人教版高中数学必修四:1.2.1《任意角的三角函数》课件
合集下载
1.2.1任意角的三角函数课件

小结: 小结:
(1)任意角的三角函数的定义; )任意角的三角函数的定义; (2)三角函数的定义域与三角函数值在各象限的符号; )三角函数的定义域与三角函数值在各象限的符号; (3)诱导公式一及其应用; 公式一及其应用; )诱导公式一及其应用 (4)体会定义过程中体现的数形结合的思想 )体会定义过程中体现的数形结合的思想.
-
(+)
(+ )
( )
-
ycos r
y a = tan x
求证:当且仅当下列不等式组成立时, 例3 求证:当且仅当下列不等式组成立时, 为第三象限角. 角 θ 为第三象限角
证明: 证明: 因为① 成立,所以 因为①式sin θ < 0 成立 所以 θ 角的终边可能位于第三 或第四象限,也可能位于y 轴的非正半轴上; 或第四象限,也可能位于 轴的非正半轴上; 又因为② 成立, 又因为②式 tan θ > 0 成立,所以角θ 的终边可能位于 第一或第三象限. 第一或第三象限 因为①②式都成立, 的终边只能位于第三象限. 因为①②式都成立,所以角θ 的终边只能位于第三象限 ①②式都成立 为第三象限角. 于是角 θ 为第三象限角 反过来请同学们自己证明. 反过来请同学们自己证明
探究: 探究:
1.三角函数的定义域 三角函数的定义域 三角函数
sin α cos α tan α
定义域
π α α ≠ kπ + ,k ∈ Z 2
R R
2.三角函数值在各象限的符号 三角函数值在各象限的符号
(+ ) ( )
(+ ) ( )
( )
-
(+ )
( )
-
(+)
-
1.2.1任意角的三角函数课件高中数学人教A版必修4第一章

反思与感悟
利用诱导公式一可把负角的三角函数
化为0到2π间的三角函数,也可把大于2π的角的三
角函数化为0到2π间的三角函数,即实现了“负化
正,大化小”.同时要熟记特殊角的三角函数值.
明目标、知重点
跟踪训练3
求下列各式的值:
23π
(1)cos- 3 +tan
解
17π
4 ;
π
π
原式=cos3+-4×2π+tan4+2×2π
角为自变量,以比值为函数值的函数, 角的概念推广
后,这样的三角函数的定义明显不再适用,如何对三角
函数重新定义,这一节我们就来一起研究这个问题.
明目标、知重点
探究点一 锐角三角函数的定义
思考1 如图, Rt△ABC中,∠C=90°,若已知
a=3,b=4,c=5,试求sin A,cos B,sin B,
反思与感悟
准确确定三角函数值中角所在象限是基
础,准确记忆三角函数在各象限的符号是解决这类问
题的关键.可以利用口诀“一全正、二正弦、三正切、
四余弦”来记忆.
明目标、知重点
跟踪训练2
已知cos θ·tan θ<0,那角θ是( C )
A.第一或第二象限角
B.第二或第三象限角
C.第三或第四象限角
D.第一或第四象限角
明目标、知重点
; 叫做α的正切,记作
②终边定义法:
设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则
2
2
x
+y
有sin α=
,cos α=
,tan α=
1.2.1任意角的三角函数课件人教新课标

C. sinα = 3 13 13
D. tanα = 3 2
4.若角α的终边在直线y = 2x上,则sinα等于( C )
A.
1
B. 5
5
5
C.
2
5
D.
1
5
2
5.α的终边经过P(-b,4),且cosα = - 3,则 5
b的值为__3___。
6.已知角α的终边在y = x上,则 sinα + cosα = ±__2_____。
tanα
0
90° π/2
1 0 不存在
180° π 0 -1 0
270° 3π/2
-1 0 不存在
360° 2π 0 1 0
例2:已知α的终边经过点P0 (-4,-3),求 α角的正弦,余弦,正切的值。
y
M0
M o
P
P0(-4,-3)
分析:由
△OMP∽△OM0P0,
x
可求出相应的三角函数 值。
解: sina = y = y = - MP = - MP0 = - 3
x
y
第二象限:x 0, y 0,故 y 为负值;
x
o
x
第三象限:x 0, y 0,故 y 为正值;
x
第四象限:x 0, y 0,故 y 为负值. x
y
y
y
o
xo
xo
x
sin
cos
tan
规律:
“一全正、二正弦正、三正切正、四余弦正”.
例4:确定下列三角函数值的符号。
1
cos
260°
r OP
OP0 5
cosα = x = x = - OM = - OM0 = - 4
高一数学必修4课件:1-2-0-1任意角的三角函数的定义

2π 3 2π 1 2π 所以sin = ,cos =- ,tan =- 3. 3 2 3 2 3
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
已知角α的终边经过点P(3,4),求sinα,cosα,tanα. [分析] 分别写出x,y,r的值,应用定义求得.
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
α 的三角函数 正弦
定义
b AB sinα=OB= r
a OA cosα= = r OB b AB tanα= = a OA
余弦
正切
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
(3)任意角的正弦、余弦、正切:如图所示,α是任意角, 以α的顶点O坐标原点,以α的始边为x轴的非负半轴,建立平 面直角坐标系. 设P(x,y)是α的终边与单位圆的交点,则有:
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
α的三角函数 正弦 余弦
定义
y x
y x (x≠0)
记法 sinα cosα
形式 sinα=y cosα=x y tanα=x(x≠0)
正切
tanα
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
[知识拓展] 利用角α终边上任意一点的坐标定义三角函 数如下: 设α是一个任意角,α的终边上任意一点P(除原点外)的坐 标是(x,y)它与原点的距离是r(r= x2+y2),那么: y y ①比值r 叫做α的正弦,记作sinα,即sinα=r . x x ②比值r 叫做α的余弦,记作cosα,即cosα= r . y y ③比值 叫做α的正切,记作tanα,即tanα= .(x≠0) x x
《红对勾》2015-2016学年人教A版高中数学必修4课件1-2-1任意角的三角函数-2

(1)sinβ________sinα. (2)cosα________cosβ. (3)tanβ________tanα. 答:(1)> (2)> (3)>
(1)三角函数线的特征:①三角函数线的位置:正弦线 为角α的终边与单位圆的交点到x轴的垂直线段,余弦线在x 轴上,正切线在过单位圆与x轴正方向的交点的切线上,三 条有向线段中有两条在单位圆内,一条在单位圆外.②三 角函数线的方向:正弦线由垂足指向角α的终边与单位圆的 交点,余弦线由原点指向垂足,正切线由切点指向切线与 角α的终边或其反向延长线的交点.③三角函数线的正负: 三条有向线段凡与x轴或y轴同向的,为正值,与x轴或y轴 反向的,为负值.
在单位圆中画出适合下列条件的角α终边的范围,并由 此写出角α的集合.
(1)sinα≥ 23;(2)cosα≤-12.
解:直线y=
3 2
交单位圆于A,B两点,连接OA与OB,则
OA与OB围成的区域(图(1)的阴影部分)即为角α的终边范围.
故满足条件的角的集合为{α|
π 3
+2kπ≤α≤
2π 3
+2kπ,k∈
解析:因为π4<1<2π,如图所示:
由三角函数线可得sin1> 22>cos1,故sin1-cos1>0. 答案:>
(2)下列关系式中正确的是( ) A.sin10°<cos10°<sin160° B.sin160°<sin10°<cos10° C.sin10°<sin160°<cos10° D.sin160°<cos10°<sin10°
【解】 如图(1). ∵2cosx-1≥0,∴cosx≥12. ∴函数定义域为2kπ-π3,2kπ+3π(k∈Z).
任意三角函数的定义PPT课件

加强数形结合数学思想的培养。
情感目标:培养合作交流、独立思考等良好的个性品质;
这里没以及有打用破成“规使、敢学于生创新掌的科握学…精神…。”、 教学“重使点:学任生意角学的会正弦…、…余弦”等、正通切的常定字义。眼,保 教学障难了点:学用生单位的圆主中的体有地向线位段,表示反三角映函了数值教。法
与学法的结合,尽量体现新教材新 理念。
加强。
第5页/共40页
二. 教法分析
(二)教学方法
建构主义认为,知识是在原有知识的基础上, 在人与环境的相互作用过程中,通过同化和顺应, 使自身的认知结构得以转换和发展。元认知理论指 出,学习过程既是认识过程又是情感过程,是“知、 情、意、行的” 和谐统一。结合本节课的具体内 容,确立讨论法和启发引导法为主要教学方法。
y
T
y
P
P
O MA
A
MO
y T
M
OA
P
T y
这几条与单位圆有关的有向线段 MP,OM,AT叫做角 的正弦线,余弦线, 正切线
MA
O
P
思考:当角 的终边在x轴上或在y 轴上时这些线有何特点?
T
第21页/共40页
技能演练
演--提供范例,规范解题格式; 演--设置平台,促进讨论交流; 演--学法指导,提炼求解步骤.
示例 理解
实质
理解
直观理解侧重数学符号、图形等,培养思维的具体和简 约,体现数形结合的思想;程序理解揭示内在联系,并 为后继学习三角函数的图象和性质奠定基础;示例理解 呼应引入,强化认识;归纳理解关注归纳思维,提升综 合能力;实质理解揭示了任意角的三角函数的内涵。
第20页/共40页
(3)三角函数的一种几何表示 利用单位圆有关的有向线段,作出正弦线,余弦线,正切线
情感目标:培养合作交流、独立思考等良好的个性品质;
这里没以及有打用破成“规使、敢学于生创新掌的科握学…精神…。”、 教学“重使点:学任生意角学的会正弦…、…余弦”等、正通切的常定字义。眼,保 教学障难了点:学用生单位的圆主中的体有地向线位段,表示反三角映函了数值教。法
与学法的结合,尽量体现新教材新 理念。
加强。
第5页/共40页
二. 教法分析
(二)教学方法
建构主义认为,知识是在原有知识的基础上, 在人与环境的相互作用过程中,通过同化和顺应, 使自身的认知结构得以转换和发展。元认知理论指 出,学习过程既是认识过程又是情感过程,是“知、 情、意、行的” 和谐统一。结合本节课的具体内 容,确立讨论法和启发引导法为主要教学方法。
y
T
y
P
P
O MA
A
MO
y T
M
OA
P
T y
这几条与单位圆有关的有向线段 MP,OM,AT叫做角 的正弦线,余弦线, 正切线
MA
O
P
思考:当角 的终边在x轴上或在y 轴上时这些线有何特点?
T
第21页/共40页
技能演练
演--提供范例,规范解题格式; 演--设置平台,促进讨论交流; 演--学法指导,提炼求解步骤.
示例 理解
实质
理解
直观理解侧重数学符号、图形等,培养思维的具体和简 约,体现数形结合的思想;程序理解揭示内在联系,并 为后继学习三角函数的图象和性质奠定基础;示例理解 呼应引入,强化认识;归纳理解关注归纳思维,提升综 合能力;实质理解揭示了任意角的三角函数的内涵。
第20页/共40页
(3)三角函数的一种几何表示 利用单位圆有关的有向线段,作出正弦线,余弦线,正切线
1.2.1任意角的三角函数(2)

例2 在单位圆中作出符合下列条件的角的终边: 1 ⑴ sin ; ⑵ tan 2. 2
角的终边
y 1 y
P
1
O 1
1 y 2
1 角的终边 x
P
1
M1
O
- P 1
1
A
x
T
1 变题: 写出满足条件 ≤cosα< 2 2 的集合. y
3 的角α 2
3
Q
1
P
6
x
-1
4 3
引入:角是一个几何概念,同时角的大小也具有数量特 征.我们从数的观点定义了三角函数,如果能从图形上找 出三角函数的几何意义,就能实现数与形的完美统一.
[探索]
三角函数线
三种三角函数能否找到一种几何表示呢?
y MP sin MP (正弦线) r OP x OM cos OM (余弦线) r OP
课后完成《世纪金榜》P8~P10
预习下节内容:同角三角函数的基本关系
O R -1
S1
11 6
2 |2k <α≤ 2k ,或 6 3 4 11 2k ,k Z ≤α< 2k 3 6
1. 求函数 f (x ) = 2 cos x - 1 的定义域.
解:如右图所示
探究:当0<α<π/2时,总有 sinα<α<tanα. S△POA<S扇形AOP<S△AOT
y AT tan AT (正切线) x OA
三角函数线
α的终边 P A M o y y P α的终边 T
x T
o
M A x
(Ⅱ) y
y (Ⅰ)
T M o P
M A A x
高中数学必修四 第一章三角函数 1.2.1.1 三角函数的定义

解析:角
α
的终边在
y
轴的非负半轴上,则
α=2kπ+
π 2
(������∈Z),所以
tan α 无意义.
答案:A
【做一做 1-2】 若角 α 的终边与单位圆相交于点
2 2
,-
2 2
,
则 sin ������的值为( )
A.
2 2
B.
−
2 2
C.
1 2
D.
−1
解析:x=
2 2
,
������
=
−
2 2
,
则sin
题型一 题型二 题型三 题型四
解:(1)∵-670°=-2×360°+50°,
∴-670°是第一象限角,
∴sin(-670°)>0.
又1 230°=3×360°+150°,
∴1 230°是第二象限角,
∴cos 1 230°<0,
∴sin(-670°)cos 1 230°<0.
(2)∵
5π 2
<
8
<
(2)∵
5π 4
是第三象限角,
4π 5
是第二象限角,
11π 6
是第四象限角,∴
sin
5π 4
<
0,
cos
4π 5
<
0,
tan
11π 6
<
0,
∴sin
54π·cos
45π·tan
11π 6
<
0,
式子符号为负.
(3)∵191°角为第三象限角,∴tan 191°>0,cos 191°<0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比y值 叫做 的正弦 si , n ,s记 即 in作 y
r
rHale Waihona Puke 比x值 叫做 的余弦 co , , s c记 即 o s作 x
r
r
比y值 叫做 的正切 ta, n ,t记 即 an作 y
x
x
二、三角函数的定义域、值域
函数
y sin
定义域
R
值域
[ 1,1]
ycos
三角函数值。
解:因为过点 (a,2a)(a0,) 所以 r 5 | a,| xa,y2a
当 a0时 , siny 2a 2a25
r 5|a| 5a 5
cosx a 5a
r 5a 5
tan2
当 a0时 , siny 2a 2a25
r 5|a| 5a 5
cos(2k)cos 其中 k Z
tan(2k)tan
五、三角函数线
当角的终边上一点 P ( x, y ) 的坐标满足 x2 y2 1 时,有三角函数正弦、余弦、正切值的几何表示——三角函数线
(Ⅱ)
(Ⅰ)
(Ⅲ)
(Ⅳ)
典型例题
例1.已知角α的终边经过点 P(2, 3),求α的三个函数制值。
sin00 cos01 tan00
(2)因为当 时,x,r y 0 ,所以
sin0 cos1 tan 0
(3)因为当 3 时, x 0, y r ,所以
sin 3 1 cos 32 0
t a n 3 不存在
2
2
2
例3.已知角α的终边过点 (a,2a)(a0),求α的三个
…………Ⅱ…………,
x0,y0
|cosx|=cosx |tanx|=tanx ∴y=2
…………Ⅲ、Ⅳ………,
x 0, y 0 x 0, y 0
|cosx|=cosx |tanx|=tanx ∴y=0
例1 5s.in 利2用与三s角in 函4数线2比 较ta下n 列2 各与组ta数n的4 大小:
cosx a 5a
r 5a 5
tan2
例4. 求函数 y cosx tanx 的值域
cosx tanx
解: 定义域:cosx0 ∴x的终边不在x轴 上 ,∵tanx0 ∴x的终边不在y轴上
∴当x是第Ⅰ象限角时, x0,y0
cosx=|cosx| tanx=|tanx| ∴y=2
1.2.1任意角的三角函数
教学目的:
1、掌握任意角的正弦、余弦、正切的定义,了解任意角 的余切、正割、余割的定义;
2、掌握三角函数值的符号的确定方法; 3、记住三角函数的定义域、值域,诱导公式(一); 4、利用三角函数线表示正弦、余弦、正切的三角函数值。
教学重点、难点:
重点:三角函数的定义,各三角函数值在每个象限的符号,
六、课后作业:
P23习题 第7、9题
编后语
➢ 听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
➢ 一、听要点。
➢ 一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物理 课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
➢ 四、听方法。
➢ 在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”的研究方向; 分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进行叙述。这些 都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元法;因式分解 法等,掌握各个科目的方法是大家应该学习的核心所在。
特殊角的三角函数值
难点:对三角函数的自变量的多值性的理解,
三角函数的求值中符号的确定
初中锐角的三角函数是如何定义的?
在Rt△ABC中,设A对边为a,B对边为b,C对
边为c,锐角A的正弦、余弦、正切依次为
sinAa,cosAb,tanAa
c
c
b
讲授新课:
一、三角函数定义:
在直角坐标系中,设α是一个任意角,α终边 上任意一点(除了原点)的坐标为(x,y),它与 原点的距离为r,那么
➢ 优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2020/2/29
最新中小学教学课件
17
谢谢欣赏!
2020/2/29
最新中小学教学课件
18
3
5
3
5
解: 如图可知:
sin 2
sin 4
3
5
tan 2 3
tan 4 5
S2
S1
B
P2 P1
A M2 M1 o
T2
T1
四、课堂练习
P17练习题1、2、3、5、6
小结:
1.任意角的三角函数的定义; 2.三角函数的定义域、值域; 3.三角函数的符号及诱导公式; 4、三角函数线。
➢ 二、听思路。
➢ 思路就是我们思考问题的步骤。例如老师在讲解一道数学题时,首先思考应该从什么地方下手,然后在思考用什么方法,通过什么样的过程来进行解 答。听课时关键应该弄清楚老师讲解问题的思路。
➢ 三、听问题。
➢ 对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
R
y tan {|k,kZ} 2
[ 1,1]
R
三、三角函数的符号
由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:
sinα
cosα
y
y
++
–+
o
x
––
o
x
–
+
tanα
y
–
+
o
x
+
–
四、诱导公式
由三角函数的定义,就可知道: 终边相同的角三角函数值相同。
sin(2k)sin
解:因为 x2,y3,所以 r 22(3)2 13
于是 siny 3 3 13
r 13 13
cosx 2 2 13
r 13 13
tan y 3
x2
例2.求下列各角的三个三角函数值:
0 (1) ; (2) ; (3) 3 . 2
解:(1)因为当 0时,x r, y 0,所以