第1章(补充)气体分子平均自由程

合集下载

4-4 气体分子碰撞和平均自由程

4-4 气体分子碰撞和平均自由程

单原子
i3
刚性双原子 i 5
刚性多原子 i 6
3.能均分定理
在温度为T 的平衡态下, 物质分子的每一个
自由度都具有相同的平均动能, 其大小为 1 kT. 2
4.每个分子的平均总动能
i kT
2 5.1mol 理想气体的热力学能
i
i
E0 N 0(2 kT ) 2 RT
6.质量为M 的理想气体的热力学能
所以
Z 2 d 2vn
上式表明
平均碰撞次数与分子数密度,分子平均速 率成正比,也是与分子的直径的平方成正比.
把 Z 2 d 2vn代入


上式表明
vt v Zt Z
1
2 d 2n
平均自由程与分子碰撞截面、分子数密度 成反比,而与分子平均速率无关。
因为 所以
p nkT

kT
2 d 2 p
上式表明

kT
2 d 2 p
当气体的温度给定时,气体的压强越大 (即气体越密集),分子的平均自由程越短; 反之,若气体压强越小(即气体越稀薄),分 子的平均自由程越长.
4.4.3 例题分析
例1 求在标准状态下,空气分子的平均自由程、 平均速率及平均碰撞次数.(已知空气的平均摩 尔质量为 2910-3kg·mol-1, 空气分子的有效直 径为3. 5 10-10m).
上式表明
分子间碰撞越频繁,平均自由程越小。
(1) 假设分子中只有一个分子A以平均速 率 v 运动,其余分子都静止不动。 请看动画演示
这样,凡是中心与
A分子中心的距离小
于或等于有效直径d
A
dd
的分子,都要与A分子
相碰。

气体分子平均自由程

气体分子平均自由程
分子的无引力的弹性刚球模型与理想气体微观模型相比,同样忽略了分
子间的引力,但考虑了分子斥力起作用时两个分子质心间的距离,即考虑了 分子的体积,而不象理想气体,忽略了分子本身的大小。

4
自由程 : 分子两次相邻碰撞之间自由通过 的路程 .
5
气体分子平均自由程(mean free path) 平均自由程λ 为分子在连续两次碰撞之间所自 由走过的路程的平均值。
dN K exp( Kx)dx N0

18
由分子自由程的概率分布可求平均自由程 dN K exp( Kx)dx N0
1 K exp( Kx) xdx K 0
dN Kdx N
N Kdx Ln N
0 0
x
N N 0 exp( Kx )

17
N N 0 exp( Kx )
表示从 x =0 处射出了刚被碰撞过的N0个分子,它们 行进到 x 处所残存的分子数 N 按指数衰减。 对上式之右式两边微分,得到
既然(-dN )表示 N0 个分子中自由程为 x 到x + dx 的平均分子数,则(-dN /N0 )是分子的自由程在 x 到 x + dx范围内的概率。这就是分子自由程的概率分布。 即分子按自由程分布的规律。
Z 2 π d vn
2
v 1 2 z 2π d n
当气体较稀薄时
p nkT
1 T 一定时 p

kT 2π d 2 p
p 一定时
T

11
例 计算空气分子在标准状态下的平均自由程 10 和碰撞频率。取分子的有效直径 d 3.5 10 m 已知空气的平均相对分子量为29。 解: 标准状态下

在大气层外层的气体分子平均自由程

在大气层外层的气体分子平均自由程

在大气层外层的气体分子平均自由程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!大气层外层是地球大气层的顶部区域,这里的气体非常稀薄,主要由氢和氦组成。

气体分子的平均自由程输运过程的宏观规律输运过程的微观解释

气体分子的平均自由程输运过程的宏观规律输运过程的微观解释

一.热传导现象的宏观规律
热传导是热传递的三种方式(热传导.对流.热辐射)之一,它是当气体各处温度不均匀时 热量由温度高处向温度低处输运的过程.
1. dQ dS 2. dQ dt 3. dQ dT dz z0
2
2
在 T = 300K 时:
气体 J (10-46kgm2 )
2 kT
J
(s1)
H2 O2 N2 CO 2
0.0407 1.94 1.39 1.45
3.19× 1013 4.62 × 1012 5.45 × 1012
5.34× 1012
z 分子在碰撞中可视为球形
§2. 输运过程(transport process)
vt v 1
p nkT
Zt Z 2d 2n
二. 平均碰撞频率与平均自由程的关系
理想气体,在平衡态下,并假定:
kT
2d 2 p
(1)只有一种分子; (2)分子可视作直径为 d 的刚球; (3)被考虑的分子以平均相对速率 u 运动, 其余的分子静止。
中心在 扫过的柱体内的分子都能碰撞
3
dz z0
3
例5-2.实验测得标准状态下氢气的粘滞系数为 的平均自由程和氢气分子的有效直径.
8.5 .试10 求6 kg氢m气1s 1
解:根据
1 v 解出 ,并将, v的有关公式代入, 得
3
3 3 RT 3 RT 1.66107 (m)
气体的黏度随温度升高而增加,液体的黏度随温度升高而减少。
根据动量定理:dk=fdt,有:
dk du dSdt
dz z0
由于动量沿流速 减小的方向

06-6气体分子的平均自由程

06-6气体分子的平均自由程

我们需要探讨分子之间相互碰撞的规律! 我们需要探讨分子之间相互碰撞的规律!
任一个分子在什么时间与其他分子发生碰撞 以及与哪个分子碰撞都不是我们想关心的
1 平均碰撞频率 Z
单位时间内一个分子平均 碰撞的次数
如何计算分子的平均碰撞频率呢? 如何计算分子的平均碰撞频率呢? 追踪一个分子A, 追踪一个分子 ,计算单位时间内与该分 子相碰的分子数
σ = πd
σ u∆t
2
时间内,分子A走过的路程 在 ∆t 时间内,分子 走过的路程 相应圆柱体的体积
u∆t
在 ∆t 时间内,分子A与 时间内, , 设分子数密度n,该 设分子数密度分子 与 其他分子的碰撞次数 圆柱体内总分子数
nπd u ∆t
2
根据麦克斯韦速率分布 根据麦克斯韦速率分布 律,气体分子的平均相 对速率与分子的平均速率存在下列关系 平均碰撞频率

A. Z 和λ 都增大一倍 B. Z 和λ 都减为原来的一半 C. Z 增大一倍而 减为原来的一半 增大一倍而λ D. Z 减为原来的一半而 增大一倍 减为原来的一半而λ
u = 2 ⋅v
nπd
2
Z=
2 v ∆t 2 = nπd 2 v ∆t
2 分子的平均自由程 λ
一个分子在连续两次碰撞之间所经过的自 由路程的平均值 单位时间内分子走过的平均路程为 v 单位时间内分子与其他分子平均碰撞次数 Z 分子的平均自由程
1 v v = λ= = 2 2 2nπd Z nπd 2 v
追踪一个分子a计算单位时间内与该分子相碰的分子数分子间碰撞的简化模型把所有分子视为有效直径为d的刚性小球假设其他分子静止不动只有分子a在它们之间以平均相对速率运动以分子a的运动轨迹为轴线分子有效直为半径作一曲折圆柱体凡是分子中心在此圆柱体内的分子都会与分子a相碰圆柱体的截面积又称分子的碰撞截面设分子数密度n该圆柱体内总分子数时间内分子a与其他分子的碰撞次数根据麦克斯韦速率分布律气体分子的平均相对速率与分子的平均速率存在下列关系平均碰撞频率一个分子在连续两次碰撞之间所经过的自由路程的平均值分子的平均自由程nkt分子的平均自由程与平均速率无关与分子的有效直径及分子数密度有关当温度一定时分子的平均自由程与气体压强成反比

理想气体的平均自由程和碰撞频率

理想气体的平均自由程和碰撞频率

思考题
1、容器内储有一定量的气体,保持容积不变, 使气体温度升高,则分子的平均碰撞频率和平均自 由程各怎样变化?
2、理想气体定压膨胀时,分子的平均自由程和 平均碰撞频率与温度的关系如何?
分子的碰撞截面 =3.85 ×10-15 cm2 ,求在标准状态下,
空气分子的平均自由程和平均碰撞频率。
解: 标准状态下 T 273K p 1.013105 Pa kT kT 6.83108 m 2 d 2 p 2 p
v 8RT 446m s1
M
Zv
446 6.83108
6.53109 s1
t
考虑其它分子的运动,由统计理论可知: u 2 v
Z 2 d 2nv
vZ
一秒钟内分子走过的平均路程为 v
一秒钟内与其它分子发生碰撞的平均次数为 Z
平均自由程 v
Z
1 2 d 2n
p nkT
kT
2 d 2 p
——平均自由程与压强的关系
例题:已知空气的摩尔质量为 M= 29 ×10-3 kg·mol-1
2、只有一个分子A 在运动,其它分子都认为是静
止不动的,且A 运动的相对速率为 u 。
t 时间内A分子走过的路程为: s ut
V d2 u t
在体积V 内的所有 其它分子在t 时间 内都与A 碰撞 设分子数密度为n
A 分子在t 时间内与其它分子碰撞的次数: n d 2u t
分子平均碰撞频率
Z n d 2ut n d 2u
❖平均自由程 mean free path :
分子在连续两次碰撞之间所经过的自由程的平均值。
❖平均碰撞频率 mean collision frequency Z : 单位时间内一个分子和其它分子碰撞的平均次数。

热学气体分子平均自由程


气体分子的碰撞截面
碰撞截面
截面对平均自由程的影响
气体分子间的碰撞截面决定了分子间 的相互作用和碰撞概率。
碰撞截面越大,分子间的碰撞概率越 高,平均自由程越短。
截面大小
不同气体分子间的碰撞截面大小不同, 与分子间的距离和相互作用力有关。
气体分子的能量损失
能量损失
01
气体分子在碰撞过程中会损失能量,导致平均自由程的变化。
特性
与气体分子的速度、气体分子的分布、气体分子的碰撞频率等因素有关。
平均自由程与气体分子碰撞频率的关系
碰撞频率
气体分子在单位时间内所发生的碰撞 次数。
关系
平均自由程与气体分子碰撞频率成反 比,碰撞频率越高,平均自由程越小。
平均自由程在热学中的重要性
热传导
平均自由程是影响气体热传导的重要因素之一,通过 改变平均自由程可以调节气体的热传导性能。
总结词
在高温高压条件下,气体分子间的相互 作用力减弱,分子间的碰撞频率降低, 因此平均自由程较大。
VS
详细描述
在高温高压条件下,气体分子间的平均距 离增大,分子间的碰撞频率减少,导致气 体分子的平均自由程增大。这种情况下, 气体分子的运动受到的相互碰撞的限制较 小,运动路径较长。
04 气体分子平均自由程的影 响因素
探索气体分子平均自由程在极端条件下的行为
研究高温、高压、高密度等极端 条件下气体分子平均自由程的变 化规律,揭示其与温度、压力、
密度的关系。
探讨极端条件下气体分子与障碍 物的相互作用,以及气体分子间 的相互作用,以理解其行为特性。
研究极端条件下气体分子输运性 质的变化,为相关领域的应用提
供理论支持。
感谢您的观看

大学热学第七讲平均自由程


牛顿粘滞定律 傅立叶传导定律 菲克扩散定律
4. 平均自由程理论处理输运的特点:
理论不严格,结果不准确 理论简单,有效揭示实质。
第四章 气体内的输运过程
§4.1 气体分子的平均自由程 §4.2 输运过程的宏观规律 §4.3 输运过程的微观解释
§4.1 气体分子的平均自由程
• 气体的输运过程来自分子的热运动 v ~ 500m / s l v • 气体分子运动过程中经历十分频繁的碰撞 z ~ 6.5109 / s
H.D.玻尔 (N.H.D.Bohr) 1885~1962 丹 麦人,关于 原子结构以 及原子辐射 的研究.
1900年——quantum
普朗克(M.Planck) 1858~1947 德国人提出量子假说.
1905—relativity
爱因斯坦(A.Einstein) 1879~1955德国和瑞士 人,数学物理学的成就,特别是光电效应定律的 发现.
费米(E.Fermi)1901~1954 意大利人,37岁 发现由中子照射产生的新放射性元素并用慢中子实 现核反应
量子力学
2
2
U(r)
E
薛 定 谔 (E.Schrodinger) 1887~1961 奥地利人
创立波动力学理论
四. 经典理论的缺陷
1. 振动能对热容量的影响
2
2
U(r)
E
U( x) 1 kx2 1 m 2 x2 2
第二章 气体分子运动论的
论 平
基本概念

态 理
第三章 气体分子热运动

速率和能量的统计分布律
非平衡态
平衡态
普里戈金的早 期工作在化学 热力学领域, 1945年得出了 最小熵产生原 理,此原理和 翁萨格倒易关

3.5气体分子平均自由程


4. 1/ 4. 1/ 4 . 4.
f(v) a b
p O 2
p O 2
O
1
4
v
p O 2
p H 2
2. 一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们 平均动能 都处于平衡状态,则它们 (A) 温度相同、压强相同. (B) 温度、压强都不相同.
(C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.
例:标况下பைடு நூலகம்气分子的平均自由程:

v 446 m 6.9 108 m 9 Z 6.5 10
与分子直径3.5×10-10m相比,标况下是其d的200倍。
第二章复习小结
一、概率的基本性质及求平均值的方法 1等概率性
2运算法则
3平均值公式 4概率分布函数
二、麦克斯韦速率、速度分布
1两种分布曲线 2三种统计速率 3速度空间、代表点 三、重力场中自由粒子分布、等温大气压强公式
3. 在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来 的2倍,则 (A) 温度和压强都提高为原来的2倍.
(B) 温度为原来的2倍,压强为原来的4倍.
(C) 温度为原来的4倍,压强为原来的2倍. (D)温度和压强都为原来的4倍. 4.
5. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为(
v v12 2 作如下近似: v12 v1 2 2 v2 v 2
2 12 2
v12 2 v
3、分子平均自由程
平均自由程▬▬分子两次碰撞之间所走过的平均路程。
Z 2nv
vt 1 kT 2n 2 p Zt
上式表明:自由程与平均速率无关,但与n成反比,若T不变, 则与p成反比。 说明:分子平均自由程主要应用于解释输运现象及经典物理量 的近似估算。

3.5气体分子平均自由程详解


3. 在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来 的2倍,则 (A) 温度和压强都提高为原来的2倍.
(B) 温度为原来的2倍,压强为原来的4倍.
(C) 温度为原来的4倍,压强为原来的2倍. (D)温度和压强都为原来的4倍. 4.

v 446 m 6.9 108 m 9 Z 6.5 10
与分子直径3.5×10-10m相比,标况下是其d的200倍。
第二章复习小结
一、概率的基本性质及求平均值的方法 1等概率性
2运算法则
3平均值公式 4概率分布函数
二、麦克斯韦速率、速度分布
1两种分布曲线 2三种统计速率 3速度空间、代表点 三、重力场中自由粒子分布、等温大气压强公式
经上述分析,存在一个以分子A的质心 为圆心、d为半径垂直于射线束的圆: 所有射向圆区的分子都有不同程度的散 射,而圆外区域分子轨迹不发生偏折。
定义:分子散射截面: d 2
对两个分子有效直径分别为d1和d2的分子,其碰撞截面:
d1 d 2 1 2 d d 1 2 2 4
2
(A) 图中a表示氧气分子的速率分布曲线; v p O
v (B) 图中a表示氧气分子的速率分布曲线; v v (C) 图中b表示氧气分子的速率分布曲线; v v (D) 图中b表示氧气分子的速率分布曲线; v v
2
2
p H 2 p H 2 p H 2
2
2、分子间平均碰撞频率
分子间平均碰撞频率▬▬单位时间内一个分子的平均碰撞次数。 转换研究对象,现在假设B分子束相对静止,A分子以相对速度v12 运动,其运动发生碰撞的轨迹如图: A分子每碰到一个视为质点的B分子就 改变一次运动方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中n是气体分子数密度, 是A分子相对于其它分子运 动的平均速率。 统计物理严格证明可得,处于平衡态的化学纯理想气体 中分子平均碰撞频率为
Байду номын сангаас
说明在温度不变时压强越大(或在压强不变时,温度越 低)分子间碰撞越频繁。 注意这里没有把其它分子看为质点,而是刚球。
气体分子平均自由程
理想气体分子在两次碰撞之间可近似认为不受到分子作用, 因而是自由的。 分子两次碰撞之间所走过的路程称为自由 程,以λ表示。
碰撞截面
图表示B 分子(均视作质点)平行射向静止的A 分子 时,B 分子的轨迹线.A 分子的质心在O。由图可见,B 分子在接近 A 分子时受到 A 的作用而使轨迹线发生偏 折。若定义 B 分子射向A分子时的轨迹线与离开A分子 时的迹线间的交角为偏折角 偏折角随B分子与O点间垂直距离b增大而减小。令当 b 增大到偏折角开始变为零时的数值为d, 则d 称为分子 有效直径
表示同种气体在温度一定时,平均自由程与压强成 反比。
任一分子的任一个自由程的长短都有偶然性,自由程的平 均值由气体的状态所唯一地确定。 一个以平均速率运动的 分子,它在 t 秒内平均走过的路程和平均经历的碰撞次数分 别为 故平均两次碰撞之间走过的距离即为平均自由程
平均自由程公式
表示对于同种气体, 表示对于同种气体,平均自由程与 n成反比,而与平均速率无关 成反比, 成反比 而与平均速率无关.
第1章(补充)气体分子平均自由程
气体的输运过程来自分子的热运动。 气体分子运动过程中经历十分频繁的碰撞。 碰撞使分子不断改变运动方向与速率大小,使分子行进了十 分曲折的路程 碰撞使分子间不断交换能量与动量。 而系统的平衡也需借助频繁的碰撞才能达到。 本节将介绍一些描述气体分子间碰撞特征的物理量: 碰撞 截面、平均碰撞频率及平均自由程。
分子间平均碰撞频率
研究气体分子之间的碰撞时,更关心的是单位时间内 一个分子平均碰撞了多少次,即分子间的平均碰撞频 率。 在讨论碰撞截面时假定视作盾牌的被碰撞的A分 子静止,视作质点的B分子相对A运动,去碰撞A。
现在反过来,认为所有其它分子都静止,而A分子相 对于其它分子运动,显然A分子的碰撞截面这一概念仍 适用。 这时A分子可视为截面积为s的一个圆盘,圆盘 沿圆盘中心轴方向以速率v12 运动。 这相当于一盾牌 以相对速率v12向前运动,而“箭”则改为悬浮在空间 中的一个个小球。
碰撞(散射) 碰撞(散射)截面
下图是对分子碰撞过程较为直观而又十分简单的定性分析, 图是对分子碰撞过程较为直观而又十分简单的定性分析, 在分析中假定两分子作的是对心碰撞。 在分析中假定两分子作的是对心碰撞。 实际上两分子作对心碰撞概率非常小, 实际上两分子作对心碰撞概率非常小, 大量发生的是非对心碰撞 下面讨论非对心碰撞 非对心碰撞
由于平行射线束可分布O的四周,这样就以O为圆心
“截”出半径为d的垂直于平行射线束的圆。 所有 射向圆内区域的视作质点的B分子都会发生偏折,因 而都会被A分子散射 . 所有射向圆外区域的B分子 都不会发生偏折,因而都不会被散射。 圆的面积 s = πd 2 称为分子散射截面,也称分子碰 撞截面。 碰撞截面中最简单的情况是刚球势的碰撞 截面 。 不管两同种分子相对速率多大,分子有效直 径总等于刚球的直径 . 刚性分子碰撞截面可比喻为古 代战争用的盾牌,而被碰撞的其它视为质点的B分子 可比喻为箭。
圆盘每碰到一个质点的其它分子就改变运动方向一次,因 而在空间扫出如图那样的其母线呈折线的“圆柱体” 只有 那些其质心落在圆柱体内的分子才会与A 发生碰撞。 B和C 分子的质心都在圆柱体内,使A分子改变运动方向,图中其 它分子的质心均在圆柱体外,它们都不会与A碰撞。 单位时间内A分子所扫 出的“圆柱体”中的平均质点数, 就是分子的平均碰撞频率
相关文档
最新文档