密码学与密码技术基础

合集下载

密码技术基础知识ppt课件

密码技术基础知识ppt课件
19
公钥基础设施
PKI系统组成
证书发布系统 证书发布系统负责证书的发放,如可以通过用户自己
,或是通过目录服务器发放。目录服务器可以是一个组织中现 存的,也可以是PKI方案中提供的。
20
公钥基础设施
PKI的应用
PKI的应用非常广泛,包括应用在web服务器和浏览器 之间的通信、电子邮件、电子数据交换(EDI)、在Intenet上的 信用卡交易和虚拟私有网(VPN)等。
对称加密算法相比非对称加密算法来说,加解密的效率要高得 多。但是缺陷在于对于秘钥的管理上,以及在非安全信道中通讯时, 密钥交换的安全性不能保障。所以在实际的网络环境中,会将两者混 合使用。
12
目录
公钥基础设施
简介 PKI系统组成 PKI的应用
13
公钥基础设施
简介
PKI是“Public Key Infrastructure”的缩写,意为“公钥基础 设施”。简单地说,PKI技术就是利用公钥理论和技术建立的提供信息 安全服务的基础设施。公钥体制是目前应用最广泛的一种加密体制, 在这一体制中,加密密钥与解密密钥各不相同,发送信息的人利用接 收者的公钥发送加密信息,接收者再利用自己专有的私钥进行解密。 这种方式既保证了信息的机密性,又能保证信息具有不可抵赖性。
26
数字摘要技术
数字摘要的常用技术
4、Base64 Base64是一种基于64个可打印字符来表示二进制数据的方法 ,由于2的6次方等于64,所以每6位为一个单元,对应摸个可打印字 符,三个娭毑有24位,,对应4个Base64单元,即三个字节需要用4个 打印字符来表示。
27
数字摘要技术
数字摘要的应用
40
密钥管理技术
密钥的分配

第2章 密码学基础

第2章 密码学基础

明文是原始的信息(Plain text,记为P) 密文是明文经过变换加密后信息(Cipher(塞佛) text,记为C) 加密是从明文变成密文的过程(Enciphering,记为E) 解密是密文还原成明文的过程(Deciphering,记为D) 密钥是控制加密和解密算法操作的数据(Key,记为K)
非对称密钥体制
在非对称加密中,加密密钥与解密密钥不同,此时不需要通 过安全通道来传输密钥,只需要利用本地密钥发生器产生解密密 钥,并以此进行解密操作。由于非对称加密的加密和解密不同, 且能够公开加密密钥,仅需要保密解密密钥,所以不存在密钥管 理问题。非对称加密的另一个优点是可以用于数字签名。但非对 称加密的缺点是算法一般比较复杂,加密和解密的速度较慢。在 实际应用中,一般将对称加密和非对称加密两种方式混合在一起 来使用。即在加密和解密时采用对称加密方式,密钥传送则采用 非对称加密方式。这样既解决了密钥管理的困难,又解决了加密 和解密速度慢的问题。
2.2
密码破译
密码破译是在不知道密钥的情况下,恢复出密文中隐藏 的明文信息。密码破译也是对密码体制的攻击。 密码破译方法
1. 穷举攻击 破译密文最简单的方法,就是尝试所有可能的密码组合。经 过多次密钥尝试,最终会有一个钥匙让破译者得到原文,这个过 程就称为穷举攻击。
逐一尝试解密 密 文
解 密
错误报文
对称密钥体制
对称加密的缺点是密钥需要通过直接复制或网络传输的方式 由发送方传给接收方,同时无论加密还是解密都使用同一个密钥 ,所以密钥的管理和使用很不安全。如果密钥泄露,则此密码系 统便被攻破。另外,通过对称加密方式无法解决消息的确认问题 ,并缺乏自动检测密钥泄露的能力。对称加密的优点是加密和解 密的速度快。
2.3.1 对称加密技术

2_1密码技术基础分析

2_1密码技术基础分析
计算机网络安全基础
维吉尼亚表:
m=abcdefg
key=bag E(m)= BBIEELH key=egg E(m)=? E(m)=DCI key=bag
m=?
a a A b B c C d D e E f F g G … …
b B C D E F G H …
c C D E F G H I …
d D E F G H I J …
计算机网络安全基础
2.1 密码技术的基本概念
(2)双钥/非对称密码体制 使用相互关联的一对密钥,一个是公用密 钥,任何人都可以知道,另一个是私有密钥, 只有拥有该对密钥的人知道。如果有人发信给 这个人,他就用收信人的公用密钥对信件进行 过加密,当收件人收到信后,他就可以用他的 私有密钥进行解密,而且只有他持有的私有密 钥可以解密。
数据,或有足够多的明文、密文对,穷搜索法总是可以 成功的。但实际中任何一种能保障安全要求的实用密码 体制,都会设计得使这种穷搜索法在实际上是不可行的。 在理论上,这种方法也往往作为与其他攻击方法相比较 的基础,以此作为标准,判断其他各种攻击方法的有效 程度。
计算机网络安全基础
2.1 密码技术的基 密码技术的基本概念
(2)已知明文攻击(Known-Plaintext Attack)。密码分 析者不仅可得到一些消息的密文,而且也知道这些消 息的明文。分析者的任务就是用加密信息推出用来加 密的密钥或推导出一个算法,此算法可以对用同一密 钥加密的任何新的消息进行解密。 ( 3 )选择明文攻击( Chosen-Plaintext Attack)。分析 者不仅可得到一些消息的密文和相应的明文,而且他 们也可选择被加密的明文。这比已知明文攻击更有效。 因为密码分析者能选择特定的明文块去加密,那些块 可能产生更多关于密钥的信息,分析者的任务是推出 用来加密消息的密钥或导出一个算法,此算法可以对 用同一密钥加密的任何新的消息进行解密。

密码学基础知识

密码学基础知识

密码学基础知识密码学是一门研究数据的保密性、完整性以及可用性的学科,广泛应用于计算机安全领域、网络通信以及电子商务等方面。

密码学的基础知识是研究密码保密性和密码学算法设计的核心。

1. 对称加密和非对称加密在密码学中,最基本的加密方式分为两类:对称加密和非对称加密。

对称加密通常使用一个密钥来加密和解密数据,同时密钥必须保密传输。

非对称加密则使用一对密钥,分别为公钥和私钥,公钥可以公开发布,任何人都可以用它来加密数据,但只有私钥持有人才能使用私钥解密数据。

2. 散列函数散列函数是密码学中常用的一种算法,它将任意长度的消息压缩成一个固定长度的摘要,称为消息摘要。

摘要的长度通常为128位或更长,主要用于数字签名、证书验证以及数据完整性验证等。

常见的散列函数有MD5、SHA-1、SHA-256等。

3. 数字签名数字签名是一种使用非对称加密技术实现的重要保密机制,它是将发送方的消息进行加密以保证消息的完整性和真实性。

发送方使用自己的私钥对消息进行签名,然后将消息和签名一起发送给接收方。

接收方使用发送方的公钥来验证签名,如果消息被篡改或者签名无法验证,接收方将拒绝接收消息。

4. 公钥基础设施(PKI)PKI是一种包括数字证书、证书管理和证书验证的基础设施,用于管理数字证书和数字签名。

数字证书是将公钥与其拥有者的身份信息结合在一起的数字文件,它是PKI系统中最重要的组成部分之一。

数字证书通过数字签名来验证其真实性和完整性,在通信和数据传输中起着至关重要的作用。

总之,密码学是计算机科学中重要的领域之一,其应用广泛,影响深远。

掌握密码学基础知识非常有必要,对于安全性要求较高的企业和组织来说,更是至关重要。

信息安全密码学与加密技术原理

信息安全密码学与加密技术原理

信息安全密码学与加密技术原理在当今数字化的时代,信息安全成为了至关重要的问题。

我们在网络上进行交流、购物、工作,大量的个人隐私和重要数据在不断地传输和存储。

而密码学与加密技术就像是守护这些信息的坚固堡垒,为我们的信息安全提供了强有力的保障。

首先,让我们来了解一下密码学的基本概念。

密码学简单来说,就是研究如何保护信息的机密性、完整性和可用性的学科。

它通过一系列的算法和技术,将明文(也就是原始的、未加密的信息)转换为密文(经过加密处理后的信息),只有拥有正确密钥的人才能将密文还原为明文,从而读取到原始的信息。

加密技术是密码学的核心部分。

常见的加密算法可以分为对称加密和非对称加密两大类。

对称加密算法是指加密和解密使用相同密钥的加密方式。

比如,常见的 AES 算法(高级加密标准)就是一种对称加密算法。

它的加密速度快,效率高,适用于大量数据的加密处理。

想象一下,你有一个装满贵重物品的宝箱,而对称加密就像是一把只有你知道钥匙形状的锁。

只要你保管好这把钥匙,别人就打不开这个宝箱。

然而,对称加密也有它的局限性。

由于加密和解密使用相同的密钥,那么在密钥的分发过程中就存在着安全风险。

如果密钥在传输过程中被窃取,那么加密的信息就不再安全。

这时候,非对称加密算法就派上了用场。

非对称加密使用一对密钥,即公钥和私钥。

公钥可以公开给任何人,用于对信息进行加密;而私钥则只有持有者知道,用于对用公钥加密后的信息进行解密。

例如,RSA 算法就是一种广泛应用的非对称加密算法。

这就好比你有一个邮箱,任何人都可以把信放进这个邮箱(用公钥加密信息),但只有你有邮箱的钥匙(私钥)能够打开并读取信件。

非对称加密解决了密钥分发的问题,但它的加密和解密速度相对较慢,因此通常用于加密少量的关键信息,比如对称加密的密钥。

除了加密算法,数字签名也是密码学中的一个重要概念。

数字签名可以确保信息的来源和完整性。

它就像是一份文件上的手写签名,用于证明这份文件确实是由声称的作者发出,并且在传输过程中没有被篡改。

密码学的基础知识与应用

密码学的基础知识与应用

密码学的基础知识与应用密码学是一门研究如何保护信息安全的学科,是信息安全领域中重要的一环。

本文将从密码学的基础知识和应用两个方面来探讨这门学科。

一、密码学的基础知识密码学的基础知识包括加密算法、解密算法和密钥管理。

1.加密算法加密算法是将明文变为密文的过程。

常见的加密算法有对称加密算法和非对称加密算法两种。

对称加密算法是指加密和解密使用相同密钥的算法。

例如,DES (Data Encryption Standard)、AES(Advanced Encryption Standard)等都属于对称加密算法。

对称加密算法的优点是加密解密速度快,密文加密难度大,缺点是密钥管理问题,如果密钥泄露则很容易被破解。

非对称加密算法是指加密和解密使用不同密钥的算法。

例如,RSA、DSA等都属于非对称加密算法。

非对称加密算法的优点是密钥管理便利,密钥可以公开,缺点是加解密速度较慢。

2.解密算法解密算法是将密文还原为明文的过程。

解密算法通常是对称加密算法的逆运算或非对称加密算法的配对算法。

例如,RSA的解密算法是通过对公钥和密文进行运算得出明文,而对称加密算法的解密算法则是通过使用加密时所用的密钥对密文进行运算。

3.密钥管理密钥管理是指对加密算法中的密钥进行管理的过程。

密钥管理包括密钥的生成、存储、传递、更新和撤销等一系列操作。

密钥的管理工作直接影响加密算法的安全性。

二、密码学的应用密码学的应用非常广泛,包括网络安全、数据传输、数字签名、身份验证等方面。

1.网络安全网络安全是密码学应用的重要领域之一。

网络安全的主要目的是保护计算机网络中的数据免受未经授权的访问、窃取、破坏和攻击。

密码学在网络安全中的应用主要包括数据加密、数字签名和身份认证等方面。

数据加密是保护网上通讯中数据的安全的重要手段。

在网上通讯的过程中,如果数据不加密,那么黑客可以窃取数据并进行恶意攻击。

因此,需要使用对称加密算法或非对称加密算法对数据进行加密,以保证数据安全。

密码技术基础ppt课件

密码技术基础ppt课件
密码技术基础
LOGO
1
密码学基础知识
密码技术
一个密码体制被定义为一对数据变换,其中一个变 换应用于我们称之为明文的数据项,变换后产生的 相应数据项称为密文;而另一个变换应用于密文, 变换后的结果为明文。这两个变换分别称为加密变 换(Encryption)和解密变换(Decryption)。加 密变换将明文和一个称为加密密钥的独立数据值作 为输入,输出密文;解密变换将密文和一个称为解 密密钥的数据值作为输入
17
● 将其按顺序分为5个字符的字符串: ● Itcan ● Allow ● Stude ● Ntsto ● Getcl ● Oseup ● Views
18
● 再将其按先列后行的顺序排列,就形成 了密文:
● C: IASNGOVTLTTESICLUSTEEAODTCU WNWEOLPS
● 如果将每一组的字母倒排,形成了另一 种密文:
● C: NACTIWOLLAEDUTSTNLCTEGPUES OSWEIV
19
密码体制分类
● 对称密码体制 单钥密码体制、秘密密钥体制、对称密钥密 码体制
● 非对称密码体制 双钥密码体制、公开密钥密码体制、非对 称密钥密码体制
20
2 对称加密
加密:Ek(M)=C 解密:Dk(C)=M 序列密码算法(stream cipher) 分组密码算法(block cipher)
密码构造的字符置换表如图:
11
12
● 置换表中的密文字符的顺序是:将密钥Key 的字母先对应明文,在对应的过程中自左 向右隐去已出现的字母,再将26个字母按 顺序列出。
● 若明文(记为M)为“important”, ● 则密文(记为C)为“HDLKOQBFQ”。

密码学知识点总结csdn

密码学知识点总结csdn

密码学知识点总结csdn1. 密码学基础密码学基础包括对称加密、非对称加密、哈希函数、消息认证码等概念的介绍。

对称加密即加密和解密使用相同的密钥,常用算法有DES、AES、RC4等;非对称加密则分为公钥加密和私钥解密,常用算法有RSA、ECC等;哈希函数则是将任意长度的消息压缩为固定长度的摘要信息,常用算法有MD5、SHA-1、SHA-256等;消息认证码是在消息传输中保障数据完整性的重要手段,主要分为基于对称加密的MAC和基于非对称加密的数字签名。

2. 随机数生成密码学安全性的基础在于随机数的生成,常用的随机数生成算法有伪随机数生成器(PRNG)和真随机数生成器(TRNG)。

PRNG是通过确定性算法生成随机数,安全性依靠其内部逻辑结构;TRNG则是依靠物理过程生成随机数,如放射性衰变、指纹图像等,安全性更高。

密码学攻击主要分为三类:密码分析攻击、椭圆曲线攻击和量子攻击。

密码分析攻击是通过推测、猜测等方法攻破密码;椭圆曲线攻击是因为非对称加密算法中的基于椭圆曲线离散对数问题存在可解性,从而破解密码;量子攻击则是通过量子计算机的强大计算能力破解传统密码学算法。

4. 密码学综合应用密码学在实际应用中广泛应用于电子邮件加密、数字证书、数字签名、数字支付、VPN安全通信等领域。

其中,AES算法被广泛应用于SSL/TLS等加密通信协议中;RSA算法则是数字证书和电子邮件加密中最常用的算法;数字签名则应用于身份认证、电子合同、电子票据等领域;数字支付则依赖于密码学原理来保证支付的安全性。

5. 密码学的未来发展当前,密码学面临着来自量子计算机的挑战,需要进一步开发抗量子攻击的加密算法。

同时,在移动互联网、物联网等领域中,新的安全需求也对密码学技术提出了挑战。

未来发展的重点可能包括量子密码学研究、密码学与人工智能技术的结合等方面。

总之,密码学是信息安全的重要组成部分,掌握相关知识点将有助于提高信息安全意识和防范风险能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档