高考物理动能定理的综合应用(一)解题方法和技巧及练习题

高考物理动能定理的综合应用(一)解题方法和技巧及练习题
高考物理动能定理的综合应用(一)解题方法和技巧及练习题

高考物理动能定理的综合应用(一)解题方法和技巧及练习题

一、高中物理精讲专题测试动能定理的综合应用

1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:

(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。

【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】

(1)物块A 从出发至N 点过程,机械能守恒,有

22011

222

mv mg R mv =?+ 得

20445m /s v v gR =-=

(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有

2

N v mg F m R

+=

得物块A 受到的弹力为

2

N 150N v F m mg R

=-=

由牛顿第三定律可得,物块对轨道的作用力为

N N 150N F F '==

作用力方向竖直向上

(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有

2

0102

mgx mv μ-=-

12.5m x =

2.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,sin53°=0.8,cos53°=0.6).求:

(1)人和车到达顶部平台的速度v ;

(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;

(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103

N 【解析】 【分析】 【详解】

(1)由动能定理可知:

221011Pt mgH mv 22

mv -=

- v =3m/s (2)由2221H gt ,s vt 2=

=可得:2H s v 1.2m g

== (3)摩托车落至A 点时,其竖直方向的分速度

y 2v gt 4m /s ==

设摩托车落地时速度方向与水平方向的夹角为α,则

4

tan 3

y

v v α=

=

,即α=53° 所以θ=2α=106° (4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:

2211

mg[H R(1cos )]mv mv 22

α'+-=-

在O 点:2v N mg m R

-=

所以N =7740N

由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N

3.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:

(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.

【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】

(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理

mgR -W f =

12

mv 2

W f =1.5J

(2)由牛顿第二定律可知:

2

N v F mg m R

-=

解得:

4.5N F N =

(3)小球离开圆弧后做平抛运动根据动能定理可知:

22111

m m 22

mgh v v =-

解得:

152m/s v =

4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:

(1)物块与传送带间的动摩擦因数;

(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 3

5

(2) -3.75 J 【解析】

解:(1)由图象可知,物块在前0.5 s 的加速度为:21

11

a =8?m/s v t = 后0.5 s 的加速度为:222

22

2?/v v a m s t -=

= 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:

1mgsin mgcos ma θμθ+=

物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:

2mgsin mgcos ma θμθ-=

联立解得:3μ=

(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:11

12

v t x =

则摩擦力对物块做功:11·

W mgcos x μθ= 在后0.5 s ,物块对地位移为:12

122

v v x t +=

则摩擦力对物块做功22·

W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J

5.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。已知斜面AB 与水平面BC 在B 处通过一小圆弧光滑连接。长为x 0=0.5m 的水平面BC 与滑块之间的动摩擦因数μ=0.3,C 点右侧有3级台阶(台阶编号如图所示),D 点右侧是足够长的水平面。每级台阶的高度均为h =0.2m ,宽均为L =0.4m 。(设滑块从C 点滑出后与地面或台阶碰撞后不再弹起)。

(1)求滑块经过B 点时的速度v B ;

(2)求滑块从B 点运动到C 点所经历的时间t ;

(3)(辨析题)某同学是这样求滑块离开C 点后,落点P 与C 点在水平方向距离x ,滑块离开C 点后做平抛运动,下落高度H =4h =0.8m ,在求出滑块经过C 点速度的基础上,根据平抛运动知识即可求出水平位移x 。

你认为该同学解法是否正确?如果正确,请解出结果。如果不正确,请说明理由,并用正确的方法求出结果。

【答案】(1)23m/s ;(2)0.155s ;(3)不正确,因为滑块可能落到某一个台阶上;正确结果1.04m 【解析】 【详解】

(1)物体在斜面AB 上下滑,机械能守恒

201

02

B mgh mv =

+ 解得

022100.623m/s B v gh =??==

(2)根据动能定理得

2001

02

C mgh mgx mv μ-=

- 解得

002()210(0.60.30.5)3m/s C v g h x μ=-=??-?=

根据牛顿第二定律得

mg ma μ=

220.310m/s 3m/s a g μ==?= 1323

0.155s C B v v t a --=

==- (3)不正确,因为滑块可能落到某一个台阶上。正确解法:假定无台阶,滑块直接落在地上

220.8

s 0.4s 10

H t g ?'=

==

水平位移

1.2m c x v t '='=

恰好等于3L (也就是恰好落在图中的D 点),因此滑块会撞在台阶上。当滑块下落高度为2h 时

22220.2

s 0.283s 10

h t g ???"=

== 水平位移

30.283m 0.85m c x v t "="=?=

大于2L ,所以也不会撞到①、②台阶上,而只能落在第③级台阶上。则有

2

2132

h gt =

,2pc c x v t = 解得

33

m 1.04m pc x =

≈ 【点睛】

根据机械能守恒定律或动能动能定理求出滑块经过B 点时的速度B v 。根据动能定理求出滑块到达C 点的速度,再通过牛顿第二定律和运动学公式求出从B 点运动到C 点所经历的时间t 。因为物体做平抛运动不一定落到地面上,可能落在某一个台阶上,先根据假设法判

断物体所落的位置,再根据平抛运动的知识求出水平位移。

6.如图所示,在光滑的水平地面上有一平板小车质量为M =2kg ,靠在一起的滑块甲和乙质量均为m =1kg ,三者处于静止状态。某时刻起滑块甲以初速度v 1=2m/s 向左运动,同时滑块乙以v 2=4m/s 向右运动。最终甲、乙两滑块均恰好停在小车的两端。小车长L =9.5m ,两滑块与小车间的动摩擦因数相同,(g 取10m/s 2,滑块甲和乙可视为质点)求: (1)最终甲、乙两滑块和小车的共同速度的大小; (2)两滑块与小车间的动摩擦因数; (3)两滑块运动前滑块乙离右端的距离。

【答案】(1)0.5m/s (2)0.1 (3)7.5m 【解析】 【详解】

(1)两滑块与小车组成的系统动量守恒,以向右为正方向,由动量守恒定律得

21()mv mv M m m v -=++

解得

v=0.5m/s

(2)对整体由能量守恒定律得

()22212111

222

mv mv M m m v mgL μ+=+++ 解得:

0.1μ=

(3)经分析,滑块甲运动到左端时速度刚好减为0,在滑块甲运动至左端前,小车静止,之后滑块甲和小车一起向右做匀加速运动到三者共速。 法一:应用动能定理

甲、乙从开始运动到最终两滑块均恰好停在小车的两端的过程中,设滑块乙的对地位移为

1x ,滑块甲和小车一起向右运动的位移为2x 。

由动能定理对滑块乙有

22

121122

mgx mv mv μ-=

- 对滑块甲和小车有

()221

2

mgx m M v μ=

+ 滑块乙离右端的距离

12s x x =-

解得:

s =7.5m

法二:应用动量定理

甲、乙从开始运动到最终两滑块均恰好停在小车的两端的过程中,设滑块乙的运动时间为

1t ,滑块甲向左运动至小车左端的时间为2t 。

由动量定理对滑块乙有

12mgt mv mv μ-=-

对滑块甲

210mgt mv μ-=-

滑块甲和小车一起向右运动的时间为

12t t t ?=-

由运动学公式滑块乙离右端的距离:

2122

v v v

s t t +=

-? 解得:

s=7.5m

法三:转换研究对象,以甲为研究对象 设滑块甲离左端距离为1x , 由牛顿第二定律得

mg ma μ=

由速度位移公式

2112v ax =

解得:

12m x =

滑块乙离右端的距离

17.5m s L x =-=

7.遥控电动玩具车的轨道装置如图所示,轨道ABCDEF 中水平轨道AB 段和BD 段粗糙,AB =BD =2.5R ,小车在AB 和BD 段无制动运行时所受阻力是其重力的0.02倍,轨道其余部分摩擦不计。斜面部分DE 与水平部分BD 、圆弧部分EF 均平滑连接,圆轨道BC 的半径为R ,小段圆弧EF 的半径为4R ,圆轨道BC 最高点C 与圆弧轨道EF 最高点F 等高。轨道右侧有两个与水平轨道AB 、BD 等高的框子M 和N ,框M 和框N 的右边缘到F 点的水平距离分别为R 和2R 。额定功率为P ,质量为m 可视为质点的小车,在AB 段从A 点由静止出发以额定功率行驶一段时间t (t 未知)后立即关闭电动机,之后小车沿轨道从B 点进入圆轨道经过最高点C 返回B 点,再向右依次经过点D 、E 、F ,全程没有脱离轨道,最后从F 点水平飞出,恰好落在框N 的右边缘。

(1)求小车在运动到F 点时对轨道的压力; (2)求小车以额定功率行驶的时间t ;

(3)要使小车进入M 框,小车采取在AB 段加速(加速时间可调节),BD 段制动减速的方案,则小车在不脱离轨道的前提下,在BD 段所受总的平均制动力至少为多少。 【答案】(1)mg ,方向竖直向下;(2);(3)

mg

【解析】 【详解】

(1)小车平抛过程,有:2R =v F t …① 2R =gt 2?② 由①②联立解得:v F =

?③

在F点,对小车由牛顿第二定律得:mg﹣F N=m?④

由③④得:F N=mg

由牛顿第三定律得小车对轨道的压力大小为mg,方向竖直向下。

(2)小车从静止开始到F点的过程中,由动能定理得:

Pt﹣0.02mg5R﹣mg2R=mv F2?⑤

由③⑤得:t=

(3)平抛过程有:R=v F′t、2R=gt2

要使小车进入M框,小车在F点的最大速度为v F′=?⑥

小车在C点的速度最小设为v C,则有:mg=m?⑦

设小车在BD段所受总的总的平均制动力至少为f,小车从C点运动到F点的过程中,由动能定理得:

-f 2.5R=mv F′2-mv C2?⑧

由⑥⑦⑧得:f=mg

8.如图所示,在水平路段AB上有一质量为2kg的玩具汽车,正以10m/s的速度向右匀速运动,玩具汽车前方的水平路段AB、BC所受阻力不同,玩具汽车通过整个ABC路段的v-t 图象如图所示(在t=15s处水平虚线与曲线相切),运动过程中玩具汽车电机的输出功率保持20W不变,假设玩具汽车在两个路段上受到的阻力分别有恒定的大小.(解题时将玩具汽车看成质点)

(1)求汽车在AB路段上运动时所受的阻力f1;

(2)求汽车刚好开过B点时的加速度a

(3)求BC路段的长度.

【答案】(1)f1=5N (2) a=1.5 m/s2 (3)x=58m

【解析】

【分析】

根据“汽车电机的输出功率保持20W不变”可知,本题考查机车的启动问题,根据

图象知汽车在AB段匀速直线运动,牵引力等于阻力,而牵引力大小可由瞬时功率表达式求出;由图知,汽车到达B位置将做减速运动,瞬时牵引力大小不变,但阻力大小未知,考虑在t=15s处水平虚线与曲线相切,则汽车又瞬间做匀速直线运动,牵引力的大小与BC 段阻力再次相等,有瞬时功率表达式求得此时的牵引力数值即为阻力数值,由牛顿第二定律可得汽车刚好到达B点时的加速度;BC段汽车做变加速运动,但功率保持不变,需由动能定理求得位移大小.

【详解】

(1)汽车在AB路段时,有F1=f1

P=F1v1

联立解得:f1=5N

(2)t=15 s时汽车处于平衡态,有F2=f2

P=F2v2

联立解得:f2=2N

t=5s时汽车开始加速运动,有F1-f2=ma

解得a=1.5m/s2

(3)对于汽车在BC段运动,由动能定理得:

解得:x=58m

【点睛】

抓住汽车保持功率不变这一条件,利用瞬时功率表达式求解牵引力,同时注意隐含条件汽车匀速运动时牵引力等于阻力;对于变力做功,汽车非匀变速运动的情况,只能从能量的角度求解.

9.如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体 (可以看做质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB 间的动摩擦因数为μ,求:

(1)物体做往返运动的整个过程中,在AB轨道上通过的总路程;

(2)最终当物体通过圆弧轨道最低点E时,物体对轨道压力的大小和方向.

【答案】(1)R

L μ

=(2)(32cos )N

N F F mg θ'==-,方向竖直向下 【解析】

试题分析:(1)物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有

cos cos 0mgR mgL θμθ-=

得物体在AB 轨道上通过的总路程为R

L μ

=

(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为v ,由动能定理 有2

1(1cos )2

mgR mv θ-=

在E 点,由牛顿第二定律有2

N mv F mg R

-=

得物体受到的支持力(32cos )N F mg θ=-

根据牛顿第三定律,物体对轨道的压力大小为(32cos )N

N F F mg θ'==-,方向竖直向下.

考点:考查了动能定理,牛顿运动定律,圆周运动等应用

点评:在使用动能定理分析多过程问题时非常方便,关键是对物体受力做功情况以及过程的始末状态非常清楚

10.城市中为了解决交通问题,修建了许多立交桥,如图所示,桥面为半径R =130m 的圆弧形的立交桥AB ,横跨在水平路面上,桥高h =10m 。可以认为桥的两端A 、B 与水平路面的连接处是平滑的。一辆小汽车的质量m =1000kg ,始终以额定功率P =20KW 从A 端由静止开始行驶,经t =15s 到达桥顶,不计车受到的摩擦阻力(g 取10m /s 2)。求 (1)小汽车冲上桥顶时的速度是多大; (2)小汽车在桥顶处对桥面的压力的大小。

【答案】(1)20m/s ;(2)6923N ; 【解析】 【详解】

(1)小汽车从A 点运动到桥顶,设其在桥顶速度为v ,对其由动能定理得:

21

2

pt mgh mv -=

443221015101

1002

1v ??-???=

解得:

v =20m/s ;

(2)在最高点由牛顿第二定律有

2

v mg N m R

-=

432020

1010130

N ?-?

= 解得

N =6923N

根据牛顿第三定律知小汽车在桥顶时对桥的压力N ′=N =6923N ;

11.如图所示,半径R =0.4 m 的光滑半圆轨道与粗糙的水平面相切于A 点,质量为m =1 kg 的小物体(可视为质点)在水平拉力F 的作用下,从静止开始由C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后做平抛运动,正好落在C 点,已知x AC =2 m ,F =15 N ,g 取10 m/s 2,试求:

(1)物体在B 点时的速度大小以及此时物体对轨道的弹力大小; (2)物体从C 到A 的过程中,克服摩擦力做的功. 【答案】(1)5m/s ;52.5N ,(2)9.5J 【解析】 【分析】 【详解】

试题分析:(1)根据2

122

R gt =得,平抛运动的时间为:440.4

0.410

R t s s g ?=

==, 则B 点的速度为:2

/5/0.4

AC B x v m s m s t =

==. 根据牛顿第二定律得,2

B B v mg N m R

+=,解得:25110N 52.5N 0.4B N =?-=. (2)对C 到B 的过程运用动能定理得:21

22

f AC B W Fx m

g R mv +-?=

,代入数据解得9.5f W J =-.

12.如图所示,倾斜轨道在B 点有一小圆弧与圆轨道相接,一质量为m=0.1kg 的物体,从倾斜轨道A 处由静止开始下滑,经过B 点后到达圆轨道的最高点C 时,对轨道的压力恰好与物体重力相等.已知倾斜部分有摩擦,圆轨道是光滑的,A 点的高度H=2m,圆轨道半径R=0.4m ,g 取10m/s 2,试求:

(1)画出物体在C 点的受力与运动分析图,并求出物体到达C 点时的速度大小; (2)物体到B 点时的速度大小(用运动学公式求不给分); (3)物体从A 到B 的过程中克服阻力所做的功. 【答案】(1)22m/s (3)26m/s (3)0.8J 【解析】 【分析】 【详解】

(1)物体在C 点的受力与运动分析图所示:

在C 点由圆周运动的的知识可得:

2

c v mg mg m R

+=

解得:c 22100.4m/s 22m/s v Rg ==??= (2)物体由B 到C 的过程,由动能定理可得:

22c B 11222

mg R mv mv -=

-g 解得:B 26m/s v =

(3)从A 到B 的过程,由动能定理可得:

2

f B 12

mgH W mv -=

解得:f 0.8J W =

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

高考物理解题技巧集锦

高中物理解题方法之隔离法和整体法 江苏省特级教师戴儒京 隔离法和整体法是解决物理问题特别是力学问题的基本而又重要的方法。 隔离法是把一个物体从物体系中隔离出来,只研究他的受力情况和运动情况,不研究他的施力情况。 整体法是把物体系看做一个整体,分析物体系的受力情况和运动情况,而不分析物体系内的物体的相互作用力。 整体法一般是在物体系内各物体的加速度相同的情况下应用。并且不求物体系内各物体的相互作用力。 下面的例题中的物体系只包含2个物体,3个以上的物体,方法与此类似。一、一个外力 例1.光滑水平面上的两个物体 在光滑水平面上有两个彼此接触的物体A和B,它们的质量分别为m1、m2。若用水平推力F作用于A物体,使A、B一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F作用于B物体,则A、B间的相互作用力为多大? 图1

【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有 a m m F )(21+=,所以2 1m m F a += ① 对B 物体用隔离法,根据牛顿第二定律,有 a m F AB 2= ② 将①代入②得 2 12 m m m F F AB +? = ③ 若将F 作用于B 物体,则对A 物体用隔离法,根据牛顿第二定律,有 a m F BA 1= ④ 所以A 、B 间的相互作用力为2 11 m m m F F BA +? = ⑤ 实际上,在同一个时刻,根据牛顿第三定律,A 、B 之间的作用力和反作用力大小是相等的。此处,③式和⑤式所表示的AB F 和BA F 不是作用力和反作用力,而是两种情况下的A 、B 之间的作用力,这样表示,以示区别,不要误会。 ③式和⑤式,可以看做“力的分配规律”,正如串联电路中电压的分配规律一样。因为大家知道,电阻R 1、R 2串联,总电压为U ,则R 1和R 2上的电压分别为 2111R R R U U +=,2 12 2R R R U U +=。这两个式子与③式和⑤式何其相似乃尔。 例2.粗糙水平面上的两个物体 在水平面上有两个彼此接触的物体A 和B ,它们的质量分别为m 1、m 2,与水平面间的动摩擦因数皆为为μ。若用水平推力F 作用于A 物体,使A 、B 一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F 作用于B 物体,则A 、

高考物理 解题的策略与方法

2012高考物理解题的策略与方法 在高三的最后复习阶段,学生常会遇到这样的场景:高考物理也就是“12道选择题、l道选作题、2道实验题和4道计算题”,总分150分.学生对于一般的物理基础题基本上没有问题,其错误大多是在不定项选择题上发生;另外,做计算题的能力还有些差,有时候没有一点解题的思路和程序,有时候理解题意有些偏差,有时候把问题搞得很复杂,有时候又把问题想得过于简单;而对于实验题,简直是摸不着头脑,常考常新,基本上得不到分数.“老师?我该怎么办呢?” 上述“物理场景”具有广泛性与普遍性,是高三学生学习过程中常会出现的一种现象.同学们要正视问题,调整心态,充满信心,更要注重解题方法与应试技巧的积累,把自己头脑中储存的物理知识有效地转化成分数.高考——分数是硬道理,学物理不能“一看就懂,一听就会,一作就错”,而要把自己的知识与能力转化成分数.在这里我想从“物理场景”的角度谈谈物理解题的策略与方法,望能对同学们有所帮助. 一、关于12道物理选择题 1.选择题失分的原因剖析 物理考试中,选择题有12题共48分,分数非常可观,故考试成败的关键在于选择题,这个问题应该引起同学们的高度重视.选择题失分较多的关键是处理题目时过于草率,这和平时的练习有直接联系.无论单选多选,处理选择题时建议把它当做稍大些的题处理.在处理大题的时候,同学们会自觉地画图、审题、弄清物理情境中出现的系统、状态与过程,挖出隐含条件,同学们格外重视这些因素,也做得比较到位.但在处理选择题的过程中,画图、审题程序往往被忽略,这样就埋下了隐患,导致丢分.所以,选择题失分不要总是归结为马虎、粗心!一定要注重审题及其他程序,不能凭一种单纯的物理感觉去解题. 2.选择题的求解技巧

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

戴维南定理典型例子_戴维南定理解题方法

戴维南定理典型例子_戴维南定理解题方法 什么是戴维南定理戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。戴维南定理在多电源多回路的复杂直流电路分析中有重要应用。 戴维南定理(Thevenin‘stheorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。 和戴维南定理类似,有诺顿定理或亥姆霍兹-诺顿定理。按照这一定理,任何含源线性时不变二端网络均可等效为二端电流源,它的电流J等于在网络二端短路线中流过的电流,并联内阻抗同样等于看向网络的阻抗。这样,图1中的电流I(s)一般可按下式2计算(图

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

戴维南定理的解析与练习

戴维宁定理 一、知识点: 1、二端(一端口)网络的概念:二端网络:具有向外引出一对端子的电路或网络。无源二端网 络:二端网络中没有独立电源。有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为联的等效电路来代替。 如图所示:U OC 的理想电压源和一个电阻R0 串

L 等裁巴路J 等效电路的电压U OC是有源二端网络的开路电压,即将负载R-断开后a、b两端之间 的电压。 等效电路的电阻R o是有源二端网络中所有独立电源均置零(理想电压源用短路代替, 理想电流源用开路代替)后,所得到的无源二端网络a、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1?把电路划分为待求支路和有源二端网络两部分,如图 1中的虚线。 2?断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOG 3?将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab 。 4?画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性), 内阻 R0=Rab= 5?将待求支路接到等效电压源上,利用欧姆定律求电流。 例1:电路如图,已知 5= 40V , U2=20V ,R1=R2=4,R3=13,试用戴维宁定理求电流 b 。 解:(1)断开待求支路求开路电压 UOC U 1 U 2 40 20 4 4 2.5A UOC =U2 + IR2 = 20 + 4 = 30V 或:UOC = U1 -I R1 = 40 - 4 30V UOC 也可用叠加原理等其它方法求。 (2) 求等效电阻R0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) R R ^~R L 2 R R 2 ]:师 画出等效电路求电流I 3 U OC R 。 R 3 2 13

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理解题技巧与时间分配

高考物理解题技巧与时间分配 (一)选择题 1、分时间以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35--45 分钟的安排,物理选择题时间安排在15一25 分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要 3 分钟甚至更长一点的时间,而难度较小的选择题一般 1 分钟就能够解决了, 7、8个选择题中,按照 2 : 5 : 1 的关系,一般有 2 个简单题目, 4、5个中档题目和 1 个难度较大的题目(开始时难题较少)。 2 .析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地

讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 3 .巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理木身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小. 虽然说高考物理选择题在解决的时候有这样那样的困难,但是如果方法选择好,解决起来还是有章可循的,为了能够在处理高考选择题时游刃有余,我们首先要了解选择题一般的特点,把高考选择题进行分类,然后根据各自的类型研究对策.

高考理综答题时间分配及考试技巧

高考理综答题时间分配及考试技巧 导读:我根据大家的需要整理了一份关于《高考理综答题时间分配及考试技巧》的内容,具体内容:理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助!高考理综答题时间分配技巧如果... 理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助! 高考理综答题时间分配技巧 如果要在150分钟内处理300分的题目,则每分钟平均要处理2分的难度中等的题目,练习中要注意时间与节奏把控。 具体时间分配课参考下述说明: 一卷上有21道选择题,不同地区选择题会有单项选择题和不定向选择题两类,每一小题都是6分,那么120分的第一卷答题时间应该大体控制在50分钟,每一分钟的时间应该至少拿下两分,选择题应该在2分或者不超过3分钟的时间里面解决,到了后面计算题中也要大致按照这样的策略,每一分钟大概完成两分,对大题原则上要8、9分钟,不能超过10分钟。 物理、化学、生物三个学科从考试时间上最好依次控制在1、1、0.5小时左右(可以有正负十分钟的浮动,根据学生科目的强弱调节),也就是说生物应该保持在半个小时尽可能拿到自己会做的分数为宜。 先做哪个学科可按自己习惯,也可先答自己的优势学科及基础试题,不要

在某一道难题上停留时间过久,使本来会的题目由于时间分配不好或者答题技巧掌握不好影响到理综成绩。事实证明,做得过慢直接丢掉整道大题的话,得分往往都比做得快但是正确率略微下降要低,而我们在练习中,需要有意识的提升自己在紧张状态下的"一次正确率"。 一、科学分配考试时间 理科综合三科合一,按分值分配,生物需30-35分钟完成,化学需50—55分钟完成,物理需要1小时完成,剩下的分钟为机动时间,这是最合理的安排。 二、做题顺序 自信,就从头到尾做;不自信,就可以有选择的先做。一般情况下,各科都不太难。只是因为有的学生在前面用的时间很多,后边相对简单一点的题没有时间做。而后面多是大分值的题。这属于时间安排上的失误。而有的题时间再充裕,也不一定做出来,这就应该主动地放弃,给可做出的题腾出一点时间。 做题顺序有几种,如,先做各科简单题,再做难一点的,但是尽量不要分科做。因为读完一个题后,才能知道是哪一科的题,如果不想做,放过去,做下面的题,但是回过头来再看刚才这一题的时候,还得从新熟悉,那么读题就浪费了时间。所以只要挨着做题就行。 三、选择题怎么做虽然是"选择题",但重要的不是在"选",不是看着选项去挑。在练习中,应该明白选项对,为什么不对,改成什么样子就对了。养成推导的习惯,掌握过程,要知道是"因为是怎样的,所以才怎样的"。做选择时,不要轻易地把生活经验往物理题上套。应该用物理规律往物理题上做。选择题是做出来的,不是选出来的。

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理数学物理法常见题型及答题技巧及练习题

高考物理数学物理法常见题型及答题技巧及练习题 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.质量为M的木楔倾角为θ,在水平面上保持静止,质量为m的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F拉着木块匀速上滑,如图所示,求:

(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)1 2 mg sin 4θ 【解析】 【分析】 对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】 (1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N 联立以上各式解得:() sin 2cos mg F θ θα= -. 当α=θ时,F 有最小值,F min =mg sin 2θ. (2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=1 2 mg sin 4θ. 【点睛】 木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题. 3.图示为直角三角形棱镜的截面,90?∠=C ,30A ?∠=,AB 边长为20cm ,D 点到A 点的距离为7cm ,一束细单色光平行AC 边从D 点射入棱镜中,经AC 边反射后从BC 边上的F 点射出,出射光线与BC 边的夹角为30?,求: (1)棱镜的折射率; (2)F 点到C 点的距离。

高考物理动能定理和能量守恒专题

弄死我咯,搞了一个多钟 专题四动能定理及能量守恒(注意大点的字) 一、大纲解读 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常及牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力

要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功及否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移及力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往 考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力及速度间的夹角。一般用于求某一时刻的瞬时功率。

高考物理选择题型分析及解题技巧基本规律专项辅...

高考物理选择题型分析及解题技巧基本规律专项辅导 第一部分:理论研究 选择题是现代各种形式的考试中最为常用的一种题型,它分为单项选择和不定项选择、组合选择和排序选择(比如一些实验考查题)等形式.在江苏高考物理试卷中选择题分数占试卷总分的27%,在全国高考理科综合试卷中占40%.所以,选择题得分的高低直接影响着考试成绩. 从高考命题的趋势来看,选择题主要考查对物理概念、物理现象、物理过程和物理规律的认识、判断、辨析、理解和应用等,选择题中的计算量有逐年下降的趋势. 一、选择题的特点与功能 1.选择题的特点 (1)严谨性强.物理中的每一个概念、名词、术语、符号乃至习惯用语,往往都有明确、具体而又深刻的含义,这个特点反映到选择题中,表现出来的就是试题有很强的严谨性.所以,解题时对题中的一字一句都得认真推敲,严防产生思维定势,不能将物理语言与日常用语混淆.解答时切莫“望文生义”,误解题意. (2)信息量大.选择题对考查基本概念和基本规律具有得天独厚的优势,它可以考查考生对某个或多个物理概念的含义或物理规律的适应条件、运用范围的掌握和理解的程度,也可以考查考生对物理规律和物理图象的较浅层次上的应用等等.选择题考查的知识.点往往较多,对所考查知识的覆盖面也较大,它还可以对重点内容进行多角度多层次的考查. (3)有猜测性.众所周知,解选择题时,在分析和寻求答案的过程中,猜测和试探几乎是不可避免的,而且就其本身而言,它也是一种积极的思维活动.没有猜想与预测,就没有创造性思维.对物理选择题的猜答,往往是在思索求解之后仍难以作出决断的时候,凭借一定的依据而选出的.多数考生的猜答并非盲目的,而是凭着自己的知识、经验和决断能力,排除了某些项之后,才作出解答的.知识和经验不足、能力差的考生,猜错的机会较多;反之,知识和经验较多、能力较强的考生,猜错率较低. 2.选择题的功能 (1)选择题能在较大的知识范围内,实现对基础知识、基本技能和基本思想方法的考查. 每道选择题所考查的知识点一般有2~5个,以3~4个居多,因此,10道选择题构成的题组其考查点便可达到近30个之多,而一道计算或论述题,无论如何也难以实现对三、四十个知识点的考查. (2)选择题能比较准确地测试考生对概念、规律、性质、公式的理解和掌握程度. 选择题严谨性强、信息量大的特点,使其具有较好的诊断功能.它可从不同角度有针对性地设置干扰选项,考查考生能否区别有关概念和规律的似是而非的说法以及能否认识相关知识的区别和联系,从而培养考生排除干扰进行正确判断的能力. (3)在一定程度上,选择题能有效地考查学生的逻辑推理能力、空间想象能力以及灵活运用数学工具解决物理问题的能力(但要求一般不会太高). (4)选择题还具有客观性强、检测的信息度高的优点. 二、选择题的主要类型 1.识记水平类 这是选择题中低水平的能力考查题型,主要用于考查考生的再认能力、判断是非能力和比较能力.主要题型有: (1)组合型 (2)填空型 以上两种题型的解题方法大致类似,可先将含有明显错误的选项予以排除,那么,剩下

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求: (1)求滑块与斜面间的动摩擦因数μ; (2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值; (3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】 试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR - μmgcos37° 2sin 37R ? =0-0 解得:μ=0.375 ⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ① 在C 点时,根据牛顿第二定律有:mg +N =2C v m R ② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37° 2sin 37R ?=2 12 C mv - 2 012 mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3 ⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④ 在竖直方向的位移为:y = 2 12 gt ⑤ 根据图中几何关系有:tan37°= 2R y x -⑥ 由④⑤⑥式联立解得:t =0.2s 考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

相关文档
最新文档