质心质心运动定理

合集下载

质心运动定理

质心运动定理

质心运动定理
质心运动定理是质点系动量定理的另一种形式,可由质点系动量定理直接导出。

即将P=Mvc代入质点系动量定理dP/dt=∑Fe,得:Mdvc/dt=∑Fe或Mac =∑Fe——称为质心运动定理.(∵ac=dvc/dt)
即:质点系的质量M与质心加速度ac的乘积等于作用于质点系所有外力的矢量和(外力主矢量)。

可见:只有外力才能改变质点系质心的运动。

定理的推论
根据这个定理可推知:
①质点系的内力不能影响它的质心的运动;例如跳水运动员自跳板起跳后,不论他在空中再做何种动作,采取何种姿势,由于外力(重力)并未改变,所以运动员的质心在入水前仍沿抛物线轨迹运动;
②如果作用于质点系上外力的矢量和始终为零,则质点系的质心作匀速直线运动或保持静止;
③若作用于质点系上外力的矢量和在某轴上的投影始终为零,则质点系质心在该轴上的坐标匀速变化或保持不变。

第一章质心

第一章质心
离地面 y 0 ,顶端以恒定速度 v 沿墙面下滑。时刻t梯子质心C的加速度
=_______ 。
y





A
xB y A l
rC xB i y A j
l/2


l
dy
A
dt
v
y A t y
y A y vt



rC
l y vt i y vt j
L
L
m
3
dx
x
练习: 一直杆,质量为m,长为L,线密度为λ∝ 2 。求其质量中心。
dm dx cx dx
2
m
1 3
dm cx dx cL
0
3
3m
dm dx 3 xdx
L
L
xc
2
xdm


m


L
0
0
3m 3
x dx
3
L
m
x
3
L
4
dx
x
练习: 一直杆,质量为m,长为L,线密度为λ∝x2。求其质量中心。
l/2


l
dy
A
dt
v
y A t y
y A y vt



rC
l y vt i y vt j


yA
xC
v
O
C
B
yC
x
xB
y vt

d rC
v




aC

高二物理竞赛课件:质心(center of mass) 质心运动定理

高二物理竞赛课件:质心(center of mass)  质心运动定理

一、质点对定点的角动量
说角动量时,
t 时刻, 如图 ,
必须指明是对 哪个固定点的
定义 L r P 为质点对固定点o 的角动量
大小:L rP 方向:垂直于
sri,nP
rmv sin
组成的平面
[SI] kgm 2/s
o r
L
P
m
力对定点的力矩
说力矩时,也
t 时 刻,如图,
必须指明是对 哪个固定点的
例 已知1/4圆M, m由静止下滑,求
t1→t2 过程中M移动的距离 S。 解: 选(M+m)为体系
水平方向: 合外力=0,质心静止
t1时刻
m
t2时刻
Mபைடு நூலகம்
M
m
x -R O
体系质心
X1
MxmR Mm
x-S -S O
体系质心
X
2
M
x
M
SmS
m
质心静止 X1 X 2
M
移动的距离
S
m Mm
R
思路:与处理动量定理 动量守恒问题相同
等于质点角动量的增量。
M 和L 是对惯性系中的同一固定点的。
角动量定理 Mdt dL
t2
Mdt ΔL
t1
若 M 0 则 L 0 角动量守恒定律
讨论
1)动量守恒与角动量守恒
是相互独立的定律。 如行星运动
2)有心力—力始终指向一点
直升飞机
动量不守恒 角动量守恒
质点在有心力作用下运动时角动量守恒
M r F 0 角动量守恒
o
F
mi
ri c质心
rc
o
重心是指各质点所受重力的合力作用点。

物理-质心与质心运动定理

物理-质心与质心运动定理

x
——动量中心系
在质质心心参位考矢系中r:C x 质心速度 υC
0drC
dt
0
质点系m的i总i 动m量C 0
质心系是零动量系
质心的运动轨迹?
——抛物线.
0 O x1
m xC x2 C
mx
二、 质心运动定理
锥体为什么会上滚?
锥体上滚是由其质(重)心下降所引起的。
令人称奇的“水往高处流”。
上坡省力,下坡费劲的“怪坡 ”
三、 质心参考系
【质心参考系】:以质心为坐标原点的参考系。
y
r2
O
y
mi
m2 ri
ri
C
rC m1 r1
m1
l
C
m2
x
O
xC
m2 m1 m2
l
m1
l
C
m2
m1l1 m2l2
l1
l2
(与坐标系无关)
质心坐标与所选坐标系有关,
但质心相对物体各部分位置是确定的.
一、 质心
例2 求半径为R的匀质半圆环的质心.
y
Rdθ

R
θ
O R cos θ
y R sin θ
x
一、 质心
例2 求半径为R的匀质半圆环的质心.
C 恒矢量
当质点系所受合外力为零时,其质心保持原来的 静止或匀速直线运动状态不变。 ——质心的“惯性运动”
质心的“惯性运动”与质点系动量守恒等价!
随堂练习
例:设有一枚炮弹发射的初速率为 0,发射角为 ,它飞 行在最高点处爆炸成质量相等的两个碎片,其中一个竖直 下落,另一个水平抛出,求这两部分的着地点(忽略空气 阻力)。
(1) 直角坐标系中的质心坐标

2 质心 质心运动定理

2 质心 质心运动定理

将质心的位置矢量 rC 对时间t求导,可得出
质心运动的速度为
dri m drC i dt vC dt m
mi v i m
由此可得
mvC mi vi
上式等号右边就是质点系的总动量
p mv C
即:质点系的总动量等于它的总质量与它的质心的运动 速度的乘积。
质心、质心运动定理
质心 质心运动定理
一.质心
当我们把一匀质薄三角板斜 向抛出时,它的空间运动很 复杂,但实际观测表明,在 薄板上有一点C仍然在作抛 物线运动。C点的运动规律 就象把薄板的质量都集中在 C点,全部的外力也象时作 用在C点一样。这个特殊点C 就是质点系统的质心。
2
质心运动定理 证明: 质点系的总动量等于它的总质量与它的质心的动速度的乘积。
根据牛顿第二定律的微分形式
dp dv C F m ma C dt dt
上式表明无论质点怎样运动,质点系的总质量与质心加速 度的乘积总等于质点系所受全部外力的矢量和,这就是质 心运动定理。它对刚体同样适用。
4

第十章 质心运动定理

第十章 质心运动定理

这两个结论称为质心运动守恒定理。 这两个结论称为质心运动守恒定理。 质心运动守恒定理
问题1 两个相同均质圆盘, 问题1:两个相同均质圆盘,初始时刻皆静止于光 滑的桌面上。受大小、方向相同的力作用, 滑的桌面上。受大小、方向相同的力作用,但作用 位置不同(如图示),哪个圆盘跑得更快? ),哪个圆盘跑得更快 位置不同(如图示),哪个圆盘跑得更快?
maC = ∑miaCi = ∑F i
E
dr E C maC = m 2 = ∑F i dt
--质心运动定理 --质心运动定理
2
HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY ENGINEERING MECHANICS HOHAI UNIVERSITY HOHAI UNIVERSITY
自然表示法: 自然表示法:
dvC E maCt = m = ∑F it dt 2 vC E maCn = m = ∑F in
ρ
maCb = 0 = ∑FE ib
特殊情形: 特殊情形:
dr E C maC = m 2 = ∑F i dt
2
HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY ENGINEERING MECHANICS HOHAI UNIVERSITY HOHAI UNIVERSITY
2
HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY HOHAI UNIVERSITY ENGINEERING MECHANICS HOHAI UNIVERSITY HOHAI UNIVERSITY

3-3 质心 质心运动定律

3-3 质心 质心运动定律


n
i =1
v m i ri m
连续分布的质点: r 连续分布的质点 r = c

r rdm m
质点系的 动

v v P = m vC
质心运动定律
dv v ex vd C v F =m = maC t
13
v m ri i
m
m
v r2
rc
c v
v r1 m1
o
mi r r rc = ∑ ri m i
z
x
mi m : 总质量, 权重 m
r r 即:质心位矢 rc 是各质点位矢 ri
的加权平均。 的加权平均。
3
质心在直角系的计算公式 r r r r r N ∑ m r ri = xi i + yi j + zi k r i =1 i i rc = N u N r r N r M r r r ∑ mi xi i + ∑ mi yi j + ∑ mi yi k r i =1 i =1 rc = xc i + yc j + zc k = i =1 m
xc =


N
i =1
m i xi m
z
r r1
m1
m2
yc =
∑ ∑
N
i =1
m i yi m
O x
r r2
r r c
C (xc, yc, zc )
r mN rN
y
zc =
i =1
m i zi m
4
离散质点系: 离散质点系:
v rC =

n
i =1
v m i ri m
连续分布的质点 r rc =

2-1 质心 质心运动定理

2-1 质心 质心运动定理

Ch2 运动的守恒量和守恒定律§2-1质点系的内力外力质心质心运动定理§2-1 质心质心运动定理动量守恒定律1、质点系的内力和外力质心质心的位置例:任意三角形的每个顶点有一质量m 的小球,求/r m r M =∑G Gz yOΔm ir微元分割!例3-7 求腰长为a等腰直角三角形均匀薄板的质心位置。

3、质心运动定理质心运动定理G G G G G d v1 G m 1 a1 = m 1 = F1 外 + f 12 + f 13 + " + f 1 n , dt G G G G G d v2 G m 2a2 = m 2 = F2 外 + f 21 + f 23 + " + f 2 n , dt G G G G G d vn G = Fn外 + f n 1 + f n 2 + " + f n ( n − 1) , m nan = m n dt G G G G 由于内力 f12 + f 21 = 0," , f in + f ni = 0, ...由牛顿第二定律:""∴G ∑ m i ai =G ∑ F i外11/18中国矿业大学(北京)质心运动定理G ∑ m i ai =G ac =G ∑ F i外 G ∑ m i aiG ac =G ∑ Fi外∑m∑m=G ∑ Fi外 Mi∑G G Fi外 = M a ci质心运 动定理不管物体质量如何分布,也不管外力作用在物体 什么位置上,质心的运动就象是物体的质量全都集 中于此,而且所有外力也都集中作用其上的一个质 点的运动一样。

12/18 中国矿业大学(北京)补充例题1例1 质量为m1 和m2的两个小孩,在光滑水平冰面上用 绳彼此拉对方。

开始时静止,相距为l。

问他们将在何 处相遇?m2m1Ox20x10x13/18中国矿业大学(北京)补充例题1解:可直接由质心运动定律求出。

初始静止时,小孩系统的质 心位置: m 1 x 10 + m 2 x 20 1 xc = m1 + m 2m2C xcx10m1∑G G G Fi外 = M a c ⇒ a c = 0O x20x质心位置,在过程中应该始终保持静止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

zC z d m / m
d m dl dm dS d m dV
质心与重心(center of gravity)是两个不同的概 念,重心是地球对物体各部分引力的合力(即重力)的 作用点,质心与重心的位置不一定重合。 思考:重合条件?
3-9 质心 质心运动定律
上页 下页 首页 目录
3-9 质心 质心运动定律
上页 下页 首页 目录
由牛顿第二定律得
m1a1 F1 F12 F13 F1n
m2 a2 F2 F21 F23 F2 n mn an Fn Fn 2 Fn3 Fnn
3-9 质心 质心运动定律
上页
下页
首页
目录
相遇时有: x1 x2 xC 质心定义可得
m2 x20 m1 x10 xc m1 m2
两小孩在纯内力作用下,将在他们共同的 质心相遇。
3-9 质心 质心运动定律
上页
下页
首页
目录
例1求腰长为a的等腰直角三角形均匀薄板的质心 位置。 取坐标轴如图,根据对称性分析 解: 可知 y 0
C
取宽度为dx的面积元,设薄板每单位 面积的质量为,则此面积元的质量 为
dm 2 xdx
xc
xdm
M

a/ 2
0
2 x dx
2
1 2 a 2
2 a 3
上页 下页 首页 目录
(m mi )
yC mi yi / m
zC mi zi / m
上页
3-9 质心 质心运动定律
下页
首页
目录
对于质量连续分布的物体
质心的位矢: 分量式:
xC x d m / m
rC r d m / m
(m dm)
线分布 面分布 体分布
yC y d m / m
3-9 质心 质心运动定律
上页
下页
首页
目录
二、质心运动定理 由质心位矢公式:
质心的速度为
d r i m i d rC mi vi d t vC dt mi mi 质心的加速度为 d vi m mi ai d vC i d t aC dt mi mi
3-9 质心 质心运动定理
3-9 质心 质心运动定律
上页
下页
结束放映 首页 目录
一、质心
3-9 质心 质心运动定律
上页
下页
首页
目录
质心(center of mass)是与质量分布有关的一个代表 点,它的位置在平均意义上代表着质量分布的中心。
Y 质心具有长度的 量纲,描述与质 点系有关的某一 空间点的位置。
yc
ydm
m
R 2 0

R
0
y( R 2 y 2 ) d y 2R 3 / 3
R
R y 2 d y 2 3( R 2 y 2 y 4 / 2) 0

4R / 3
3

4R3
3R 4 / 2 3 R 3 4R / 3 8
质心在距球心3R/8对称轴y轴上
3-9 质心 质心运动定律
上页
下页
首页
目录
例3 质量为m1 和m2的两个小孩,在光滑水平冰面 上用绳彼此拉对方。开始时静止,相距为l 。问他 们将在何处相遇?
解:把两个小孩和绳看作 一个系统,水平方向不受 外力,故质心是静止的。 任取两个小孩连线上一点 为原点,向右为x轴为正向。设开始时小孩的坐标 分别为x10、x20,在任意时刻的坐标为x1和x2。
3-9 质心 质心运动定律
例2:确定半径为R的均质半球的质心位置。
解:建立如图所示坐标 由对称性知:
Y
xC 0
dy
R
已知薄圆盘的质心位于 圆心,取厚度为dy的薄圆盘 为质量微元。
O
X
d m R y d y
2 2


yc
ydm m
3-9 质心 质心运动定律
上页 下页 首页 目录
对于系统内成对的内力
mi ai F i
aC
F12 F21 0,, Fin Fni 0,
mi ai
m
Fi maC
i
上页 下页 首页 目录
3-9 质心 质心运动定律
Fi Mac
质心运 动定理
表明:不管物体的质量如何分布,也不管外力 作用在物体的什么位置上,质心的运动就象是物体 的质量全部都集中于此,而且所有外力也都集中作 用其上的一个质点的运动一样。
C质心运动反映了质点系的整体运动趋势。
3-9 质心 质心运动定律
上页
下页
首页
目录
对于N个质点组成的质点系:
m1 , m2 ,, mi ,,mN r1 , r2 ,, ri ,,rN
质心的位矢:
rC mi ri / m
直角坐标系中的分量式:
xC mi xi / m
相关文档
最新文档