应用一元一次方程追赶小明教案

合集下载

5.6.应用一元一次方程-追赶小明(教案)

5.6.应用一元一次方程-追赶小明(教案)
d.解决学生在移项、合并同类项等操作中常见的错误。
-举例解释:对于上述小明跑步的问题,学生可能会在将时间单位从分钟转换为小时时出现错误,或者在对等式进行操作时忘记乘除法的规则。教师需要通过具体例题和反复练习,帮助学生理解和掌握这些难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《应用一元一次方程-追赶小明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人在不同速度下开始跑,最后一个人追上另一个人的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程在实际问题中的奥秘。
5.6.应用一元一次方程-追赶小明(教案)
一、教学内容
本节课选自教材第五章第六节,主题为“应用一元一次方程-追赶小明”。教学内容主要包括以下几个方面:
1.理解速度、时间和路程的关系,掌握公式:路程=速度×时间。
2.学习如何将实际问题转化为数学方程,通过解一元一次方程解决追赶小明的实际问题。
3.通过追赶小明的实例,让学生掌握以下知识点:
2.提升学生的逻辑推理能力:在解决追赶小明问题的过程中,学会运用等式性质和方程求解方法,培养学生严密的逻辑思维和推理能力。
3.增强学生的数学应用意识:将所学的一元一次方程应用于解决实际问题,让学生体会数学与现实生活的紧密联系,提高解决实际问题的能力。
三、教学难点与重点
1.教学重点
-核心内容:一元一次方程在实际问题中的应用,特别是速度、时间和路程的关系。
2.教学难点
-难点内容:学生对于将实际问题转化为数学方程的过程,以及解方程时对等式性质的理解和运用。
-难点突破:
a.帮助学生理解实际问题背后的数学模型,特别是如何将描述性的语言转化为数学表达式。

应用一元一次方程——追赶小明教案

应用一元一次方程——追赶小明教案

应用一元一次方程——追赶小明教案《应用一元一次方程——追赶小明教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标【知识与技能】1.通过“线段题”分析题目中的数量关系,找出等量关系.2.运用一元一次方程解决行程问题.【过程与方法】通过运用一元一次方程解决行程问题,进一步体会方程模型的作用,培养分析问题,解决问题的能力.【情感态度价值观】结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣.【教学重点】找出追及问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.【教学难点】借助“线段图”分析复杂问题中的数量关系.课前准备课件教学过程一、情境导入,初步认识在小学我们就学习过运用方程解决行程问题,你还记得路程、速度、时间三个量之间的关系吗?【教学说明】学生通过回忆,掌握行程问题的基本关系式.二、思考探究,获取新知1.追及问题问题1 教材第150页最上方的彩图及图相关的内容问题.【教学说明】学生根据题意画出线段图,借助线段图加以分析,尝试完成.【归纳结论】追及问题中的等量关系:快者行走的路程-慢者行走的路程=追及路程.2.相遇问题问题2 甲、乙两人从相距180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时,经过多少时间两人相遇?【教学说明】学生通过思考、分析,与同伴进行交流,最后展示自己的解答过程.【归纳结论】相遇问题中的等量关系:甲的行程+乙的行程=甲、乙出发点间的路程;若甲、乙同时出发,则甲行的时间=乙行的时间.3.航行问题问题3 一艘轮船在A、B两地之间航行,顺流用3.3h,逆流航行比顺流航行多用30min,轮船在静水中的速度为26km/h,求水流的速度.【教学说明】学生通过思考、分析,与同伴进行交流,尝试完成.【归纳结论】顺水中的航速=静水中的航速+水流速度,逆水中的航速=静水中的航速-水流速度.4.开放探究性问题问题4 育红学校七年级学生步行到郊外旅行,七(1)班的学生组成前队,步行速度为4km/h,七(2)班的学生组成后队,速度为6km/h,前队出发1h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h,根据上面的事实提出问题并尝试去解答.【教学说明】对于问题4,并没有提出问题,需要学生根据已知条件,提出合理的问题,再运用所学知识进行解答.学生可以提出不同的问题,然后与同伴进行交流.三、运用新知,深化理解1.甲的速度是5km/h,乙的速度是6km/h.两人分别从A、B两地同时出发,相向而行,若经过4h相遇,则A、B的距离是_____km;若经过6h还差10km相遇,则A、B的距离是_____km.2.甲、乙两同学从学校到县城,甲每小时走4km,乙每小时走6km,甲先出发1h,结果乙比甲早到1h.则学校与县城间的距离是_____km.3.甲、乙两人都从A地到B地,甲步行每小时走5km,先走了1.5h,乙骑自行车走了50min,两人同时到达B地,乙每小时骑多少千米?4.一船航行于A、B两个码头之间,顺水航行需3h,逆水航行需5h,已知水流速度为4km/h.求两码头之间的距离.【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决行程问题的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.44 762.243.设乙每小时骑xkm,由题意得:5×(1.5+5/6)=5/6x解得x=14所以乙每小时骑14km.4.设船在静水中的进度为x km/h,由题意得3(x+4)=5(x-4)解得x=16,则3(x+4)=60所以两码头之间的距离为60km.四、师生互动,课堂小结1.师生共同回顾应用一元一次方程解决行程问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.课后作业:1.布置作业:从教材“习题5.9”中选取.2.完成练习册中本课时的相应作业.教学反思:本节课从学生运用一元一次方程解决行程问题,到探究开放性问题,培养学生分析问题,解决问题的能力,激发学生的学习兴趣.应用一元一次方程——追赶小明教案这篇文章共4983字。

七年级数学上册《应用一元一次方程追赶小明》优秀教学案例

七年级数学上册《应用一元一次方程追赶小明》优秀教学案例
二、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法,并能将其应用于解决实际问题。
2.能够根据实际问题,找出等量关系,正确列出相应的一元一次方程。
3.掌握一元一次方程在实际问题中的运用,如速度、时间、距离等关系,提高数学应用能力。
4.学会运用一元一次方程解决追赶小明等问题,培养分析和解决实际问题的能力。
5.引导学生关注生活,发现生活中的数学问题,培养他们学以致用的意识。
本章节教学目标旨在使学生在掌握一元一次方程知识的基础上,提高解决实际问题的能力,培养他们的数学思维和综合素质。在教学过程中,关注学生的情感态度与价值观的培养,使他们形成积极向上的学习态度,为今后的学习生活奠定坚实基础。
三、教学策略
(一)情景创设
(二)过程与方法
1.通过小组合作、讨论交流,培养学生团队协作能力和沟通能力。
2.引导学生运用数学思维,将实际问题抽象为数学模型,培养学生数学建模能力。
3.在解决实际问题的过程中,引导学生进行观察、分析、归纳,培养他们的逻辑思维能力。
4.注重启发式教学,激发学生的学习兴趣,引导学生主动探究、自主学习。
3.小组合作,促进交流
小组合作是本案例的一大亮点。学生分组讨论、共同解决问题,有助于培养团队协作精神和沟通能力。在小组合作过程中,学生能够相互借鉴、取长补短,共同提高,使课堂氛围更加活跃。
4.反思与评价,提升自我
本案例注重学生的反思与评价,帮助他们在总结学习经验的基础上,提高自身学习能力。通过自我反思和互相评价,学生能够认识到自己的不足,学习他人的优点,从而不断提升自我。
故事背景设定为学生们熟悉的生活场景:小明在操场上跑步,同学们想要追赶他。在此过程中,学生需要运用一元一次方程来计算追赶小明所需的时间。这样的案例设计既符合学生的认知水平,又能激发学生的学习兴趣,促使他们主动参与到课堂教学中来。

北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计

北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计
北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法,并能运用到实际情境中。
2.能够根据实际问题,找出数量关系,正确列出相应的一元一次方程。
3.能够运用等式的性质,进行方程的化简与求解,解决实际问题。
4.通过解决实际问题,提高学生的观察、分析、归纳和解决问题的能力。
b.实例演示:给出具体实例,展示如何根据实际问题列出方程。
c.学生跟随:让学生跟随教师一起列出方程,加深理解。
d.知识拓展:介绍一元一次方程在其他实际问题中的应用,如购物、计费等。
(三)学生小组讨论
1.教学内容:小组合作,共同解决实际问题。
2.教学方法:采用分组合作、交流讨论的方式。
3.教学过程:
a.分组:将学生分成若干小组,每组分配一个实际问题。
1.培养学生积极参与数学学习的兴趣,激发学生学习数学的热情。
2.培养学生面对问题,勇于挑战、积极思考的良好习惯。
3.通过解决实际问题,让学生体会数学与生活的紧密联系,感受数学的实用价值。
4.培养学生合作交流、共同解决问题的团队精神,增强集体荣誉感。
在设计“应用一元一次方程追赶小明”的教学活动时,我将结合学生的实际情况,以生活情境为背景,引导学生运用一元一次方程解决实际问题。通过丰富多样的教学手段,激发学生的学习兴趣,培养学生的数学思维能力,提高他们解决实际问题的能力。同时,注重培养学生的情感态度与价值观,使他们在学习过程中,获得成功的体验,增强自信心,形成积极向上的学习态度。
4.精讲多练,提高学生的解题技能。在教学过程中,教师进行适当的讲解,为学生提供丰富的练习机会,使学生在实践中不断提高解题能力。

应用一元一次方程-追赶小明教学设计

应用一元一次方程-追赶小明教学设计

应用一元一次方程-追赶小明教学设计
一、教学目标:
1.了解一元一次方程的概念和基本形式。

2.掌握如何根据题目中给出的条件,列出一元一次方程。

3.能够运用所学知识解决实际问题。

二、教学重点难点:
1.如何在实际问题中找到关键信息,确定未知量。

2.如何根据题目中给出的条件,列出一元一次方程。

三、教学过程设计:
1.引入
(1)介绍一元一次方程的概念和基本形式。

(2)给学生举一个例子:小明和小红同时从A地出发,小明的速度为v1,小红的速度为v2,小明比小红早t小时到达B地,求B地与A地的距离d。

(3)让学生思考,该问题中未知量是什么?应该如何列出一元一次方程?
2.操作环节
(1)通过黑板演示和讲解,介绍如何列出一元一次方程。

(2)组织学生进行课堂练习,检验学生的掌握情况。

(3)设计一个小游戏:小明和小红在一个L型迷宫中,小明需要追上小红,求小明最短需要多长时间才能追上小红。

3.巩固练习
(1)提供一些实际问题,让学生自行找出未知量,并列出一元一次方程。

(2)设计小组讨论活动,让学生在小组内交流思路,互相帮助解决问题。

四、教学评价:
1.通过日常练习和考试,检验学生对于一元一次方程的理解和应
用能力。

2.及时反馈学生的表现和问题,并在教学过程中进行引导和辅导。

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容是北师大版数学七年级上册的一部分,主要介绍了如何利用一元一次方程解决实际问题。

通过小明和同学之间的追赶游戏,引出一元一次方程在现实生活中的应用,让学生体会数学与生活的紧密联系。

本节内容旨在让学生掌握一元一次方程的解法,并能应用于解决实际问题。

二. 学情分析学生在学习这一节内容前,已经学习了二元一次方程和一元一次方程的解法,具备了一定的数学基础。

但部分学生对一元一次方程在实际问题中的应用还不够清晰,需要在教学中加以引导和培养。

此外,学生对于实际问题的分析能力、数学思维的培养也需要在教学过程中给予关注。

三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,并能应用于解决实际问题。

2.过程与方法:通过解决追赶小明的实际问题,培养学生运用一元一次方程解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,体会数学与生活的紧密联系。

四. 教学重难点1.重点:一元一次方程的解法及其在实际问题中的应用。

2.难点:如何将实际问题转化为一元一次方程,并运用解法求解。

五. 教学方法1.情境教学法:通过设置追赶小明的场景,激发学生兴趣,引导学生主动参与。

2.案例教学法:分析追赶小明的问题,引导学生发现并总结一元一次方程的解法。

3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力和沟通能力。

4.引导发现法:教师引导学生发现问题、分析问题,培养学生的问题解决能力。

六. 教学准备1.教学课件:制作课件,展示追赶小明的场景和问题。

2.练习题:准备相关练习题,巩固学生对一元一次方程的掌握。

3.教学道具:准备一些实物道具,如小车、棋子等,用于模拟追赶游戏。

七. 教学过程1.导入(5分钟)利用课件展示追赶小明的场景,引导学生关注实际问题。

提问:“如何用数学方法表示小明和同学之间的距离和速度关系?”2.呈现(10分钟)呈现追赶小明的问题,引导学生分析问题,发现其中的数学关系。

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计一. 教材分析《北师大版数学七年级上册5.6<应用一元一次方程——追赶小明>》这一节主要通过一个实际问题引导学生应用一元一次方程解决问题。

通过列方程、解方程的过程,让学生掌握一元一次方程在实际问题中的应用。

教材通过追赶小明的例子,让学生理解速度、时间和路程之间的关系,并运用一元一次方程求解实际问题。

二. 学情分析学生在之前的学习中已经接触过一元一次方程的基本概念和解法,但对于如何将实际问题转化为方程,并将方程应用于解决实际问题可能还有一定的困难。

因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过实际问题让学生理解一元一次方程在实际生活中的应用。

三. 教学目标1.知识与技能:学生会将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.过程与方法:学生通过自主探究、合作交流的方式,掌握一元一次方程在实际问题中的应用。

3.情感态度与价值观:学生体会数学与生活的紧密联系,培养解决实际问题的能力。

四. 教学重难点1.重点:学生能将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。

2.难点:学生如何将实际问题转化为方程,并理解方程在实际问题中的应用。

五. 教学方法采用问题驱动法、情境教学法和合作交流法。

通过设置追赶小明的实际问题,激发学生的学习兴趣,引导学生自主探究、合作交流,从而掌握一元一次方程在实际问题中的应用。

六. 教学准备1.教师准备:教师需要准备与追赶小明相关的实际问题,以及解题过程中可能用到的数学知识。

2.学生准备:学生需要预习相关的一元一次方程知识,并准备参与课堂讨论。

七. 教学过程1.导入(5分钟)教师通过讲解一个简单的实际问题,引导学生思考如何将实际问题转化为方程。

例如,教师可以提出一个问题:如果小明每分钟跑60米,小红每分钟跑70米,小明比小红慢多少米?让学生思考如何用数学方法表示这个问题。

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计

2.选做题:
(1)探索一元一次方程的其他解法,比较各种解法的优缺点。
(2)研究一元一次方程在实际问题中的应用,总结出至少三个不作业质量。
(2)书写工整,步骤清晰,方便教师批改和指导。
(3)完成后认真检查,确保无误。
4.作业提交时间:
下节课前将作业交给课代表,由课代表统一交给教师。
(2)培养学生熟练掌握一元一次方程的解法,并在实际运算中避免出错。
(二)教学设想
1.教学方法:
(1)采用情境教学法,以实际问题为背景,激发学生的学习兴趣,引导学生主动参与课堂。
(2)采用探究式教学法,鼓励学生自主探究、合作交流,培养学生的创新能力和团队合作精神。
(3)运用多媒体辅助教学,通过动态演示、图像展示等手段,增强学生对一元一次方程的直观认识。
二、学情分析
七年级的学生在数学学习上已经具备了一定的基础,掌握了基本的算术运算和简单的代数知识。在此基础上,学生对一元一次方程的学习既有挑战性,也具有可行性。学生对实际问题情境具有较强的兴趣,但将实际问题抽象成数学模型的能力尚需培养。此外,学生在解决实际问题时,可能存在以下问题:
1.对问题的分析不够深入,难以正确列出相应的一元一次方程。
(2)一元一次方程的解法及注意事项;
(3)如何避免在解一元一次方程时出现错误。
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.练习题包括以下类型:
(1)列出一元一次方程解决实际问题;
(2)解一元一次方程;
(3)应用一元一次方程解决实际问题。
3.加强一元一次方程解法的训练,提高学生的运算速度和准确率。
4.针对不同学生的学习情况,给予个性化的指导和鼓励,帮助学生克服恐惧心理,树立学习信心。

七年级数学第五章一元一次方程6应用一元一次方程__追赶小明教案

6 应用一元一次方程-—追赶小明1.通过画线段图分析追及问题中的数量关系,找出等量关系.2.进一步培养学生分析问题、解决问题的能力.3.学会用一元一次方程解决复杂的实际问题.重点找出追及问题中的等量关系,列出方程,解决实际问题.难点通过画线段图找等量关系.一、复习导入问题1:以前学习的行程问题中,路程、速度、时间三者间有什么关系?问题2:若小明每秒跑4 m,那么他5 s能跑多少米?问题3:小明用4 min绕学校操场跑了两圈(每圈400米),那么他的速度为多少?问题4:已知小明家距离火车站1 500 m,他以4 m/s的速度骑车到达车站需要几分钟?学生举手回答,教师点评.二、探究新知1.课件出示教材第150页情境图,提出问题:小明每天早上要在7:50之前赶到距家1 000 m的学校上学.小明以80 m/min的速度出发,5 min后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以180 m/min的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?引导学生根据题意画出线段图(设爸爸追上小明用了x min):引导学生从线段图中找出等量关系:小明所用时间=5+爸爸所用时间;小明走过的路程=爸爸走过的路程.教师:根据等量关系,如何解决这两个问题呢?指名学生写出解题过程,教师点评.解:(1)设爸爸追上小明用了x min.根据题意,得180x=80x+80×5.化简,得100x =400.x =4.因此,爸爸追上小明用了4 min.(2)180×4=720(m),1 000-720=280(m).所以,追上小明时,距离学校还有280 m。

2.课件出示:育红学校七年级学生步行到郊外旅行.七(1)班的学生组成前队,步行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12 km/h。

应用一元一次方程追赶小明教学设计北师大版数学七年级上册

5. 6应用一元一次方程——追赶小明一、教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题.2.发展文字语言、图形语言、符号语言之间的转换能力.二、教学重难点重点:进一步熟练掌握列一元一次方程解应用题的一般方法步骤,学会用图表分析数量较为复杂的应用题.难点:用图表分析数量关系较为复杂的应用题,从多角度思考问题,寻找等量关系.三、教法学法教法:启发式与合作探究式相结合.学法:自主探究与合作探究相结合.四、教学过程(一)情境导入甲、乙二人分别从相距21千米的A、B两地同时相向出发,甲的速度是3千米/时, 乙的速度是4千米/时, 当两人出发的同时,甲带的一只小狗以10千米/时的速度向乙跑去, 遇到乙时再以原速向甲跑去, 遇到甲时再以原速向乙跑去……,如此下去,直到两人相遇才停止跑动.试问:小狗共跑了多少千米?(二)问题探究问题1:小明每天早上要在7:50之前赶到距家1 000 m的学校上学.一天,小明以80 m/min 的速度出发,5 min后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180 m/min的速度去追小明.思考:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?请让我们一起学习本节,解决这些疑惑.师生活动:出示主题故事时,绝大部分学生会关注爸爸能不能追上小明、爸爸追上小明用了多长时间、在距离学校多远的地方追上小明等等.根据学生关注点提供质疑的时机,唤起学生“主角”意识.设计意图:让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“追赶小明”这一事件,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题,便于引起每位同学的兴趣.如下图,你能用简单的“线段图”表示演示的追赶过程吗?路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?解:(1)设爸爸追上小明用了x分钟.根据题意,得80×5+80x=180x.解得x=4.因此,爸爸追上小明用了4分钟.(2)因为180×4=720(米),1 000-720=280(米).所以,追上小明时,距离学校还有280米.设计意图:让学生学会用线段图表示出路程,学会分析路程、时间、速度问题,更主要的是通过画图直观地找出题目中的等量关系.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.(三)典例解析问题2:育红学校七年级学生步行到郊外旅行.七(1)班的学生组成前队,步行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不断地来回进行联络,他骑车的速度为12 km/h.请你根据上面的叙述提出问题进行解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章一元一次方程
应用一元一次方程——追赶小明
郑州市第七十三中温亚娟
一、教学目标
学习目标:
1. 借助“线段图”分析复杂问题中的数量关系,建立方程解决实际问题。

2. 发展文字语言、图形语言、符号语言之间的转换能力。

二、教学重点和难点
重点:借助“线段图”分析复杂问题中的数量关系,建立方程解决实际问题。

难点:1. 借助“线段图”分析复杂问题中的数量关系,建立方程解决实际问题。

五、教学过程设计
本节课设计了六个教学环节:第一环节:情景导入;第二环节:温故知新;第三环节:
合作探究;第四环节:当堂检测;第五环节:延伸迁移;第六环节:布置作业.
教学流程:
环节一、情景导入
活动内容:
第七十三中1903 学生步行去植物园。

女生组成前队,速度为 4 千米/时,男生组成成后队,速度为 6 千米/时。

女生出发一小时后,男生才出发,同时班长骑自行车在两队之间不间
断地来回进行联络,他骑车的速度为12 千米/时
请根据上面的事实提出问题
目的:通过实际具体活动引起大家的兴趣,提出问题,然后让大家带着疑问和好奇来开始本
节课,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣.
学生提出三个问题: 1. 班长总共走了多远?
2. 男生什么时间追上女生?
3. 学校离植物园多远?
环节二、温故知新
1. 若小明每秒跑 4 米,那么他 5 秒能跑米路程=速度×时间
2. 小明用 4 分钟绕学校操场跑了两圈(每圈400 米),那么他的速度为米/分.
速度=路程÷时间
3. 已知小明家距离火车站1500 米,他以 4 米/秒的速度骑车到达车站需要分钟.
时间=路程÷速度
注意:最后一个单位换算问题
环节三、合作探究
1. 相遇问题:
当我们队伍走500 米时,副班长发现班级少了小明同学,立刻以100 米/分钟的速度回去找小明,而此时小明发现队伍走了,也同时以150 米/分钟的速度去追队伍,请问班长和小明多久他们能相遇?
解:设x 秒后小明和班长相遇。

根据题意:100x+150x=500
250x=500
x=2
答:爸爸和小明 2 分钟后相遇
活动过程:教师引导学生分析,观看动画,并演示画线段图的方法。

先画线段图,找。


等量关系,然后列方程、解方程。

2. 追及问题:
活动内容:
副班长找到小明后离班级队伍1000 米,班级队伍的速度是80 米/分钟的速度,他两个以180 米/分钟去追队伍。

请问追上队伍用了多少时间?
目的:
观看动画,分析追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的
相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既
能娴熟使用“线段图”又能利用方程的思想解决问题.
实际活动效果:
教师引导学生根据题目已知条件,画出线段图:
找出等量关系:小明和班长的路程=班级的路程+1000 米
板书规范写出解题过程:
解:(1)设两人追上班级用了x 分钟,
据题意得1000 +80x=180 x.
解,得x=10.
答:两人追上班级用了10 分钟.
解决前面学生提出的三个问题,小组讨论,最后得出答案,其中第三个问题分析后告诉学
生无法解决。

然后不知不觉到了植物园,大家欣赏着美丽的风景,PPT 展示出几组图片。

环节四、当堂检测
到了植物园后发现一个100 米的跑道,特别漂亮,有一个同学提议做游戏,让小明和龙龙
参加,其中小明每秒4m, 龙龙每秒跑6m.
(1) 如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?
(2) 如果龙龙站在百米跑道的起点,小明站在他前面10m 处,两人同时同向起跑,几秒后龙
龙能追上小明?
实际活动效果:
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.
环节四、归纳小结
提问学生,让学生说出有什么收获,并总结
目的:
强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的
规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对
数学知识的理解和解决问题的方法策略.
实际活动效果:
通过交流学生认识到借线段图来分析行程问题的好处,发现行程问题中的一些规律,并感受到运用方程解决实际问题的优势.充分体现了数学课堂由单纯传播知识的殿堂转变为学生主动从事学习活动.
环节五、延伸迁移
活动内容:
大家还记得那个圆形的荷花池吗?若荷花池周长是400 米,小明每秒跑 4 米,龙龙每秒跑 6 米。

(1 )若两人同时同地反向出发,多长时间两人首次相遇?
(2 )若两人同时同地同向出发,多长时间两人首次相遇?
目的:检测学生本节课掌握知识点的情况,及时有直线变成曲线时的情况,观看动画效果,反馈学生学习中存在的问题.
实际活动效果:
由于时间关系,只能要求学生在课堂上观看动画,然后分析其中的等量关系,而没有时间解方程,但也达到了检测的目的,知道了学生本课时知识掌握中的共性问题及教师没有考
虑到的问题.
环节六、作业
课后作业:
课本P152 第3 题、第 4 题、第 5 题
课本P153 第6 题、第7 题、第8 题
注意:完善做题过程,画出线段图。

相关文档
最新文档