整式:A = a1x^n + a2x^(n-1) + ... + anx + a(n+1)B = b1x^m + b2x^(m-1) + ... + bmx + b(m+1)其中,ai、bi为常数系数,n、m为非负整数。
整式A与B的减法运算公式为:A -B = (a1 - b1)x^n + (a2 - b2)x^(n-1) + ... + (an - bn)x + (a(n+1) - b(m+1))即将A与B的对应项的系数相减,然后按照降幂排列。
三、整式的乘法运算公式设有两个整式:A = a1x^n + a2x^(n-1) + ... + anx + a(n+1)B = b1x^m + b2x^(m-1) + ... + bmx + b(m+1)其中,ai、bi为常数系数,n、m为非负整数。
整式A与B的乘法运算公式为:A *B = (a1b1)x^(n+m) + (a1b2)x^(n+m-1) + ... + (a1bm)x^(n+1) + ... + (anbn)x^2 + (anb(m+1))x + (a(n+1)b1)x^n + ... +(a(n+1)b(m+1))即将A的每一项与B的每一项相乘,并按照降幂排列。
整式的乘法和乘法公式复习课课件

• 整式的乘法复习 • 乘法公式复习 • 整式的乘法与乘法公式的应用 • 整式的乘法和乘法公式的注意事项 • 练习与巩固
01
整式的乘法复习
单项式乘单项式
总结词
直接相乘,系数相乘,同底数幂 相乘。
详细描述
单项式与单项式相乘时,只需将 它们的系数相乘,并将相同的字 母的幂相加。例如,$2x^3y$与 $3xy^2$相乘得到$6x^4y^3$。
提高练习题
提高练习题1
计算 (x + y)^2(x - y)^2。
提高练习题2
化简 (a^2 - b^2) / (a^2 + ab + b^2)。
提高练习题3
求 (a^2 + 2ab + b^2) / (a^2 - b^2) 的值。
综合练习题
1 2
综合练习题1
计算 ((x + y)(x - y))^2。
VS
公式范围
整式的乘法公式有一定的适用范围,如完 全平方公式适用于任意实数a、b的情况; 平方差公式适用于任意实数a、b(a≠b) 的情况等。
公式推导和证明方法
推导方法
整式的乘法公式可以通过基本的运算法则进 行推导,如通过同底数幂的乘法法则推导出 幂的乘方公式;通过单项式乘以多项式的法 则推导出分配律等。
02
乘法公式复习
平方差公式
总结词
理解平方差公式的结构特点
总结词
掌握平方差公式的应用
详细描述
平方差公式是整式乘法中的重要公式之一,表示 两个平方数的差等于它们的线性组合的平方。这 个公式在代数和几何中都有广泛的应用,是解决 数学问题的关键工具。
详细描述
整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。
下面就让我们一起来深入了解整式乘除的相关知识点。
一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。
例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。
整式的乘法公式与因式分解方法

整式的乘法公式与因式分解方法整式是由数、字母和运算符号(仅限于加法、减法、乘法和乘方)组成的代数表达式。
在代数学中,整式的乘法公式和因式分解是非常重要的概念和方法。
一、整式的乘法公式在解决整式的乘法运算时,乘法公式起到了关键的作用,它能够帮助我们简化计算过程,提高效率。
1. 二项式的乘法公式二项式的乘法公式是指两个二项式相乘时的简化方法。
设有两个二项式$(a + b)$和$(c + d)$,它们的乘积可以通过使用FOIL法则来计算。
FOIL法则指的是先相乘、外乘再相加、内乘再相加、最后相加的步骤。
举个例子,我们计算$(2x + 3)(4x + 5)$的乘积:首先,先相乘:$2x \cdot 4x = 8x^2$;然后,外乘再相加:$2x \cdot 5 + 3 \cdot 4x = 10x + 12x = 22x$;接着,内乘再相加:$3 \cdot 5 = 15$;最后,相加结果:$8x^2 + 22x + 15$。
因此,$(2x + 3)(4x + 5)$的乘积为$8x^2 + 22x + 15$。
2. 三项式的乘法公式三项式的乘法公式是指两个三项式相乘时的简化方法。
与二项式的乘法公式类似,计算过程同样采用FOIL法则。
举个例子,我们计算$(2x + 3)(4x + 5)(x + 1)$的乘积:首先,先计算$(2x + 3)(4x + 5)$的乘积,结果为$8x^2 + 22x + 15$;然后,再乘以$(x + 1)$,使用FOIL法则,计算过程如下:一次相乘:$(8x^2 + 22x + 15)(x) = 8x^3 + 22x^2 + 15x$;外乘再相加:$(8x^2 + 22x + 15)(1) + (8x^3 + 22x^2 + 15x) = 8x^2 + 22x + 15 + 8x^3 + 22x^2 + 15x = 8x^3 + 30x^2 + 37x + 15$。
因此,$(2x + 3)(4x + 5)(x + 1)$的乘积为$8x^3 + 30x^2 + 37x + 15$。
整式的乘法公式

整式的乘法公式整式的乘法公式是数学中的重要概念,它可以帮助我们快速、准确地进行整式的乘法运算。
在本文中,我将详细介绍整式的乘法公式及其应用。
一、整式的乘法公式整式是由常数和变量的乘积以及它们之间的加减运算所构成的代数式。
在乘法运算中,可以利用整式的乘法公式来简化计算。
整式的乘法公式包括以下几条:1. 乘法分配律:对于任意的整式a、b和c,有如下公式:a(b+c) = ab + ac(b+c)a = ba + ca这条乘法分配律的应用非常广泛,它可以用于加法和乘法的结合。
例如,对于整式3(x+2),根据乘法分配律,我们可以得到:3(x+2) = 3x + 62. 平方差公式:对于任意的整式a和b,有如下公式:(a+b)(a-b) = a^2 - b^2这条平方差公式在整式乘法中十分常用,可以用来求平方差的计算。
例如,对于整式(x+3)(x-4),根据平方差公式,我们可以得到:(x+3)(x-4) = x^2 - 4x + 3x - 12 = x^2 - x - 123. 三角形式乘法公式:对于任意的整式a、b和c,有如下公式:(a+b)(b+c)(c+a) = (ab+bc+ca)(a+b+c) - abc这条三角形式乘法公式常用于多项式的乘法运算。
例如,对于整式(x+1)(x+2)(x+3),根据三角形式乘法公式,我们可以得到:(x+1)(x+2)(x+3) = (x^2+3x+x+2)(x+3) - (x+1)(x+2)(x+3) =(x^2+4x+2)(x+3) - (x^2+3x)(x+3) = x^3 + 6x^2 +11x + 6二、整式的乘法公式的应用整式的乘法公式在代数学中有着广泛的应用。
下面我将通过实际例子来说明整式的乘法公式的应用。
例题1:计算(2x+3)(x+1)。
根据乘法分配律,我们可以按照以下步骤进行计算:(2x+3)(x+1) = 2x(x+1) + 3(x+1) = 2x^2 + 2x + 3x + 3 = 2x^2 + 5x + 3例题2:计算(3x+2)(3x-2)。
整式的乘法乘法公式

先算乘方,再算乘除,最后算 加减;
运用分配律
将括号内的代数式展开,并运用 分配律进行计算;
合并同类项
将同类项进行合并,得到最简结果 。
整式乘法公式的计算技巧
熟记公式
熟练掌握整式乘法公式,如平 方差公式、完全平方公式等;
化简代数式
在计算过程中,尽量化简代数 式,减少计算量;
灵活运用运算法则
整式乘法公式是一种简化的运算方法,适用于任何两个整式 的乘法运算。
整式乘法公式的特点
1
整式乘法公式具有普遍适用性,适用于任何两 个整式的乘法运算。
2
整式乘法公式可以简化复杂的计算过程,提高 运算效率。
3
整式乘法公式有助于培养学生的数学思维能力 和符号意识。
整式乘法公式的历史与发展
01
整式乘法公式是数学运算中的基本工具,有着悠久的历史和广 泛的应用。
2023
《整式的乘法乘法公式》
contents
目录
• 整式乘法公式概述 • 整式乘法公式的形式与证明 • 整式乘法公式的计算方法与技巧 • 整式乘法公式的应用实例
01
整式乘法公式概述
整式乘法公式的定义
整式乘法公式定义:整式乘法公式是单项式与单项式相乘, 把他们的系数,相同字母的幂分别相乘,其余字母连同他的 指数不变,作为积的因式的运算。
交换律公式
$(a+b)(c+d)=(a+b)(c+d)$
整式乘法公式的证明方法
分配律公式的证明
根据乘法分配律,可以得出$(a+b)(c+d)=ac+ad+bc+bd$。
结合律公式的证明
根据乘法结合律,可以得出$(a+b)(a+b)=a^2+2ab+b^2$。
第07讲 整式的乘法与乘法公式

第7讲 整式的乘法与乘法公式学习数学的惟一方法是做数学。
——哈尔莫斯 知识方法扫描整式的乘法包括单项式乘单项式,单项式乘多项式和多项式乘多项式。
乘法公式是多项式相乘得出的,它们是既有特殊性,又有规律性和实用性的具体结论.常用的公式有:;))()(1(22b a b a b a -=-+;2))(2(222b ab a b a +±=±;))()(3(3322b a b ab a b a ±=+±;222))(4(2222ca bc ab c b a c b a +++++=++;33))(5(32233b ab b a a b a +++=+;3))()(6(333222abc c b a ca bc ab c b a c b a -++=---++++))()(7(122321-----+++++-n n n n n b ab b a b a a b a n n b a -=))()(8(122321-----++-+-+n n n n n b ab b a b a a b a n n b a +=(n 为奇数)经典例题解析例1.(第16届“希望杯”初二第2试题)计算:1998)37(×20002000357153++。
解 原式02000020200020001998)57(7)53(3)37(⨯+⨯+⨯=2000200020000002002000201998577533)37(⨯+⨯+⨯= )51(7)51(3)37(20000002000220001998+⨯+⨯⨯=00028919)73()37(⨯= 219988919)73()73()37(⨯⨯=⋅=⨯⨯=499499)7337(1998 例2.(2005年四川省初中数学联赛决赛八年级试题) 计算:(2+1)(22+1)(24+1)…(232+1)+1=___解 原式=(2-1)(2+1)(22+1)(24+1)…(232+1)+1=(22-1)(22+1)(24+1)…(232+1)+1=(24-1)(24+1)…(232+1)+1=……=(232-1)(232+1)+1=(264-1)+1=264例3.(1999年武汉市初中数学竞赛试题) 设x,y 为实数,且满足⎩⎨⎧-=-+-=-+-1)1(1998)1(1)1(1998)1(33y y x x , 则x+y=( )(A) 1 (B) -1 (C) 2 (D) -2解 设 x-1=a,y-1=b,则有 ⎩⎨⎧-=+=+119981199833b b a a , 将两式相加,得 a 3+b 3+1998a+1998b=0,即 (a+b)[(a 2-ab+b 2)+1998(a+b)=0, 从而(a+b)( a 2-ab+b 2+1998)=0注意到 a 2-ab+b 2+1998=,01998])([21222>++++b a b a 所以a+b=0, 也就是 (x-1)+(y-1)=0, x+y=2, 故选C 。
整式的乘法与因式分解所有知识点总结

整式的乘法与因式分解所有知识点总结一、整式的乘法1.乘法法则:(1)两个整系数多项式相乘,按照分配律逐项相乘再相加即可。
(2)对于整式的乘幂,将底数相乘,指数相加。
(3)进行乘法时,可以将同类项合并。
2.乘法的性质:(1)乘法交换律:a*b=b*a(2)乘法结合律:(a*b)*c=a*(b*c)(3)乘法的分配律:a*(b+c)=a*b+a*c3.乘法公式:(1) 平方公式:(a + b)^2 = a^2 + 2ab + b^2(2)平方差公式:(a+b)(a-b)=a^2-b^2(3) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.乘法的运用:(1)计算多项式的立方和高次幂。
(2)将多项式与常数相乘。
(3)将多项式乘以一个多项式。
二、因式分解1.因式分解的定义:因式分解是指将一个多项式表示为几个乘积的形式,其中每个乘积称为因式。
2.因式分解的方法:(1)公因式提取法:将多项式的所有项提取出一个最高公因式,然后将剩余部分因式分解。
(2)公式法:利用数学公式,如平方公式、立方公式等进行因式分解。
(3)分组分解法:将多项式分成若干组,每组提取公因式后进行因式分解。
3.公式法的常见因式分解:(1)平方差公式:a^2-b^2=(a+b)(a-b)(2) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2(3) 差平方公式:a^2 - 2ab + b^2 = (a - b)^2(4) 立方和公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)(5) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.分组分解法的常见因式分解:(1)将多项式分成两组,每组提取公因式后进行因式分解。
(2)将多项式分成三组,每组提取公因式后进行因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法及公式
单项式乘以单项式
1.计算3a3•(﹣a2)的结果是()
A.3a5B.﹣3a5C.3a6D.﹣3a6
2、如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.
•(﹣2a2b2c)2.3x2y•(﹣2x3y2)2;
3、
4、若(a m+1b n+2)(a2n+1b2n)═a5b3,求m+n的值
单项式乘以多项式
1、若x﹣y+3=0,则x(x﹣4y)+y(2x+y)的值为()
A.9 B.﹣9 C.3 D.﹣3
2、已知3x•(x n+5)=3x n+1﹣8,那么x=
3、计算:6ab(2a2b﹣ab2).2ab2•(3a2b﹣2ab﹣1)
4、若ab2=﹣1,求﹣ab(a2b5﹣ab3﹣2b)的值
多项式乘以多项式
1、若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.1
2、如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()
A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6
3、已知a2﹣a+5=0,则(a﹣3)(a+2)的值是.
4、多项式(mx+8)(2﹣3x)展开后不含x项,则m=.
5、图中的四边形均为矩形.根据图形,写出一个正确的等式:.
6、计算:(2x+1)(x+3).(a+1)(2﹣b)﹣a(1﹣b)﹣2.
(a+b+1)(2a﹣b).
7、已知:x+y=5,xy=6,求(x﹣4)(y﹣4)的值.
8、图所示,正方形卡片A类、B类和长方形卡片C类各若干张,
如果要拼成一个长为(a+2b)、宽为(2a+b)的大长方形,则需要
A,B,C各几个
平方差公式
1、若a+b=1,则a2﹣b2+2b的值为()
A.4 B.3 C.1 D.0
2、若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()
A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a
3、(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()
A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2
4、若(x﹣ay)(x+ay)=x2﹣16y2,则a=.
5、已知a+b=10,a﹣b=8,则a2﹣b2=.
6、计算:2017×1983=.
7、化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1=.
7、计算(x+2)•(x﹣2)•(x2+4)(a﹣3b)(a+3b)﹣(﹣a﹣2b)(a﹣2b)
992﹣1.(x+y)(x﹣y)﹣(2x﹣y)(x+3y)8、(1)已知3m=6,3n=﹣2,求32m﹣3n﹣2的值;
(2).20172﹣2016×2018.
完全平方公式
1、x2﹣4x+m2是一个完全平方式,则m的值是()
A.2 B.﹣2 C.+2和﹣2 D.4
2、已知x2+mx+25是完全平方式,则m的值为()
A.10 B.±10 C.20 D.±20
3、已知x+y=5,xy=6,则x2+y2的值是()
A.1 B.13 C.17 D.25
4、若(a+b)2=(a﹣b)2+A,则A为()
A.2ab B.﹣2ab C.4ab D.﹣4ab
5、若(a+b)2=7,(a﹣b)2=3,则a2+b2的值等于()
A.7 B.6 C.5 D.4
6、已知m+n=3,则m2+2mn+n2﹣6的值()
A.12 B.6 C.3 D.0
7、如果二次三项式x2﹣8x+m能配成完全平方式,那么m的值是.
8、已知a﹣=5,则a2+的值是.
9、992.(a+2b-c)(a-2b+c)
+y
+
y
x()2
+
x
2(-
)1
2
1
)(
x-
-
5y
3
10、已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.
11、已知(x+y)2=25,xy=,求x﹣y的值.
12、已知a+b=1,ab=-6,
(1)a2+b2.
(2)a2-ab+b2。