有理数与无理数教案

合集下载

小学四年级数学教案学习有理数和无理数的概念

小学四年级数学教案学习有理数和无理数的概念

小学四年级数学教案学习有理数和无理数的概念学习有理数和无理数的概念本教案主要针对小学四年级学生,介绍有理数和无理数的概念。

有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数,而无理数是指不能表示为两个整数的比值的数。

学生通过本教案的学习,可以初步理解有理数和无理数的概念,并能够区分它们。

一、有理数的概念有理数可以表示为两个整数的比值,包括整数、分数和小数。

有理数可以用一个分数来表示,例如1/2、3/4等,也可以用一个整数或小数来表示,例如2、3.5等。

有理数可以是正数、负数和零。

例如,1、2、3都是整数,它们都是有理数。

又例如,1/2、3/4是分数,它们也是有理数。

有理数可以进行加减乘除运算。

二、无理数的概念无理数是指不能表示为两个整数的比值的数。

无理数通常用根号符号来表示,例如π、√2等。

无理数有无限不循环的小数部分,无法用简单的分数或整数来表示。

例如,√2是一个无理数,因为无法找到两个整数的比值等于√2。

无理数是无限不循环的,不能用分数或整数来表示它的值。

三、有理数和无理数的区别有理数和无理数都是实数的一种,但它们之间有着明显的区别。

有理数可以表示为两个整数的比值,而无理数不能用有限的整数或分数来表示。

例如,对于数轴上的一个点,如果它可以被一个整数或分数的比值表示,那么它就是有理数;否则,它就是无理数。

四、数轴上的有理数和无理数数轴是用来表示实数的一种工具,我们可以借助数轴来帮助理解有理数和无理数的概念。

在数轴上,有理数可以用一个点来表示,例如1、2、3等整数,以及1/2、3/4等分数。

无理数不能用有限的点来表示,它在数轴上是一个无限不循环的小数。

例如,√2在数轴上无法用有限的点表示,它是一个无理数。

我们可以将√2的近似值标在数轴上,但精确的值无法用有限的点表示出来。

通过数轴的帮助,学生可以更直观地了解有理数和无理数的特点,并能够正确区分它们。

五、小结本教案主要介绍了有理数和无理数的概念。

有理数和无理数教案

有理数和无理数教案

有理数和无理数教案教案标题:有理数和无理数的引入与比较教学目标:1. 学生能够理解有理数和无理数的概念,并能区分它们之间的差异。

2. 学生能够将有理数和无理数在数轴上表示,并能进行简单的比较。

3. 学生能够应用有理数和无理数的概念解决实际问题。

教学准备:1. 教师准备:白板、黑板笔、投影仪、教学PPT、数轴模板、绘图工具。

2. 学生准备:课本、笔记本、铅笔、橡皮。

教学过程:一、导入(5分钟)1. 教师通过投影仪展示一张有理数和无理数的数轴图,引发学生对于有理数和无理数的思考。

2. 教师提问学生:你们对于有理数和无理数有什么了解?有什么区别?二、概念讲解与示例演示(15分钟)1. 教师通过教学PPT详细解释有理数和无理数的定义和特点,并给出相应的示例。

2. 教师引导学生观察示例,思考如何判断一个数是有理数还是无理数。

3. 教师与学生一起完成几个有理数和无理数的分类练习,帮助学生巩固概念。

三、数轴表示与比较(20分钟)1. 教师向学生展示数轴模板,并解释如何在数轴上表示有理数和无理数。

2. 教师引导学生根据给定的有理数和无理数,将其在数轴上表示出来,并进行比较。

3. 教师与学生一起完成几个有理数和无理数的比较练习,帮助学生加深理解。

四、实际问题应用(15分钟)1. 教师通过实际问题引导学生思考有理数和无理数的应用场景。

2. 教师与学生一起解决几个实际问题,帮助学生将概念应用到实际情境中。

五、归纳总结与拓展(10分钟)1. 教师与学生共同总结有理数和无理数的概念和表示方法。

2. 教师提供一些拓展问题,让学生进一步思考和探索有理数和无理数的特性。

六、作业布置(5分钟)1. 教师布置相关的课后作业,巩固学生对于有理数和无理数的理解。

2. 教师鼓励学生自主学习,拓展相关知识。

教学反思:本节课通过引入、概念讲解、数轴表示与比较、实际问题应用等环节,帮助学生全面理解有理数和无理数的概念和特点。

通过实际问题的引导,培养学生将概念应用到实际情境中的能力。

有理数与无理数的教案

有理数与无理数的教案

有理数与无理数的教案教案标题:有理数与无理数的认识与比较教案目标:1. 让学生了解有理数和无理数的概念及其特点;2. 帮助学生学会将数进行分类,并能够判断一个数是有理数还是无理数;3. 培养学生对有理数和无理数进行比较和运算的能力。

教案步骤:引入(5分钟):1. 引入数的分类概念,让学生回顾一下整数和分数的概念;2. 提出问题:是否所有的数都可以用整数和分数来表示?引导学生思考。

探究(15分钟):1. 让学生观察一些数的例子,如根号2、根号3、π等,并提问这些数是否可以用整数或分数来表示;2. 引导学生发现这些数无法用整数或分数来表示,进而引入无理数的概念;3. 介绍有理数和无理数的定义及其特点,强调有理数可以表示为整数或分数的形式,而无理数则不能。

巩固(20分钟):1. 给学生一些数,让他们判断这些数是有理数还是无理数,并给出理由;2. 引导学生进行有理数和无理数的比较,让他们发现有理数和无理数之间的关系;3. 给学生一些练习题,让他们判断和比较一些数。

拓展(15分钟):1. 引导学生思考有理数和无理数的运算规则,如有理数与有理数相加、有理数与无理数相乘等;2. 给学生一些运算练习题,让他们运用所学的知识进行运算;3. 引导学生思考有理数和无理数在实际生活中的应用,如测量、几何等领域。

总结(5分钟):1. 总结有理数和无理数的概念及其特点;2. 强调有理数和无理数的比较和运算规则;3. 鼓励学生继续探索和应用有理数和无理数的知识。

教学资源:1. 教科书或教学课件;2. 白板、黑板或投影仪;3. 练习题和答案。

评估方法:1. 在课堂上观察学生的参与度和理解程度;2. 布置作业,检查学生对有理数和无理数的判断和比较能力;3. 设计小测验,测试学生对有理数和无理数的运算规则的掌握情况。

教案扩展:1. 可以引导学生进行更深入的研究,了解无理数的性质和证明方法;2. 可以进行拓展性的活动,如让学生自行寻找一些无理数的例子并进行展示;3. 可以引导学生进行有理数和无理数的实际应用探究,如在几何图形中的应用等。

有理数与无理数苏教版数学初一上册教案

有理数与无理数苏教版数学初一上册教案

有理数与无理数苏教版数学初一上册教案
《数学初一上册》是苏教版的一本初中数学教材,以下是《数学初一上册》中有关有
理数与无理数的教案:
教案一:有理数的概念及表示
教学目标:
1. 理解有理数的概念和特点;
2. 掌握有理数的表示方法。

教学过程:
1. 复习:复习整数的概念和表示方法;
2. 引入:通过例题,让学生发现整数之间可以使用分数互相转换,引出有理数的概念;
3. 讲解:介绍有理数的定义,并讲解有理数的表示方法(分数、小数、整数);
4. 运用:设计一些练习题,让学生练习使用各种方法表示有理数。

教案二:无理数的定义和性质
教学目标:
1. 理解无理数的概念和特点;
2. 了解无理数的表示方法;
3. 掌握无理数的一些性质。

教学过程:
1. 复习:复习有理数的表示方法;
2. 引入:通过开平方的例子,让学生发现无理数的存在;
3. 讲解:介绍无理数的概念和定义,并讲解无理数的表示方法(根号、小数);
4. 拓展:讲解无理数的性质,如无理数与有理数的运算、无理数的比较等;
5. 运用:设计一些练习题,让学生练习使用无理数进行计算和比较。

以上是两个教案的简要介绍,具体的教学内容和教学方法可以根据《数学初一上册》教材的教学目标和教学内容进行拓展和调整。

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

有理数与无理数第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

有理数与无理数优秀教案

有理数与无理数优秀教案

有理数与无理数【教课目的】1.理解有理数的意义;知道无理数是客观存在的,认识无理数的观点。

2.会判断一个数是有理数仍是无理数。

经历数的扩大,在探究活动中感觉数学的迫近思想,领会“无穷”的过程,发展数感。

【教课重难点】要点:划分有理数与无理数, 知道无理数是客观存在的。

感觉夹逼法,估量无理数的大小。

难点:会判断一个数是有理数仍是无理数,领会“无穷”的过程。

【教课过程】1.回首整数与分数的观点、整数可表示为分母为 1 的分数。

如 55, 44, 0 0 。

1 11我们把能够写成分数形式 _________________________的数叫有理数。

2.把以下分数化成小数形式:3 =____________; 1=______________; 311=____________; 4=________。

5 3 100 15事实上,分数化成小数后要么是有限小数,要么是无穷的且 ________的小数,反过来一个有限小数或一个无穷的循环小数都能够化成一个分数,所以有限小数或无穷的循环小数都是 _________数。

与之相对应,我们把无穷不循环的小数叫做 _____________数。

3.典型例题将以下小数分类: 5.1,-3.14, ,0, ,1.696696669,1.696696669 ,,有限小数有 ;无穷小数有 ; 无穷循环小数有; 无穷不循环小数有;有理数有;无理数有;4.稳固练习:将以下各数填入相应括号内:, , 1 , ,0,,,6 421.414 213 56 ,- 2π, 3.303 003 000 3 , -3.141 592 6负数会合: {} ;正有理数会合: {} ;无理数会合: {}5.能力提高(1)以以下图,将两个边长为 1 的正方形分别沿着对角线剪开,拼成一个大正方形,设大正方形的边长为a,则 a 是整数吗?假如不是,用小数表示,保存两位小数,大概是多少?(2)你会将 0.33333......化为分数吗?怎样将0.2525252525......化为分数?【作业部署】负数会合: {}有理数数会合: {} 无理数数会合: {}。

苏教版七上数学2.2 有理数与无理数

苏教版七上数学2.2 有理数与无理数

苏教版七上数学2.2 有理数与无理数沂北中学建构式生态课堂七年级数学教案设计课题4: 2.2有理数与无理数姓名:教学内容:2.2有理数与无理数授课班级:七(2)备课人:张东林备课时间:教学过程: 一、板书课题同学们,本节课我们一起学习2.2有理数与无理数二、复习巩固练习:1、统称为整数,统称为分数2、判断:一个数,不是正数,就是负数非负数就是负数 0是正数,也是整数 -3.2是分数3、把下列各数分别填在相应的的集合里:(13分) 12+,-,0.23,0,-8.71,18,-1,3.41412,+12 37正数集合{ ......} 负数集合{ ......} 正整数集合{ ......} 整数集合{ ......} 分数集合{ ......}4、向东4千米记为+4千米,那么-8千米表示如果高于海平面20千米记为+20千米,则低于海平面18千米记为二、自学指导请同学们认真看课本第15―16页内容,思考: 1、什么是有理数?什么是无理数?2、你学过哪些无理数? 举出例子3、有理数的分类5分钟后看谁掌握得最好。

三、学生自学、交流1、学生按自学指导看书,教师巡视。

2、小组交流学习心得3、你还有哪些问题呢?四、自学反馈(一)、有理数的概念例1 下列说法正确的是()A、整数集合中仅包括正整数和负整数B、零是正整数C、分数都是有理数D、正数都是有理数练习:下旬说法中,不正确的是() A、有最小的正整数,没有最小的负整数 B、若一个数是整数,则它一定是有理数 C、0是整数,也是有理数 D、非负数就是正数沂北中学建构式生态课堂七年级数学教案设计(二)无理数的概念例2:下列数中:(1)-3,(2)-0.3,(3)-π,(4)-0.6 ,(5)22,(6)4, 71(7)0,(8)-,(9)1.2022002.....(每两个2之间的0的个数依次多1)。

3其中无理数是,整数是,负分数是,(填序号)练习:1、请把下列各数填入相应的集合中: 223-,π/5,0,3.14,-5,-7,7.152551...... 75整数集合:{ ...} 分数集合{ ...} 无理数集合{ ...}222、下列各数:0.123 ,-1.5,3.1416,,-2π,0.1020020002......若其中无理数7的个数为x,整数个数为y,非负数的个数为z,则x+y+z的值是多少?3、课本第17页练一练1 (三)有理数的分类例1 把下列各数填在相应集合的大括号内:14+6,-8.25,-0.4,0,-,9.15,-1,π/435整数集合:{ ...} 分数集合{ ...}非负有理数集合:{ ...} 正有理数集合{ ...} 负有理数集合:{ ...} 练习:把下列各数填在相应的括号内:174-7,3.5,-3.14159,π,0,,0.03,-3,10513自然数集合:{ ...} 整数数集合{ ...} 负数集合:{ ...} 正分数集合{ ...} 正有理数集合:{ ...}五、本课小结六、布置作业:学习指导第7-8页教后反思:沂北中学建构式生态课堂七年级数学教案设计2.2有理数与无理数达标测试姓名:得分:一、选择题(每题5分,共40分)1、关于数0,下列说法正确的是()A、0是正数B、0是负数C、0是整数D、0是最小的数 2、下列说法正确的是()A、整数包括正整数和负整数B、0是整数但不是正数C、正数、负数、0统称为有理数D、非负有理数是指正有理数3、检查商店出售的袋装糖果,糖果加袋按规定标准重量为503克,一袋糖果重量为504无,记作+1克,如果一袋糖果的重量记为-2克,那么这袋糖果的重量为()A、500克B、501克C、502克D、503克124、下列一组数:-8,2.6,-3,3,-5.7,-π/10中负分数有()个33A、1 B、2 C、3 D、42225、下列各数中:、8、1.414、π、3、1.2021020002...,有理数的个数是()73A、2 B、3 C、4 D、以上都不对 6、下列说法正确的是() A、非负有理数就是正有理数 B、零表示没有,不是自然数 C、无限小数一定是无理数 D、整数和分数都是有理数17、给出下列说法:(1)0是整数(2)-2是负分数;(3)4.2不是正数;(4)3自然数一定是正数;(5)负分数一定是负有理数,其中正确的有()个 A、1 B、2 C、3 D、4 8、下列说法正确的有()(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数谅是分数;A、1B、2C、3D、4 二、填空题(每空2分,共28分) 9、整数和统称为有理数;10、请写出二个无理数:;11、某洗衣粉袋子写着200g±3g,说明标准质量为,质量最多是,质量最少时,低于标准质量;112、在下列各数中:3,-4,π,2.45,0,-,整数有,分数有,3非负数有;13、有一组数列:2,-3,2,-3,2,-3,2,-3......根据这个规律,那么第2021个数是;14、仔细观察下列各数:1,-2,3,-4,5,-6,7,-8......其中第200个数应为,第2021个为;沂北中学建构式生态课堂七年级数学教案设计15、中午12时,水位低于标准水位0.5米记作-0.5米,下午1是水位上涨了1米,下午5时水位又上涨了0.5米,则下午1是的水位可记录为,下午5时的水位可记录为,下午5时的水位比中午12时的水位高米;三、把下列各数分别填在相应的集合里:(以下每题8分) 122-3,,0.3,0,-1.7,21,-2,1.01001,0.9191191119...+6,-4π 37负有理数集合:{ ...} 正整数集合{ ...} 整数集合:{ ...} 分数数集合{ ...} 非负有理数集合:{ ...} 无理数集合{ ...} 四、小明同学把2021年春节自己得到的压岁钱记了流水账:大伯给他500元;二伯给他200元,姑姑给他100元,妈妈给他200元,去年看电影花了30元,记作-30元,买文具花去80元,记作-80元,则他的账上余额还有多少元?五、有只小虫从点A出发在一条直线上来回爬行,下面是它爬行的情况:先向右爬行3cm,再向左爬行1cm,接着又向右爬行5cm,然后再向左爬行了3cm,再向左爬行7cm,又向右爬行3cm,最后又向左爬行了10cm (1)用正、负数表示小虫向右或向左爬行的路程(2)猜测一下,小虫最后的位置离出发点A有多远?方向在起点A的左方还是右方呢?六、观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数,第101个数,第2021个数是什么吗?(1)-1,-2,+3,-4,-5,+6,-7,-8,,,,...1111(2)-1,,-3,,-5,,-7,,,,,...2468感谢您的阅读,祝您生活愉快。

有理数概念教案

有理数概念教案

有理数概念教案教案标题:引入有理数概念教学目标:1. 理解有理数的概念和特点。

2. 能够区分有理数和无理数。

3. 掌握有理数的表示方法和运算规则。

教学准备:1. 教师准备:教师需要提前了解有理数的概念和相关知识,并准备好相关教学资源和示例。

2. 学生准备:学生需要具备对整数的基本理解和运算能力。

教学过程:一、导入(5分钟)1. 引入话题:教师可以通过提问或展示相关图片等方式引起学生对有理数的兴趣。

2. 回顾整数:复习整数的概念和表示方法,引导学生思考整数的特点。

二、概念讲解(15分钟)1. 定义有理数:教师简明扼要地给出有理数的定义,并解释有理数包括正数、负数和零。

2. 特点解释:教师引导学生讨论有理数的特点,如有理数可以表示为分数的形式,有理数可以进行四则运算等。

三、区分有理数和无理数(15分钟)1. 引入无理数:教师简单介绍无理数的概念,并与有理数进行对比。

2. 举例说明:教师通过示例或实际生活中的情境,让学生区分有理数和无理数的特点。

四、表示方法和运算规则(20分钟)1. 表示方法:教师向学生介绍有理数的表示方法,包括数轴表示法和分数表示法,并通过示例进行演示。

2. 运算规则:教师向学生讲解有理数的加减乘除运算规则,并通过练习题进行巩固。

五、练习与巩固(15分钟)1. 练习题:教师布置一些练习题,要求学生运用所学知识进行计算和解答。

2. 答疑与讨论:教师与学生一起讨论练习题的解答方法和答案,解决学生的疑惑。

六、作业布置(5分钟)1. 布置作业:教师布置适量的作业,要求学生巩固有理数的概念和运算规则。

2. 提醒复习:教师提醒学生下节课将对有理数进行进一步的应用和拓展。

教学反思:本节课通过引入有理数的概念,让学生理解有理数的定义和特点,并能够区分有理数和无理数。

通过讲解有理数的表示方法和运算规则,培养学生对有理数的运算能力和应用能力。

同时,通过练习和讨论,巩固学生对所学知识的理解和掌握。

在教学中,教师可以根据学生的实际情况进行灵活调整和适当延伸,以提高教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数与无理数教案
有理数与无理数
初一数学 2.2有理数与无理数
主备:陈秀珍审核:日期:2012-9-1
学习目标:1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。

2.会判断一个数是有理数还是无理数。

经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。

教学重点:区分有理数与无理数,知道无理数是客观存在的。

感受夹逼法,估算无理数的大小。

.
教学难点:会判断一个数是有理数还是无理数,体会“无限”的过程。

教学过程:
一. 自主学习(导学部分)
1、我们上了六多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?
在小学我们学过自然数、小数、分数.,在初一我们还学过负数。

我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充了范围,
从形式上来看,我们学过的一部分数又可以分为整数和分数。

我们能够把整数写成分数的形式吗?如:5,-4,0,可以吗?可以!如5= ,-4= ,0= 我们把可以化为分数形式
“mn(m、n是整数,nne;0)”的数叫做有理数;
2、想一想:小学里我们还学过有限小数和循环小数,它们是有理数吗?有限小数如0.3,-3.11,能化成分数吗?
它们是有理数吗?0.3= ,-3.11= ,它们是有理数。

请将1 /3,4/15 ,2/9写成小数的形式。

1/3=0.333...,4/15=0.26666...,2 /9=0.2222..... 这些是什么小数?循环小数,反之循环小数也能化为分数的形式,它们也是有理数! 循环小数如何化为分数可以一起学习书
P17、读一读
二.合作、探究、展示
有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
1.议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形。

(1) 设大正方形的边长为a,a满足什么条件?
(2) a可能是整数吗?说说你的理由。

(3) a可能是分数吗?说说你的理由
(1)a是正方形的边长,所以a肯定是正数.因为两个
小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.
(2)“12=1,22=4,32=9,...越来越大,所以a不可能是整数”,因为2个正方形的面积分别为1,1,而面积又等于边长的平方,所以面积大的正方形边长就大,因为a2大于1且a2小于4,所以a大致为1点几,即可判断出a 是大于1且小于2的数。

(3)因为,两个相同分数因数的乘积都为分数,所以a不可能是分数.也可按书P16、问题6选取无限多大于1且小于2的两个相同分数的乘积来考查。

体会“无限”的过程,认可找不到一个数的平方等于2,即a 也不可能是分数。

在等式a2=2中,a既不是整数,也不是分数,也就是不能写成 mn 的形式,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.
2、算一算:
边长a 面积S
1
1.4
1.41
1.414
1.4142
(1) a肯定比1大而比2小,可以表示为1
a=1.41421356,还可以再继续进行,且a是一个无限不循环小数.
(2)请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
b=2.236067978,还可以再继续进行,b也是一个无限不循环小数.
除上面的a,b外,圆周率pi;=3.14159265也是一个无限不循环小数,0.5858858885(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.
3、有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.三.巩固练习
1.判断题. (1)无理数都是无限小数. (2)无限小数都是无理数.
(3)有理数与无理数的差都是有理数. (4)两个无理数的和是无理数.
2.把下列各数填在相应的大括号内:35,0,pi;3,
3.14,-23,227,49,-0.55,8,1.121 221 222 1(相邻两个1之间依次多一个2),0.211 1,999
正数集合:{ };负数集合:{ };
有理数集合:{ }; 无理数集合:{ }.
3.以下各正方形的边长是无理数的是( )
(A)面积为25的正方形;(B)面积为16的正方形;(C)面积为3的正方形;(D)面积为1.44的正方形.
四.课堂小结
1.什么叫无理数?
2.数的分类?
3.如何判定一个数是无理数还是有理数.
五.布置作业 P17/1 P60/1
六.预习指导
教学反思:
具有相反意义的量学案
有理数的加法与减法3
更多初一数学教案请关注。

相关文档
最新文档