冲激函数抽样性质证明信号与系统

冲激函数抽样性质证明信号与系统

冲激函数

一冲激函数的定义 在信息分析和系统分析中,单位冲激函数δ(t)是一个使用频率极高的奇异函数。对这类奇异函数不能按普通函数进行定义,因为它本身不属于普通函数。 1 单位冲激函数的普通数学定义 定义有多种方式,其中 定义1设有一函数P(t) 当n趋近于∞时,函数P(t)的宽度趋近于零,而幅度趋近于无限大,但其强度仍然等于1。这个函数就定义为单位冲激函数δ(t)。 定义2 狄拉克(Dirac)定义 上面两个对单位冲激函数的定义是不符合普通函数的定义对于普通函数来说当自变量t取某值时,除间断点外,函数有确定的值,而δ(t)在唯一不等于零的点t=0处函数值为无限大.因为单位冲激函数已经不属于普通函数的范畴,不能用普通函数进行定义,要用广义函数进行严格的定义。 2 单位冲激函数的广义定义 选择一类性能良好的函数,称为检验函数(它相当于定义域),一个广义函数g(t)是对检验函数空间中每个函数赋于一个数值N的映射,该数与广义函数g(t)和检验函数有关,记作N[g(t),(t)],通常广义函数g(t)可写为 式中检验函数是连续的,具有任意阶导数,且用其各阶导数在无限远处急剧下降的普通函数这类函数的全体构成的检验函数空间称为急降函数

空间,用表示.在上定义的广义函数称为缓增广义函数它的全体构成广义函数空间,用这类广义函数有良好的性质。根据以上定义,如有一广义函数f(t),它与的作用也赋给相同的值,即若 就认为二广义函数相等,记作f(t)=g(t)。按照广义函数的理论,冲激函数δ(t)由式 定义,即冲激函数δ(t)作用于检验函数的效果是给它赋值。如将(1)式中的函数看做广义函数,则有: 当n趋近于∞时在(,)区间内有=,取广义函数(t)的极限(广义极限),得 比较以上两式,得 按照此定义,冲激函数有多种定义形式,如: δ(t)=高斯钟形函数 δ(t)=取样函数 δ(t)=双边指数函数 等等 而对于离散的δ[n]定义很简单: δ[n]=1,(n=0)

冲激偶函数(可编辑修改word版)

- ? (1/) ?'(t ) -/2 /2 t '(t ) O t 三、单位冲激偶信号 冲激函数(t ) 的导数定义为(单位)冲激偶函数,用'(t ) 或 (1) (t ) 表示。 '(t ) = d (t ) d t (1.3-16) 式(1.3-16)可从极限的角度理解, '(t ) = lim ?'(t ) →0 ,由图 1.3-6, ? (t ) 的导 数?'(t ) 如图 1.3-11(a)所示,用公式表示为 ?'(t ) = 1 (t + - 1 (t - 2 ) 2 ) 当→ 0 时,?'(t ) 由两个在时间上无限靠近,而强度趋于无限大的冲激构成。 故称它为冲激偶函数,用图 1.3-11(b)表示。 (a ) (b ) 图 1.3-11 冲激偶函数 设 x (t ) 为常规函数,其导数 x '(t ) 在t = t 0 处连续,则积分 ∞ ∞ ?-∞ x (t )'(t - t 0 )d t =?-∞ x (t )d (t - t 0 ) = x (t )(t - t 0 ∞ ∞ -∞ -∞ x '(t )(t - t 0 )d t = -?-∞ x '(t )(t - t 0 )d t ) ∞

∞ ∞ 利用冲激函数的抽样性质,从上式得 ? -∞ x (t )'(t - t 0 )d t = -x '(t 0 ) (1.3-17) 该式称为'(t ) 的抽样性质。 采用对 x (t )(t ) 分步求导的方法,或利用式(1.3-17),还可得 x (t )'(t ) = x (0)'(t ) - x '(0)(t ) (1.3-18) 注意 x (t )'(t ) ≠ x (0)'(t ) 。再来考虑'(t ) 的对称性。 '(-t ) = =-t 由于(t ) 为偶对称函数,则有 '(-t ) = d (t ) = -'(t ) - d t (1.3- 19) 可见,'(t ) 为奇对称函数。故 ? -∞ '(t )d t = 0 当然,令式(1.3-17)中的 x (t ) = 1 ,也可得上式结果 。 函数(t ) 的各阶导数统称为高阶冲激。特别指出,在同一时刻出现的单 位冲激函数、高阶冲激函数间的乘积,如 2 (t ) ,(t )'(t ) 等没有意义。 d (τ ) d τ

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统常用公式

1 信号与系统常用公式 一、周期信号的傅里叶级数 1.三角函数形式的傅里叶级数:0111()[cos()sin()]n n n f t a a n t b n t ωω∞ ==++∑,其中 01 011()t T t a f t dt T += ?,010112()cos()t T n t a f t n t dt T ω+=?,010112()sin()t T n t b f t n t dt T ω+=?。 2.指数形式的傅里叶级数:11()()jn t n f t F n e ωω∞ =-∞ =∑ ,其中0110 111()()t T jn t t F n f t e dt T ωω+-= ?。 二、傅里叶变换 1.傅氏正变换:()[()]()j t F F f t f t e dt ωω∞ --∞ ==? 2.傅氏逆变换:11()[()]()2j t f t F F F e d ωωωωπ ∞ --∞ ==? 3 1.拉氏正变换:0 ()[()]()st F s L f t f t e dt ∞ -==? 2.拉氏逆变换:11()[()]()2j st j f t L F s F s e ds j σσπ+∞ --∞ ==?

2 3 四、z 变换 1.z 正变换:0 ()[()]()k k X z Z x k x k z ∞ -===∑ 2.z 逆变换:111 ()[()]()2k C x k Z X z X z z dz j π--==? 3.z 变换的基本性质: 1.连续时间信号的卷积:121221()()()()()()f t f t f f t d f f t d ττττττ∞ ∞ -∞ -∞ *=-=-?? 2.离散时间信号的卷积:()()()()()()n n x k h k x n h k n h n x k n ∞ ∞ =-∞ =-∞ *=-=-∑∑ 3.卷积定理: (1)1212[()()]()()F f t f t F F ωω*=? (2)12121[()()]()()2F f t f t F F ωωπ?=* (3)1212[()()]()()L f t f t F s F s *=? (4)12121[()()]()()2L f t f t F s F s j π?=* (5)[()()]()()Z x k h k X z H z *= (6)1 [()()]()()2C z dv Z x k h k X v H j v v π?=?

冲激偶函数

三、单位冲激偶信号 冲激函数)(t δ的导数定义为(单位)冲激偶函数,用)(t δ'或)()1(t δ表示。 t t t d ) (d )(δδ= ' (1.3-16) 式(1.3-16)可从极限的角度理解,)(?lim )(0t t δδτ'='→,由图1.3-6,)(? t δ的导数)(?t δ'如图1.3-11(a)所示,用公式表示为 )2(1)2(1)(?τδττδτδ--+='t t t 当0→τ时,)(? t δ'由两个在时间上无限靠近,而强度趋于无限大的冲激构成。故称它为冲激偶函数,用图1.3-11(b)表示。 (a ) (b ) 图1.3-11 冲激偶函数 设)(t x 为常规函数,其导数)(t x '在0t t =处连续,则积分 () ()t t t t x t t t t x t t t x t t t x t t t t x d )()(d )()()(d )(d )()(00000-'-=-'- -=-=-'????∞ ∞-∞∞-∞∞-∞ ∞-∞ ∞-δδδδδ

利用冲激函数的抽样性质,从上式得 )(d )()(00t x t t t t x '-=-'?∞ ∞-δ (1.3-17) 该式称为)(t δ'的抽样性质。 采用对)()(t t x δ分步求导的方法,或利用式(1.3-17),还可得 )()0()()0()()(t x t x t t x δδδ'-'=' (1.3-18) 注意)()0()()(t x t t x δδ'≠' 。再来考虑)(t δ'的对称性。 t ττt -==-'τδδd ) (d )( 由于)(t δ为偶对称函数,则有 )(d )(d )(t t t t δδδ'-=-=-' (1.3-19) 可见,)(t δ'为奇对称函数。故 ?∞ ∞-='0d )(t t δ 当然,令式(1.3-17)中的1)(=t x ,也可得上式结果 。

冲激信号δ(t)的三种定义与有关性质的简单讨论

冲激信号δ(t)的三种定义与相关性质 的简单讨论 信息科学与工程学院1132班 樊列龙 学号:0909113224 有一些物理现象,如理学中的爆炸、冲击、碰撞··,电学中的放电、闪电雷击等,它们都有共同特点: ① 持续时间短. ② 取值极大. 冲击函数(或冲击信号)就是对这些物理现象的科学抽象与描述。通常用δ(t)表示冲激信号,它是一个具有有限面积的窄而高的尖峰信号,它也可以被称作δ函数或狄拉克(Dirac )函数,在信号领域中占有非常重要的地位. 由于冲激函数的特殊性,现给出其两种不严格的定义如下: 定义一:用脉冲函数极限定义冲激信号. 如图1-1(a)的矩形脉冲,宽为τ,高为τ 1 ,其面积为A.当A=1称之为单位冲激信号. 现保持脉冲面积不变,逐渐减小τ,则脉冲的幅度逐渐增大,当0→τ时,矩形脉冲的极限成为单位冲激函数,即: ?? ? ?????? ??--??? ??+=→221lim )(0τετετδτt t t (1-1) 冲击信号的波形就如1-1(b)所示. δ(t)只表示在t=0点有“冲激”,在t=0点以外的各处函数值

图 1-2 均为0,其冲激强度(冲激面积)为1,若为A 则表示一个冲击强度为E 倍单位值得函数δ,描述为A=E δ(t),图形表示时,在箭头旁边注上E 。 也可以用抽样函数的极限来定义δ(t)。有 ?? ? ???=∞ →)(lim )(kt Sa k t k πδ (1-2) 对式(1-2)作如下说明: Sa(t)是抽样信号,表达式为 t t t a sin )(S = (1-3) 其波形如图1-2所示,Sa(t)∝1/t, 1/t 随t 的增大而减小,sint 是周 期振荡的,因而Sa(t)呈衰减振荡; 并且是一个偶函数,当t=±π,±2π, ·,sint=0,从而Sa(t)=0,是其 (a)τ逐渐减小的脉冲函数 (b)冲激信号 图1-1

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

信号与系统电子课件2

第二章:连续信号与系统的时域分析( 学时授课) 学习指导:本章介绍的是连续时间系统响应的时域分析方法。 所谓时域分析方法, 就是如何从微分方程直接求出系统响应的时域表达式。或者说,如何求解一个给 定激励信号的微分方程,直接得到其解的时域表达式。 连续时间系统的时域分析方法之一, 就是在高等数学中关于线性微分方程求 解的方法,这里称之为经典解法。这种解法在求解系统的特解或者是受迫响应的 时侯不太方便。本章主要介绍的另外一种时域解法——卷积法。这种方法将系统 的响应分零状态响应和零输入响应两部分,分别求其响应。无论是经典法还是卷 积法,都是将系统响应分解为两部分求解,而且这两种时域解法对应的两种分解 形式之间有一定的关系,在本章的例题中将对这种关系进行详细讨论. 在本章中,还将介绍与此相关的很多重要的信号和概念,例如冲激函数和阶 跃函数,信号的时域分解,卷积计算及其性质等。 §2-1 引 言 线性连续时间系统的时域分析,就是一个建立和求解线性微分 方程的过程。 一、建立数学模型 ?建立数学模型就是根据力学、电学等物理学规律,得到输入 和输出之间满足的数学表达式。 ?数学模型的建立过程与应用系统的特性有关。例如,对于经 典力学理论,主要是依赖于牛顿定律;对于微波和电磁场而 言,组要依赖于麦克斯韦尔方程; ?本课程主要研究的是由电阻、电容、电感等器件构成的集总 参数电系统,它的数学模型的建立主要有依赖于KCL和KVL 方程。在物理课程和《电路分析》课程中已经提供了相应的 理论和方法。 由电路建立数学模型的例子

§2-2冲激函数 函数有几种不同的定义方式,其中根据广义函数(或称分配函数)来定义 的,是严格的数学定义,因篇幅所限,本课程将不予讨论。本课程介绍另外两种 定义。 ⑴从某些函数的极限来定义 函数,单位冲激函数可视为幅度与脉宽 的乘积(矩形面积)为1个单位的矩形脉冲,当 趋于零时脉冲幅度趋于无 穷大的极限情况,即 图1表示了 时,上述矩形脉冲的变化过程。 “冲 冲激函数常用图2所示带箭头的线段来表示。 函数只在t=0处有 激”,而在t轴上其它各点取值为零。如果矩形面积为1,则在带箭头的线段旁 注上(1),表明冲激强度为单位值。如果在图形上将(E)注于箭头旁,则表示冲激 强度为E被单位值的 函数。 函数还可以利用抽样函数取极限来定义,即

冲激信号δ(t)的三种定义与相关性质的简单讨论

冲激信号δ(t)的三种定义与相关性 质的简单讨论 信息科学与工程学院1132班 樊列龙 学号:0909113224 有一些物理现象,如理学中的爆炸、冲击、碰撞······,电学中的放电、闪电雷击等,它们都有共同特点: ① 持续时间短. ② 取值极大. 冲击函数(或冲击信号)就是对这些物理现象的科学抽象与描述。通常用δ(t)表示冲激信号,它是一个具有有限面积的窄而高的尖峰信号,它也可以被称作δ函数或狄拉克(Dirac )函数,在信号领域中占有非常重要的地位. 由于冲激函数的特殊性,现给出其两种不严格的定义如下: 定义一:用脉冲函数极限定义冲激信号. 如图1-1(a)的矩形脉冲,宽为τ,高为τ 1 ,其面积为A.当A=1称之为单位冲激信号. 现保持脉冲面积不变,逐渐减小τ,则脉冲的幅度逐渐增大,当0→τ时,矩形脉冲的极限成为单位冲激函数,即: ?? ? ?????? ??--??? ??+=→221lim )(0τετετδτt t t (1-1) 冲击信号的波形就如1-1(b)所示. δ(t)只表示在t=0点有“冲激”,在t=0点以外的各处函数值均为0,其冲激强度(冲激面积)为1,若为A 则表示一个冲击强度为E 倍单位值得函数δ,描述为A=E δ(t),图形表示时,在

图 1-2 箭头旁边注上E 。 也可以用抽样函数的极限来定义δ(t)。有 ?? ? ??? = ∞ → )(lim )(kt Sa k t k πδ (1-2) 对式(1-2)作如下说明: Θ Sa(t)是抽样信号,表达式为 t t t a sin )(S = (1-3) 其波形如图1-2所示,Sa(t)∝1/t, 1/t 随t 的增大而减小,sint 是周 期振荡的,因而Sa(t)呈衰减振荡; 并且是一个偶函数,当t=±π,±2π, ···,sint=0,从而Sa(t)=0,是其 零点. 把原点两侧两个第一个零点之间的曲线部分称为“主瓣”, 其余的衰减部分称为“旁瓣”。0→t 时,1)(S →t a ,并且有: (a)τ逐渐减小的脉冲函数 (b)冲激信号 图1-1

冲激函数

一冲激函数の定义 在信息分析和系统分析中,单位冲激函数δ(t)是一个使用频率极高の奇异函数。对这类奇异函数不能按普通函数进行定义,因为它本身不属于普通函数。 1 单位冲激函数の普通数学定义 定义有多种方式,其中 定义1设有一函数P(t) 当n趋近于∞时,函数P(t)の宽度趋近于零,而幅度趋近于无限大,但其强度仍然等于1。这个函数就定义为单位冲激函数δ(t)。 定义2 狄拉克(Dirac)定义 上面两个对单位冲激函数の定义是不符合普通函数の定义对于普通函数来说当自变量t取某值时,除间断点外,函数有确定の值,而δ(t)在唯一不等于零の点t=0处函数值为无限大.因为单位冲激函数已经不属于普通函数の范畴,不能用普通函数进行定义,要用广义函数进行严格の定义。 2 单位冲激函数の广义定义 选择一类性能良好の函数,称为检验函数(它相当于定义域),一个广义函数g(t)是对检验函数空间中每个函数赋于一个数值Nの映射,该数与广义函数g(t)和检验函数有关,记作N[g(t),(t)],通常广义函数g(t)可写为 式中检验函数是连续の,具有任意阶导数,且用其各阶导数在无限远处急剧下降の普通函数这类函数の全体构成の检验函数空间称为急降函数

空间,用表示.在上定义の广义函数称为缓增广义函数它の全体构成广义函数空间,用这类广义函数有良好の性质。根据以上定义,如有一广义函数f(t),它与の作用也赋给相同の值,即若 就认为二广义函数相等,记作f(t)=g(t)。按照广义函数の理论,冲激函数δ(t)由式 定义,即冲激函数δ(t)作用于检验函数の效果是给它赋值。如将(1)式中の函数看做广义函数,则有: 当n趋近于∞时在(错误!未找到引用源。,错误!未找到引用源。)区间内有 =,取广义函数错误!未找到引用源。(t)の极限(广义极限),得 比较以上两式,得 按照此定义,冲激函数有多种定义形式,如: δ(t)=错误!未找到引用源。高斯钟形函数 δ(t)=错误!未找到引用源。取样函数 δ(t)=错误!未找到引用源。双边指数函数 等等 而对于离散のδ[n]定义很简单: δ[n]=1,(n=0) δ[n]=0,(n错误!未找到引用源。0) 二冲激函数の性质

单位冲激函数(图)

单位冲激函数(图) 上一回说到,单个矩形脉冲的时域波形如下图: 图1 单个矩形脉冲信号 根据傅里叶变换可求出其频谱函数 (1)频谱函数的图像(频域分布曲线)如下图:

图2 单个矩形脉冲的频谱函数 一、特殊的单个矩形脉冲信号 如果我们令单个矩形脉冲信号的脉幅在数值上取 (2)则无论脉宽τ怎样变化,函数图象下面的面积恒等于1,即 (3)如下图所示: 图3 特殊的单个矩形脉冲 这个特殊的单个矩形脉冲信号的数学表达式为 (4)

因而其傅立叶变换由式(1)得 (5)这是一种最大幅值为1的抽样函数,其频域曲线如下图 图4 特殊的单个矩形脉冲的频谱 二、单位冲激函数的定义 对图3和式(4)表示的特殊的单个矩形脉冲,如果我们令脉宽τ趋于0,取极限,则单个矩形脉冲变成在t=0处持续时间无限小、幅度无限大、面积仍为1的特殊信号(或广义函数)。科学界把这个广义函数叫做单位冲激函数或狄拉克(Dirac)函数。记为 (6)单位冲激函数的图象如下图所示

图5 单位冲激函数的图象 单位冲激函数是一种广义函数,它的幅值为无穷大,图象只能用带箭头的射线表示。但通常不标出其幅值∞,而是只用括号标出其冲激强度(S),即面积。由式(3)和(6)可知其面积(冲激强度)为1,所以称之为“单位”冲激函数。此外,单位冲激函数的自变量不仅仅限于时间t,可以是任何物理量x。 实际上还常用延迟的单位冲激函数,数学表达式如下: (7)其图象为

图6 延迟的单位冲激函数的图象 三、单位冲激函数的性质 根据单位冲激函数的定义,它具有下列最基本的性质: 1、广义积分归一性: (8) 2、筛分性质:单位冲激函数与任意函数乘积,等于只筛选出t=t0时刻f(t)的值作为冲激强度。 (9) 3、抽样性质: (10) 更一般地,有 (11) 即通过与δ函数(或延时的δ函数)乘积的积分,把任意的连续函数f(t)抽样为t=t0处的一个函数值。 4、微积分性质:δ函数的累计积分等于单位阶跃函数ε(t)。

相关文档
最新文档