2017年秋人教版八年级数学上册热点专题高分特训:第15章:解分式方程
人教版八年级初中数学上册第十五章分式-分式方程(解分式方程)PPT课件

检验a=5是原分式方程的解.
故选A.
−
1
3−2
= 0,
)
课堂练习
−4
3.分式 +4 的值为0,则x的值为( )
A.4
B.-4
C.±4
【解析】
−4
若分式 +4 的值为0,则|x|-4=0且x+4≠0.
得x1=4,x2=-4.
当x=-4时,分母为0,不合题意,舍去.
故x的值为4.
所以,原分式方程无解
课堂小结
解分式方程的步骤
1)去分母(两边同乘最简公分母,约去分母,化成整式方程)。
2)解整式方程(去括号-移项/合并同类项-系数化为1)。
3)检验(把整式方程的解代入最简公分母,
最简公分母 为0
x=a不是分式方程的解
最简公分母不为0
x=a 是分式方程的解
4)写出答案。
课堂练习
+3
1.已知分式方程+2
=
+
(−1)(+2)
1的解为非负数,求的取值范围(
A. ≥ 5
B. ≥ −1
C. ≥ 5且 ≠ 6
D. ≥ −1且 ≠ 0
【详解】
解:分式方程转化为整式方程得,( + 3)( − 1) = + ( − 1)( + 2)
解得: = + 1
−1
− 1 ( + 2)
方程两边同时乘x(x-2)
方程两边同时乘(x-1)(x+2)
3(x-2)=2x
x(x+2)-(x-1)(x+2)=3
解得x=6
解得x=1
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 33含答案解析.docx

八年级数学上册第十五章第3节分式方程解答题专题训练(33)一、解答题x-6 x(2)已知关于x的一元二次方程-x2+-x-m^2无实数根,求m的取值范围.2 32.某书店老板去图书批发市场购买某种图书.第一次用12000元购书若干本,并按该书定价70元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用15000元所购该书数量比第一次多10本.(1)求两次购书的价格分别是多少?(2)若第二次购书按定价售出200本时,出现滞销,于是决定打折出售剩下这批书,那么该商家最低打几折才能保证剩下书的利润率不低于5% ?、 4 1 23.解方程:——-—I—= ;-2x x x-24.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天。
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?6.为推进垃圾分类,推动绿色发展,某工厂购进甲乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分10kg,甲型机器人分类800千克垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类500kg垃圾,工作2小时后,甲型机器人因机器维修退出,求甲型机器人退出后,乙型机器人还需工作多长时间才能完成?7.解下列分式方程,、x + 1 4 1(2)------------ — = 1X-1 X' -1&某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:王老师说:"篮球的单价比排煤的单价多30元李老师说:“用1000元购买的排球个数和用】600元氏买 J的至■直个豪相等同学们,请求出篮球和排球的单价各是多少元.9.解方程(组):2x+7y=53x+y = -210.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1. 2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?11.为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)m m-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值(2)由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且总利润应不超过22300元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?(3)在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50〈a〈70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 12.端午节期间,某校"慈善小组"筹集善款600元全部用于购买粽子到福利院送给老人.购买大枣粽子和豆沙粽子各花300元,已知大枣粽子比豆沙粽子每盒贵5元,结果购买的 大枣粽子比豆沙粽子少2盒.请求出两种口味的粽子每盒各多少元?13. 解方程:(每小题3分,共6分)16. 根据《佛山-环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线 将串联起狮山、乐平、三水新城、水都基地、白堀等城镇节点,在这项工程中,有一段 4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队 每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少 用20天.求甲、乙两个工程队平均每天各完成多少米?17. 桐梓县"四抓四到位"确保教育均衡发展,加速城区新、扩建项目工程・,加快建设某间 小学,公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建 校工程的时间是乙工程队的2倍,甲、乙两队合作完成建校工程需要60•天.(1) 甲、乙两队单独完成建校工程各需多少天?(2) 若甲、乙两队共同工作了 10天后,乙队因其他工作停止施工,由甲队单独继续施 工,要使甲队总的工作量不少于乙队已做工作量的2倍,那么甲队至少再单独施工多少 天? 18. 解分式方程:(2) ---------- = ------- . 2x-l x+219. 台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按 原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍 匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.20. 解分式方程:,、x , 3 , 、 x+1 4 , (1) ---------- 1 — ----------- . (2) --------------- z ---- — 1. x — 1 2x — 2 x — 1 x — 121. 某校为了开展“阳光体育〃活动,购进一批体育用品.经了解,长绳的单价比短绳的单 价多5元,用12000元购进的长绳与用8000元购进的短绳的数量相等.问购进的长绳和14.按要求计算:(2)解分式方程:Y1 5+23 15.解下列方程:(1) ----------- 1 = ------ (2)— ------- =— x+2 x-2 x 2 + x x + 1小淇: 105 140------ 1 ------x 0.8%= 40;小尧:亜x0.8 14040 — y短绳的单价分别是多少元.22.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打________ 个字.23.关于x的方程:竺学一X-1 1-X(1)当a = 3时,求这个方程的解;(2)若这个方程有增根,求a的值.24.计算或解方程:(1)[―右]十[—六) (2)甘一士[ = 125.现用A、B两种机器人来搬运化工原料.A型机器人比B型机器人每小时少搬运3kg, A 型机器人搬运40kg与B型机器人搬运60kg所用时间相等,两种机器人每小时分别搬运多少化工原料?26.某服装店用960元购进一批服装,并以每件46元的价格全部售完•由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?⑵两次出售服装共盈利多少元?27.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.28.某县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1. 5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?29.下面是小淇、小尧对一道中考题目的部分解答.题目:刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?根据以上信息,解答下列问题.⑴小淇同学所列方程中的X表示 _____ ,小尧同学所列方程中的y表示_______ ;(2)在上述两个方程中任选一个求解,并回答题目中的问题.30.长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【答案与解析】一、解答题1. (1) x=-12 ; (2) m< -----18分析:(1)去分母后解整式方程即可,注意要检验;(2)根据方程无实数根,结合根的判别式即可得出关于m 的一元一次不等式,解之即可 得出结论.详解:(1)方程两边乘以x (x-6)得:90x=60(x-6),解得:x=—12.经检验:x=-12是原方程的根.分式方程的根为x=—12.(2) •••关于x 的一元二次方程丄_? +丄兀—加=2没有实数根,2 3点睛:本题考查了解分式方程以及根的判别式,熟练掌握"当厶<0时,方程没有实数根" 是解题的关键.2. (1)第一次购书的进价是50元,第二次购书的进价是60元;(2)该商家最低打九折才能保证剩下书的利润率不低于5%(1) 设第一次购书的单价为x 元,根据第一次用12000元购书若干本,第二次购书时,每 本书的批发价已比第一次提高了 20%,他用15000元所购该书的数量比第一次多10本,列 出方程,求出x 的值即可得出答案;(2) 设该商家打y 折,依题意列出不等式,解不等式即可(1)设第一次购书的单价为x 元,则第二次购书单价是(1+20%) x 元,12000 15000x +1°=(l + 20%)x解得:x = 50,经检验,x = 50是原方程的解, /.(1+20%) x=60答:第一次购书的进价是50元,第二次购书的进价是60元;(2) 150004-60=250 (本) 解:设该商家打y 折,依题意得:® 話 60)x (詈°-200),(罟200)x60x5%解得:y>9答:该商家最低打九折才能保证剩下书的利润率不低于5%.•.△=(*)2_4X *X (—加―2)<0,解得: 37 m < ------- , 18 37 的值取值范围为m<- —18根据题意得:【点睛】此题考查了分式方程的应用、不等式的应用,分析题意,找到关键描述语,找到合适的等 量关系是解决问题的关键.3. 原分式方程无解.按照去分母、移项、合并同类项的步骤求解即可.方程两边同时乘以x(x-2),得:4+(兀—2)= 2%x = 2检验:当x = 2时,x(x-2)= 0•••原分式方程无解.【点睛】此题主要考查分式方程的求解,熟练掌握,即可解题.4. (1)甲、乙两工程队每天能完成绿化的面积分别是50m\ 25m 2; (2)至少安排甲队 工作20天.(1) 设乙工程队每天能完成绿化的面积是xrr?,则甲工程队每天能完成绿化的面积是 2xm 2,根据"独立完成面积为200加$区域的绿化时,甲队比乙队少用4天"列出方程,再解 即可;(2) 根据题意可得等量关系:绿化总费用=甲队的绿化总费用+乙队的绿化总费用,根据 "使这次的绿化总费用不超过8万元"列出不等式求解即可.解:(1)设乙工程队每天能完成绿化的面积是xrrA解得:x=25, 经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25x2=50 (m?),答:甲、乙两工程队每天能完成绿化的面积分别是50n?、25m 2;(2)设至少应安排甲队工作y 天.根据题意得:解得y>20,所以至少安排甲队工作20天.【点睛】本题考查分式方程的应用,一元一次不等式的应用.解决此题的关键是正确理解题意,找 出题目中的等量关系和不等量关系,据此列出方程或不等式.5.购买一个甲种足球、一个乙种足球各需65和83元 设一个甲种足球需要x 元,根据题意列出方程即可求出答案.解:设一个甲种足球需要x 元,根据题意得:型一型=4 x 2x0.35y + 1100 —50y25 x 0.25 <8•I 一个乙种足球需要(x+18)元,解得:x = 65, 经检验,x = 65是原方程的解, /.x+18 = 83,答:购买一个甲种足球、一个乙种足球各需65和83元【点睛】本题考查分式方程的实际应用,解题的关键是正确找出题中的等量关系,本题属于基础题 型.6. (1)甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾;(2)甲型 机器人退出后乙型机器人还需要工作12小时.(1) 设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃圾,根 据工作时间=工作总量十工作效率结合甲型机器人分类800千克垃圾所用的时间与乙型机 器人分类600kg 垃圾所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得 出结论;(2) 根据乙型机器人还需工作时间=剩余的工作总量宁乙型机器人的工作效率,即可求出 结论.解:(1)设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃 圾, , 800 600依逆思,得: ---- =X x-10解得:x=40,经检验,x=40是原方程的根,且符合题意,.•.X - 10=40 - 10 = 30. 答:甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾.(2) [500 - (40+30) X214-30 = 12 (小时).答:甲型机器人退出后乙型机器人还需要工作12小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2 7. (1) x=—; (2)无解 3(1) 先去分母化为整式方程,再解方程求出解后检验即可;(2) 先去分母化为整式方程,再解方程求出解后检验即可.3- x _ 14+7_2 2 (3-x) =4+x6-2x=4+x-3x=-2由题意可知:型竺 x % + 182x=—,3经检验,x= |•是原分式方程的解, •••原分式方程的解是x=|;(X +1)2-4= X2-1%2 + 2尢 +1 — 4 = — 12x=2x=l,检验:当x=l时,x2-l=0, /.x=l不是原分式方程的解,•••分式方程无解.【点睛】此题考查解分式方程,首先将分式方程去分母化为整式方程,求出整式方程的解后需检验是否符合分式方程,再确定分式方程的解.8.排球的单价为50元,则篮球的单价为80元.设排球的单价为x元,则篮球的单价为(x+30)元,根据总价宁单价=数量的关系建立方程求出其解即可.设排球的单价为x元,则篮球的单价为(x+30)元,根据题意,列方程得:1000 1600x x + 30解得:x=50.经检验,x=50是原方程的根,当x=50 时,x+30=80.答:排球的单价为50元,则篮球的单价为80元.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,总价夕单价=数量的数量关系的运用,解答时根据排球和篮球的数量相等建立方程是关键.(1)利用加减消元法解方程组即可;(2)去分母、移项、解出X的值,最后验根即可.2x + 7y = 5 ①(1)\ …3x + y = -2(2)②x7-①得:19x=-19,解得x=-l把x=-l代入②解得:y=lx = -l ・・・原方程组的解为{ °卜=12x + 5 1 (2) ----- = _ x-3 2去分母得:2(2x+5)=x-3,去括号得:4x+10=x-3,移项得:3x=-13,13系数化为1得:X=-y.经检验,x=——是原方程的解.【点睛】本题考查解二元一次方程组及分式方程,解二元一次方程组的主要思想是消元,其解法有 加减消元法和代入消元法等,解分式方程主要是转化思想,把分式方程转化为整式方程求 解,注意,解分式方程时,最后要检验是否为增根.10. (1)购入B 种原料每千克的价格最高不超过10元;(2)这种产品的批发价为50 元.(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x + 10)元 根据使 每件产品的成本价不超过34元列出不等式求解即可;(2)设这种产品的批发价为a 元, 则零售价为(a + 30)元,根据“用10000元通过批发价购买该产品的件数与用16000元 通过零售价购买该产品的件数相同,”正确列出分式方程即可.(1)设B 种原料每千克的价格为X 元,则A 种原料每千克的价格为(X + 10)元, 根据题意得:1.2(兀+10)+兀34, 解得:兀,10.答:购入B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a+30)元,解得:a = 50, 经检验,a = 50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量 间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.11. (1) m=100; (2)共有11种方案;(3)①当50<a<60时,应购进甲种运动鞋 105双,购进乙种运动鞋95双;②当a=60时,所有方案获利都一样;③当60<a<70 时,应购进甲种运动鞋95双,购进乙种运动鞋105双.(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,构根据题意得: 10000 a 16000a + 30建方程即可解决问题;(2) 根据题意,列出不等式组即可解决问题;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105), 分三种情况:①当50<a<60时,②当a=60时,③当60<a<70时,进行讨论.解:(1)依题意得,2400 ,整理得,3000 (m-20) -2400m,解得 m=100, m m-20 经检验,m=100是原分式方程的解,所以,m=100; (2) 设购进甲种运动鞋x 双,则乙种运动鞋(200-x)双,(240 —100)x + (160 — 80)(200-%)> 21700①根据题思得,[go_go)* + (160-80)(200-x)< 22300②解不等式①得,x>95,解不等式②得,x<105,所以,不等式组的解集是95<x<105,Tx 是正整数,105-95+1=11, /.共有11种方案;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105),① 当50<a<60时,60-a>0, W 随x 的增大而增大,所以,当x=105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95 双; ② 当a=60时,60-a=0, W=16000, (2)中所有方案获利都一样;③ 当60<a<70时,60-a<0, W 随x 的增大而减小,所以,当x=95时,W 有最大值, 即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题考查一元一次不等式组的应用和分式方程的应用,解题的关键是读懂题意,掌握一元 一次不等式组的应用和分式方程的应用.12. 30; 25.试题分析:方程的应用解题关键是找出等量关系,列出方程求解.本题根据购买大枣粽子和 豆沙粽子各花300元,结果购买的大枣粽子比豆沙粽子少2盒,得到等量关系:购买豆沙 粽子的盒数-2=大枣粽子的盒数,由此列出方程,解方程即可.试题解析:设豆沙粽子每盒x 元,则大枣粽子每盒(x+5)元.解得 Xi=-30, X2=25.经检验血=-30, X2=25是原方程的解,但Xi=-30不符合题意,舍去.当 x=25 时,x+5=30.答:大枣粽子每盒30兀,51沙粽子每盒25兀.考点:分式方程的应用.13. {解析}试题分析:根据题意可知分式方程的解法步骤:去分母(同乘以最简公分母), 化为整式方程,解方程,检验,得到原方程的解.试题解析:(1)去分母,得2xx2 + 2 (x+3) =7,解得,x=-, 6经检验,x=Z 是原方程的解. 6依题意得^X300尤+5’(2)方程两边同乘(x-2)得,l-x=-l-2 (x-2), 解得,x=2.检验,当x=2时,X —2=0,所以x=2不是原方程的根,所以原分式方程无解.考点:解分式方程2a14. (1) ----------- ; (2)无解;(3) 1 a-b(1) 先把括号内的分式通分化简,再把除法运算转化为乘法运算,然后约分即可;(2) 先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可;(3) 根据绝对值、二次根式以及平方差公式计算,再合并即可.,2a —b b 、 2b —a (1)( ------------------ )- --------------- a + b a — b a + b_ (2a - b\a -b)- b(a + b)a +b (Q + b)(a - b) -(a - 2b)2a(a - 2b) a + b(Q + b)(o-b) a-2b laa-b (2)方程两边同乘(x-3),得 x-2 = 2(x-3)+ l,x-2 = 2x-6 +1解得:x = 3 ,检验:当x = 3时,最简公分母x-3 = 0,所以x = 3不是原方程的解,所以原方程无解;=5-2^6+276-4 =1【点睛】本题考查了分式的化简,实数的混合运算,解分式方程,解分式方程要注意:(1)解分式方 程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意-(3+同(3-同⑶ |2^6-5| + 12要验根.15. (1) x=— : (2)分式方程无解. 3根据解一元一次方程的方法去分母、去括号、移项、合并同类项、化系数为1的步骤求出 x 的值即可.解:(1)去分母得:x 2 - 2x - X 2+4=X +2,经检验% = |是分式方程的解;(2)去分母得:5x+2=3x,解得:x= - 1,经检验x= - 1是增根,分式方程无解.【点睛】考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.注意检验.16.甲工程队平均每天完成200米,乙工程队平均每天完成100米.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,根据工作时间=总工作量* 工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得 出关于x 的分式方程,解之经检验后即可得出结论.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,解得:x=100, 经检验,x=100是原分式方程的解,且符合题意,.•.2x=200. 答:甲工程队平均每天完成200米,乙工程队平均每天完成100米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17. (1)甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天(2)甲队至少再单独施工30天(1)根据题意可设乙工程队单独完成建校工程需要x 天,则甲工程队单独完成建校工程需 要2x 天,利用甲乙合作工作量之和等于1,可列方程:60解得:x=90,所以 2x=180. (2)根据题意可设甲队再单独施工y 天,然后根据题意得:需兰 > 咯^,解得:y230. 180 90(1)设乙工程队单独完成建校工程需要X 天,则甲工程队单独完成建校工程需要2x 天, 根据题意得:60 (4占),=1,x 2x解得:x=90,经检验,x=90是原方程的解,且符合题意,2x=180.根据题意得: 4000 x 4000 2x'=1,答:甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天.(2)设甲队再单独施工y天,根据题意得:孕艮啓x2,180 90解得:y>30,答:甲队至少再单独施工30天.【点睛】本题主要考查分式方程的应用,不等式的应用,解决本题的关键是要熟练确定题目中的等量关系,正确列出方程和不等式.18.(1)方程无解;(2) x=13.(1)两边都乘以最简公分母(x+2) (x-2),把分式方程化为整式方程求解,求出x的值后要代入原方程验根;(2)两边都乘以最简公分母(x+2) (2x-l),把分式方程化为整式方程求解,求出x的值后要代入原方程验根(1)两边同乘以(x+2) (x-2)得:x (x+2) - (x+2) (x-2) =8,去括号,得:x2+2X-X1 +4=8,移项、合并同类项得:2x=4,解得:x=2.经检验,x=2是方程的增根,方程无解.(2)由题意可得:5 (x+2) =3 (2x-l),解得:x=13,经检验,当x=13 时,(x+2) 乂0, 2X-1H0,故x=13是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.19.原计划的行驶速度为100千米/时.解题时利用“计划用时-实际用时小时”这一等量关系列出分式方程求解即可.60解:设原计划的行驶速度为x千米/时,, 180-60 180-60 12n则: ----------------- =一,x 1.2% 60解得x=100,经检验:x=100是原方程的解,且符合题意,所以x=100.答:原计划的行驶速度为100千米/时.【点睛】本题主要考查分式方程的应用,根据已知条件列出分式方程式解题的关键.20. (1) -; (2) x=l (是增根)4试题分析:(1)方程左右两边同时乘以2x —2,解出x 以后验证是否为增根即可;(2) 方程左右两边同时同时乘以x 2-l,解出x 以后验证是否为增根即可.试题解析:2x+2x —2=3, 4x=5,5 x 二一, 4 经检验X=』是分式方程的解;4(2)(x+1) 2-4=X 2-1, X 2+2X +1—4=x 2 —1, x=l,经检验,x=l 是分式方程的增根,所以方程无解.点睛:解分式方程先将分式方程化为整式方程,解出X 以后一定要验证X 是否为方程的增 根.21. 短绳的单价是10元,则长绳的单价是15元.设短绳的单价是x 元,用相等关系"用12000元购进的长绳与用8000元购进的短绳的数量 相等",列分式方程求解,注意检验.解:设短绳的单价是x 元,则长绳的单价是(x+5)元,由题意,得 12000x + 58000= ------- , 5 解得:x=10,经检验,x=10是原方程的根x+5=15 元,答:短绳的单价是10元,则长绳的单价是15元.22. 45设乙每分钟打字X 个,甲每分钟打(X + 5)个,根据题意可得:饕=弓,去分母可得:(1) X x-l 2x-21000x = 900(x+5),解得% = 45,经检验可得:x = 45,故答案为:45.23. (1) x=—2;(2) a=—3. Q . -1 ry (1)将沪3代入,求解丄〒一一=1的根,验根即可, x-1 1-x (2) 先求出增根是x=l,将分式化简为ax+l+2=x —1,代入x=l 即可求出a 的值.Q . 1 r\解:⑴当a=3时,原方程为上〒一一=1, x-1 1-x方程两边同乘x —1,得3x+l+2=x —1,解这个整式方程得x=—2,检验:将 x=—2 代入 x —1 = —2—1 = —3/0,•••x=—2是原分式方程的解.(2)方程两边同乘x ―1,得ax+l+2=x —1,若原方程有增根,则x —1=0,解得x=l,将x = l 代入整式方程得a+1+2=0,解得a= —3.【点睛】本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.8尢424. (1) ----------- ; (2) x=l9y分析:(1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x+l)(x-l),把分式方程转化为整式方程求解,解分式方程要验根;y 2 8x 6 8x 4二・——x --- = ------- -----9x 2 y 3 9y '(2)两边都乘以最简公分母(x+l)(x-l),得 (x + 1)2 - 4 = x 2 -1 .*.X 2+2X +1-4=X 2-1Z2x=2,x = 1.点睛:本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解 分式方程的步骤是解答本题的关键.25. A 型机器人每小时搬运6千克化工原料分析:首先设A 型机器人每小时搬运x 千克化工原料,则B 型机器人每小时搬运(x+3)千克 化工原料,根据题意列出分式方程,从而得出答案.详解: (1)原式=詁。
人教版八年级上册第15章 《分式方程应用》专项综合训练(二)

《分式方程应用》专项综合训练(二)练习一:限时60分钟1.在我市“青出绿水”行动中,某村计划对面积为3600m2的山坡进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,如果两队各自独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天各能完成多少面积的绿化.(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,该村要使这次绿化的总费用不超过40万元.则至少应安排乙工程队绿化多少天?2.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?3.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?4.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?5.政铭老师每天要骑车到离家15千米的单位上班,若将速度提高原来的,则时间可缩短15分钟.(1)求政铭老师原来的速度为多少千米/时;(2)政铭老师按照原来的速度骑车到途中的A地,发现公文包忘在家里,他立即提速1倍回到家里取公文包(其他时间忽略不计),并且以返回时的速度赶往单位,若政铭老师到单位的时间不超过平时到校的时间,求A地距家最多多少千米.6.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?7.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需多少趟?(3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中x,y均为正整数.①当x=10时,y=;当y=10时,x=;②用含x的代数式表示y;探究:(4)在(3)的条件下:①用含x的代数式表示总运费w;②要想总运费不大于4000元,甲车最多需运多少趟?8.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.9.在脱贫攻坚的关键一年里,重庆市某地根据当地的高山气候,该村的村支书决定带领村民把村中余下的荒地种上甲、乙两种水果树.已知每棵甲种树苗比每棵乙种树苗贵6元,用400元购买甲种树苗的棵数与340元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格;(2)该村计划用3610元购买100棵甲、乙两种树苗,最多能买多少棵甲种树苗?10.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?练习二:限时30分钟11.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?12.受疫情影响,今年高考延后.为缓解七月高温对考生的影响,某校准备给本校的所有高考考室安装空调,现计划从A、B两种空调中采购.经了解A种空调比B种空调每台贵800元,如果全部安装A种空调需19万元,全部安装B种空调需15万元.(1)求A、B两种空调每台各需多少元?全校共需要安装多少台空调?(2)现该校筹措到17万元资金用于采购这批空调,求最多能购买多少台A种空调?13.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)14.5月18日,襄阳市5.3万余名初三学生回到阔别100多天的校园.为了返校学生的安全,快速筛查体温异常学生,某校在学生返校前购买了一批额温枪发放到班主任及相关人员手中.购买前有A,B两种型号的额温枪可供选择,已知每只A型额温枪比每只B型额温枪贵20元,用5000元购进A型额温枪与用4500元购进B型额温枪的数量相等.(1)每只A型,B型额温枪的价格各是多少元?(2)该校欲购进A,B两种型号的额温枪共30只,购买两种额温枪的总资金不超过5800元.则最多可购进A型号额温枪多少只?15.某市地铁1号线全长约60km,市政府通过招标,甲、乙两家地铁工程公司承担了施工任务,根据招标合同可知,甲公司每月计划施工效率是乙公司的1.2倍,则乙公司单独施工比甲公司单独施工多用10个月,且市政府需要支付给甲公司的施工费用为6亿元/km,乙公司的施工费用为5亿元/km.(1)甲、乙两家地铁工程公司每月计划施工各为多少km?(2)由于设备和施工现场只能供一家地铁工程公司单独施工的原因,现计划甲、乙两家公司共用55个月恰好完成施工任务(每家公司施工时间不足一个月按照一个整月计算),且甲公司施工时间不得少于乙公司的两倍,应如何安排才能使市政府支付给两家地铁工程公司的总费用最少?参考答案1.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天各完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,解得:a=﹣b+36,根据题意得:1.2×(﹣b+36)+0.5b≤40,解得:b≥32,∴至少应安排乙工程队绿化32天,答:至少应安排乙工程队绿化32天.2.解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥33,因此,A种型号健身器材至少购买34套.3.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.4.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.5.解:(1)设政铭老师原来的速度为x千米/时,根据题意,得﹣=.解得x=12.经检验,x=12是所列方程的解.答:政铭老师原来的速度为12千米/时;(2)设A地距家a千米,根据题意,得+≤.解得a≤5.答:A地距家最多5千米.6.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.7.(1)解:设甲、乙两车每趟的运费分别为m元、n元,由题意得解得:答:甲、乙两车每趟的运费分别为300元、100元;(2)解:设单独租用甲车运完此堆垃圾,需运a趟,由题意得12(+)=1,解得a=18,经检验a=18是原方程的解;答:单独租用甲车运完此堆垃圾,需运18趟;(3)①由题意得:+=1,∴当x=10时,y=16;当y=10时,x=13;故答案为:16,13.②∵+=1,∴y=36﹣2x,(4)①w=300x+100y=300x+100(36﹣2x)=100x+3600,(0<x<18,且x为正整数),②由题意,得100x+3 600≤4 000.∴x≤4.答:甲车最多需运4趟.8.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.9.解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x﹣6)元,根据题意,可得,解这个方程,得:x=40,经检验,x=40是原方程的根,所以x﹣6=34,答:甲种树苗每棵的价格是40元,则乙种树苗每棵的价格是34元.(2)设该村买n棵甲种树苗,买(100﹣n)棵乙种树苗,总的费用为y元,根据题意,可得y=40n+34(100﹣n),∴y=6n+3400≤3610,∴n≤35,∵n是正整数,∴n的最大值是35,答:该村用3610元最多能买35棵甲种树苗.10.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100﹣y)≤50,解得:y≥60,所以至少需要用电行驶60千米.11.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.12.解:(1)设B种空调每台x元,由题意得:=,解得:x=3000,经检验:x=3000是原分式方程的解,则x+800=3800,150000÷3000=50(台),答:B种空调每台3000元,A种空调每台3800元,全校共需要安装50台空调;(2)设购买a台A种空调,由题意得:3800x≤170000,解得:x≤44,∵x为整数,∴x的最大整数解为44,答:最多能购买4台A种空调.13.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.14.解:(1)设A型额温枪的价格是x元,B型额温枪的价格是(x﹣20)元,由题意可得:,解得:x=200,经检验:x=200是原方程的根,∴x﹣20=180元,答:A型额温枪的价格是200元,B型额温枪的价格是180元;(2)设购进A型号额温枪a只,∵200a+180(30﹣a)≤5800,∴a≤20,∴最多可购进A型号额温枪20只.15.解:(1)设乙公司每月计划施工xkm,则甲公司每月施工1.2xkm,根据题意,得,解得,x=1,经检验,x=1是原方程的根,∴1.2x=1.2×1=1.2km,答:甲公司每月计划施工1.2km,乙公司每月施工1km;(2)设甲公司施工了m个月,则乙公司施工(55﹣m)个月,共支付的总费用为w亿元,由题意可得:w=1.2×6•m+1×5•(55﹣m)=7.2m+275﹣5m=2.2m+275,∵k=2.2>0,w随着m的增大而增大,∵甲公司施工时间不得少于乙公司的两倍,∴m≥2(55﹣m),∴,∴当m=37时,w有最小值,∴55﹣37=18,答:甲公司施工37个月,乙公司施工18个月,总费用最少.。
八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。
人教版 八年级数学上册 第15章分式 分式方程及其应用专题(含答案)

人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。
21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

分式方程及其应用(讲义)➢课前预习1.请回顾相关知识,填空:2.回忆并背诵应用题的处理思路,回答下列问题:(1)理解题意,梳理信息.梳理信息的主要手段有_______________________________.(2)建立数学模型.建立数学模型要结合不同特征判断对应模型,如:①共需.同时.刚好.恰好.相同……,考虑___________;②不超过.不多于.少于.至少……,考虑_____________. (3)求解验证,回归实际.主要是看结果是否_________________. ➢ 知识点睛1. 分式方程的定义:__________________的方程叫做分式方程.2. 解分式方程:根据________________,把分式方程转化为__________求解,结果必须_______,因为解方程的过程中有可能产生______. 增根产生的原因是方程两边同乘了一个_________________.3. 列分式方程解应用题,也要进行___________.➢ 精讲精练1. 下列关于x 的方程是分式方程的有__________.(填写序号)①315x -=;②x x π=π;③11123x y -=;④1152x x +=+;⑤11x a b =-. 2. 已知方程2512kx x +=+的解为1x =,则k =_________.3. 解分式方程:(1)2115225x x x ++=--; (2)100602020x x=+-; (3)3201(1)x x x x +-=--; (4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.4. 对于分式方程,下列说法一定正确的是( )A .只要是分式方程,一定有增根B .分式方程若有增根,把增根代入最简公分母,其值一定为0C .使分式方程中分母为零的值,都是此方程的增根D .分式方程化成整式方程,整式方程的解都是原分式方程的解5. 若分式方程1322m x x x -=---有增根,则m 的值为( ) A .2 B .3 C .1 D .1-6. 若分式方程11222kx x x-+=--有增根,则k 的值为( ) A .2- B .1- C .1 D .27. 若分式方程61(1)(1)1mx x x -=+--有增根,则它的增根是( )A .0B .1C .1-D .1和1-8. 若分式方程342(2)a x x x x =+--有增根,则增根可能为( ) A .0 B .2 C .0或2 D .19. 某校用420元钱到商店购买笔记本,经过还价,每本便宜0.5元,结果多买了20本,则原价每本多少元?设原价每本x 元,则由题意列出的方程为( )A .420420200.5x x -=- B .420420200.5x x -=- C .4204200.520x x -=-D .4204200.520x x-=-10. 已知A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时.若水流速度为4千米/时,设该轮船在静水中的速度为x 千米/时,则由题意列出的方程为( ) A .4848944x x +=+-B .4848944x x +=+- C .4849x+=D .9696944x x +=+-11. 为保证某高速公路在2016年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲.乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程为( )A .111104014x x x +=--+ B .111104014x x x +=++- C .111104014x x x -=++- D .111101440x x x +=-+- 12. 某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?13.公交快速通道开通后,小王上班由骑电动车改为乘坐公交车.已知小王家距上班地点9千米,他用乘公交车的方式平均每小时行驶的路程比他用骑电动车的方式平均每小时行驶的路程的1.5倍还多5千米,他从家出发到达上班地点,乘公交车方式所用时间是骑电动车方式所用时间的4.小王用骑电动车方式上班平均每7小时行驶多少千米?【参考答案】➢课前预习1.等式,消元不等号,不等式2.(1)列表,画线段图或示意图(2)①方程模型;②不等式模型(3)符合实际情况➢知识点睛1.分母中含有未知数2.等式的基本性质,整式方程,检验,增根使分母为零的整式3.检验➢精讲精练1.②④2.-13.(1)4x=3(2)5x=(3)无解(4)无解(5)无解(6)x=14.B5.C6.C7.B8.A9.B10. A11. B12. (1)第一次每支铅笔的进价是4元(2)每支售价至少是6元13.小王用骑电动车方式上班平均每小时行驶20千米分式方程及其应用(习题)➢ 例题示范 例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h , 由题意得,1201200.51.2x x =-解得,x =40经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h . ➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a ba x a++= B .xa b x b a +=-11 C .bx a a x 1-=+ D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( )A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++= C .解这个整式方程,得1x = D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( ) A .1515112x x -=+ B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A,B两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2)43x = (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装8. 商厦共盈利90260元分式方程及其应用(随堂测试)1. 下列关于x 的方程:①2103x -=;②x x 3=π-1;③31πy x -=;④13+4x=; ⑤11x a b =-;⑥2153x x x -=--. 其中属于分式方程的是________________.(填序号) 2. 解方程:214111x x x +-=--.3. 如果解关于x 的分式方程1132x k x x+-=--出现了增根,那么增根是_________,k 的值是________.【参考答案】 1. ②④⑥2. x =1是原方程的增根,原分式方程无解3.2x =,4. 1。
人教版八年级数学上册第十五章分式分式方程及其解法ppt教学课件
D.2(x-8)-5x=8
4.若关于x的分式方程
的值为 ( D )
A.-1,5
B.1
C.-1.5或2 D.-0.5或-1.5
无解,则m
5.
解方程:x
x 1
x
1 x
2.
解:去分母,得 x2 (x 1)(x 1) 2x(x 1).
解得
x 1 2.
检验:把
x
1 2
代入
(x x 1)
1 4
0.
所以原方程的解为 x 1
因此x=6是原分式方程的解.
归纳 解分式方程的基本思路:是将分式方程化 为整式方程,具体做法是“去分母” 即方程两边 同乘最简公分母.这也是解分式方程的一般方法.
下面我们再讨论一个分式方程:
x
1 5
10 x2 25
解:方程两边同乘(x+5)(x-5),得
x+5=10,
解得 x=5.
x=5是原分式 方程的解吗?
方法总结:分式方程无解与分式方程有增根所 表达的意义是不一样的.
分式方程有增根仅仅针对使最简公分母为0的数, 分式方程无解不但包括使最简公分母为0的数,而 且还包括分式方程化为整式方程后,使整式方程 无解的数.
当堂练习
1.下列关于x的方程中,是分式方程的是( D )A.B.源自C.D.2.
要把方程
2 3y
人教版 八年级数学上册
第十五章 分 式
15.3 分式方程
分式方程及其解法
导入新课
问题引入
一艘轮船在静水中的最大航速为30千米/时,它沿
江以最大航速顺流航行90千米所用时间,与以最
大航速逆流航行60千米所用时间相等.设江水的流
人教版八年级数学上册第十五章 15.3 分式方程的解法
4.【例 2】解分式方程:xx- +22-1=x21-6 4. 解:方程两边同时乘(x+2)(x-2),得 (x-2)2-(x+2)(x-2)=16,解得 x=-2, 检验:当 x=-2 时,(x+2)(x-2)=0, ∴x=-2 不是原方程的解,即原分式方程无解.
小结:先对 x2-4 进行因式分解,不要漏乘-1 这项.
9.解分式方程:21--xx-x-1 2=3. 无解
6.【例 3】解分式方程:x+2 1+x-3 1=x2-6 1. 无解 小结:去分母转化为整式方程,结果必须验根.原分式方程 无解,不要叙述为方程无解.
10.解分式方程:x2+x1-xx2++3x=2. 无解
7.【例 4】当 x 为何值时,分式x-x 1的值比分式x+2 1的值多 1? 解:根据题意得x-x 1-x+2 1=1, 去分母得 x2+x-2x+2=x2-1,解得 x=3,
2.(1)若 x=2 是分式方程x+2 2-k-x 1=0 的解,则 k 的值是
(A) A.2
B.-2
C.3
D.-3
(2)*若方程x-x 3-2=x-m 3有增根,则 m 的值为( B )
A.-3
B.3
C.0
D.以上都不对
(3)若关于 x 的分式方程ax--13=1 在实数范围内无解,则实数 a 的值为 1 ; (4)若关于 x 的分式方程2xx--1a=1 的解为正数,则实数 a 的取 值范围为 a>-1 .
知识要点
知识点一:解分式方程的方法和步骤 (1)解分式方程的基本思路:
(2)解分式方程的一般步骤:
对点训练
1.(1)方程x+3 2=x+1 1的解为( B )
A.x=54
B.x=-21
C.x=-2
人教版八年级上册数学 第十五章 分式方程 知识点及考点
第十五章分式方程知识点及考点一、知识点1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.二、考试方向(一)解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程; ③解整式方程;④验根. 例题:1、解分式方程:312242x x x -=--. 【解析】去分母得:6-x =x -2,解得:x =4,经检验x =4是分式方程的解.【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.2、方程33122x x x-+=--的解为_______________. 【答案】1x =【解析】方程两边同乘以(2)x -,得(32)3x x -+-=-,解得1x =,检验:1x =时,20x -≠,所以1x =是原分式方程的解. 故填1x =.【名师点睛】分式方程的解题步骤:去分母,去括号,移项,合并同类项,系数化为1.同时应注意分式方程必须检验.(二)分式方程的解(1)求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.(2)验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;否则这个根就是原分式方程的根,若解出的根都是增根,则原方程无解.(3)如果分式本身约分了,也要代入进去检验.(4)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.例题:3、 若关于x 的方程3111ax x x -=++的解为整数解,则满足条件的所有整数a 的和是 A .6 B .0 C .1 D .9【答案】D【解析】分式方程去分母得:ax -1-x =3,解得:x =41a -, 由分式方程的解为整数解,得到a -1=±1,a -1=±2,a -1=±4, 解得:a =2,0,3,-1,5,-3(舍去),则满足条件的所有整数a 的和是9, 故选D .【名师点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.4、若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为_______________. 【答案】3k <且1k ≠【解析】分式方程去分母转化为整式方程,去分母得122k x -=+,解得32x k =-,由分式方程的解为负数,可得203k -<且10x +≠,即213k -≠-,解得3k <且1k ≠. (三)分式方程的应用分式方程解实际问题的求解步骤:审题、设未知数、列方程、解方程、检验、写出答案,检验时要注意从方程本身和实际问题两个方面进行.例题:5、某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .2010154x x +=+ B .2010154x x -=+ C .201015x x += D .201015x x -= 【答案】A 【解析】由题意可知原计划每天生产x 个零件,则实际每天生产了(4)x +个零件,实际15天共生产了(200)1x +个零件,因此根据题意可列分式方程为2010154x x +=+. 故选A . 6、元旦假期即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%,那么乙种商品单价是A .2元B .2.5元C .3元D .5元【答案】B【解析】设乙种商品单价为x 元,则甲种商品单价为(1)20%x +元,由题易得,甲种商品花费300元,乙种商品花费400 解得 2.5x =元.故选B .。
人教版八年级上册数学第15章 分式 解分式方程
第十五章 分式
15.3 分式方程 第2课时 解分式方程
提示:点击 进入习题
(1)最简公分母;整式 (2)整 1 式 (3)验根
2D
3A
4B
最简公分母;最简公分 5母
6B
答案显示
7D
8B
9 0;整式方程;整式方程;最 简公分母
10 -1 或 5 或-13
11 B 12 D 13 见习题 14 见习题 15 见习题
A.-1
B.-2
C.-3
D.0
【由点解拨集】为不x≥等5,式得组2整+理a<得5,即a<3.xx≥>25+,a,
分式方程去分母得y-a=-y+2,即2y=a+2,解得y= +1.
由y为非负整数,且y≠2,及a为整数,且a<3, 得a=0或a=-2,则0+(-2)=-2.故选B.
a
2
【答案】B
*5.解分式方程检验时,将整式方程的解代入___________,如最果简_公__分__母_______的值 不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的 解.最简公分母
16.已知点A,B在数轴上,它们所表示的数分别是-4和,且它们关于原
点对x称+.2求x的值.
3x-5
解:由题意得
x++(-24)=0.
3x-5 去分母,得x+2-4(3x-5)=0,
解得x=2.
经检验,x=2是分式方程的解.
∴x的值为2.
17.已知关于 x 的分式方程x-2 1+(x-1)m(x x+2)=x+1 2.
A.方程两边各分式的最简公分母是(x-1)(x+1) B.方程两边都乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6 C.解B中的整式方程,得x=1 D.原方程的解为x=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解分式方程(人教版)
一、单选题(共10道,每道10分)
1.下列方程不是分式方程的是()
A. B.
C. D.
答案:B
解题思路:
分母中含有未知数的方程叫分式方程,而π是数字,不是未知数,故选B.试题难度:三颗星知识点:分式方程的定义
2.分式方程的解是()
A. B.
C. D.
答案:B
解题思路:
解分式方程分三步:①去分母,化成整式方程;②解整式方程;③检验。
检验:把代入原方程,成立,
∴是原方程的解,
故选B.
试题难度:三颗星知识点:解分式方程
3.分式方程的解是()
A. B.
C. D.无解
答案:D
解题思路:
原式可变形为:
检验:把代入原方程,不成立,
∴是原方程的增根,
∴原方程无解.
故选D.
试题难度:三颗星知识点:解分式方程4.分式方程的解是()
A. B.
C. D.
答案:A
解题思路:
原式可变形为:
故选A.
试题难度:三颗星知识点:解分式方程
5.分式方程的解为()
A. B.
C.或
D.无解
答案:D
解题思路:
原式可变形为:
,
检验:把代入原方程,不成立,
∴是原方程的增根,
∴原方程无解.
故选D.
试题难度:三颗星知识点:解分式方程
6.若关于的分式方程有增根,则的值为()
A.1
B.-1
C.-7
D.7。