高分子材料物理化学实验复习资料
高分子材料物理化学实验复习

一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。
内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在12、 34测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -?s ;△t-?s ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④?t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
高分子物理复习资料归纳

高物第一章习题1.测量数均分子量,不可以选择以下哪种方法:(B)。
A.气相渗透法B.光散射法C.渗透压法D.端基滴定法2.对于三大合成材料来说,要恰当选择分子量,在满足加工要求的前提下,尽量( B )分子量。
A.降低B.提高C.保持D.调节3.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量(大)的部分,是依据(体积排除)机理进行分离的。
4.测量重均分子量可以选择以下哪种方法:(D)A.粘度法B.端基滴定法C.渗透压法D.光散射法5. 下列相同分子量的聚合物,在相同条件下用稀溶液粘度法测得的特性粘数最大的为( D )(A)高支化度聚合物(B)中支化度聚合物(C)低支化度聚合物(D)线性聚合物6. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。
7. 同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。
塑料的使用温度要控制在玻璃化温度以下且比Tg室温低很多。
而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都无法正常使用。
玻璃化温度你可以理解为高分子材料由软变硬的一个临界温度。
塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。
纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。
(2)结晶的高聚物常不透明,非结晶高聚物通常透明。
不同的塑料其结晶性是不同的。
加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。
大多数聚合物是晶区和非晶区并存的,因而是半透明的。
8. 在用凝胶渗透色谱方法测定聚合物分子量时,假如没有该聚合物的标样,但是有其它聚合物的标样,如何对所测聚合物的分子量进行普适标定?需要知道哪些参数?参考答案:可以用其它聚合物标样来标定所测聚合物的分子量。
高分子物理期复习要点

高物复习基本概念第一章平均分子量(数均分子量,重均分子量,粘均分子量)分子量分布宽度指数:分子量分布宽度指数是指试样中各个分子量与平均分子量之间的差值的平方平均值多分散性指数:重均分子量与数均分子量之比.第二维利系数的物理意义:高分子链段与链段之间以及高分子与溶剂分子间相互作用的一种量度,它与溶剂化作用和高分子在溶液里的形态有密切关系。
相对粘度: 增比粘度:对数粘数: 极限粘数(特性粘数: 第二章无规共聚物,交替共聚物,嵌段共聚物,接枝共聚物(两种单体单元反应生成的二元共聚物,其结构记书上的图)无规立构,全同立构,间同立构(是针对结构单元为聚丙烯型的高分子而言的) 全同立构:高分子全部由一种旋光异构体键连接而成间同立构:两种旋光异构单元交替键接而成无规立构:两种旋光异构单元完全无规健接而成等规度:高聚物中含有全同立构和间同立构的总的百分数支化高分子:如果在缩聚过程中有三个或三个以上官能度的单体存在或在加聚过程中,有自由基的链转移反应,或双烯类单体中第二双键的活化等,都能生成支化或交联的高分子 支化度:两相邻支化点间链的平均分子量交联度:两相邻交联点间链的平均分子量构象:由于单键内旋转而产生的分子在空间的不同形态称为构象构型:包括单体单元的键合顺序,空间构型的规整性,支化度,交联度以及共聚物的组成及序列结构链段:高分子链能够独立运动的单元均方末端距:平均末端距的平方的平均自由结合链:n 是一个很大的数,每个键不占体积,内旋转没有键角限制并可以自由取向 自由旋转链:假定分子链中每个键可以在键角允许的方向自由转动,称为自由旋转链 等效自由结合链:以链段作为独立运动的单元自由结合组成的高分子链柔顺性:高分子链能够改变其构象的性质高斯链:等效自由结合链的链段分布符合高斯分布函数,故这种链又称为“高斯链”均方回转半径,用(Rg 2)表示,它的定义是:假定高分子链中包含许多链单元,每个链单元0ηηη=r 100-=-=r sp ηηηηη()C C sp r ηη+=1ln ln []CC r C sp C ηηηln lim lim 00→→==的质量为m ,设从高分子链的质心到第i 个链单元的距离为r i ,它是一个矢量,取全部链单元的r i 2对质量m i 的平均,就是链的均方回转半径第三章高聚物溶解:是一个缓慢过程,包括溶胀和溶解两阶段溶度参数:内聚能密度的平方根定义为溶度参数θ条件:通过选择溶剂和温度使高分子溶液符合理想溶液的条件,这种条件称θ条件,所用的溶剂称为θ溶剂,所处的温度称为θ温度无扰链:当T=θ时,A 2=0, u=0, 即此时的排斥体积等于0,高分子在溶液中处于无干扰状态,这种状态的尺寸称为无扰尺寸,这时的高分子链称为无扰链亚浓溶液:高分子线团互相穿插交叠,链段分布趋于均一的溶液增塑剂:添加到线型高聚物中使其塑性增大的物质称为增塑剂溶胀比:交联高聚物在溶胀平衡时的体积与溶胀前体积之比称为溶胀比聚电解质:在聚合物分子中有许多可电离的离子性基团的高分子称为聚电解质平移扩散:高分子在溶液中由于局部浓度或温度不同,引起高分子向某一方向的迁移,这种现象称为扩散或平移扩散非牛顿流体:高分子熔体或高分子浓溶液不符合牛顿粘度定律,称为非牛顿流体第五章聚合物的力学三态(玻璃态,高弹态,粘流态,记住非晶态聚合物的那个温度形变曲线就好理解了)玻璃态:由于温度较低,链段处于被冻结状态,受力形变小高弹态:随着温度升高,链段可以运动或滑移,形变增加粘流态:当温度再升高,整个高分子链可以产生滑移,形变增大,试样变为粘性流体 玻璃化温度:从玻璃态到高弹态的转变称为玻璃化转变,对应的温度称为玻璃化转变温度(Tg )WLF 方程:牛顿流体:粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,低分子流体和高分子的稀溶液属于牛顿流体非牛顿流体:凡是不符合牛顿流体公式的流体,即粘度有剪切速率依赖性,聚合物熔体和浓溶液属于非牛顿流体零切粘度:剪切速率趋于零时的粘度 表观粘度:稠度(微分粘度): 取向:在外力作用下,分子链沿外力方向平行排列。
高分子化学与物理复习

i w
i
i
i
i
i
i
i
i
2
i
i
i
i
i
i
i
i
Z均分子量
ZiMi WiMi NiMi Mi Zi WiMi NiMi
2
3
2
4
粘均分子量
WiMi NiMi Mv Wi NiMi
11
2.1 连锁聚合反应 Chain Reaction
三 个 基 元 反 应
链引发(chain initiation) 链增长(chain propagation) 链终止(chain termination)
组成
连 锁 聚 合
12
连锁聚合反应分类
活性中心(reactive center)
可以是自由基、阳离子和阴离子,它进攻单体的双键,使单 体的π键打开,与之加成,形成单体活性种,而后进一步与单体 加成,促使链增长。
1 1 [I] [S] 2kt R p [I] [S] CM CI CS 2 CM CI CS 2 [M] [M] k p [M ] [M] [M] Xn v
1
1
1
Mz > Mw > Mv > Mn,Mv略低于Mw
特性粘数[η]和分子量的关系: 分子量多分散性的表示方法:
以分子量分布指数表示 以分子量分布曲线表示 以被分离的各级分的重量分 率对平均分子量作图,得到 分子量重量分率分布曲线。
[ ] KM
Mw / Mn
重 量 分 率 平均分子量
阳离子聚合 取代基X : NO2 CN COOCH3 CH=CH2 C6H5 CH3 OR
高分子化学与物理总复习

第一章聚合物、聚合度和链节的定义区别结构单元、单体单元、重复单元数均分子量、重均分子量和多分散系数D的计算(计算题)高分子的分类(3种)表1-2常见高分子的英文缩写,结构式书写高分子合成反应的分类图1-2 三相两转变第二章缩聚反应的定义官能团和官能度的定义官能团等活性理论缩聚反应的两大特征:逐步性和可逆性反应程度P的定义,与平均聚合度的关系计算题:式2-18和式2-20(计算题)体型缩聚的概念凝胶点的计算,式2-42(计算题)简述缩聚反应的四种实施方法(简答题)第三章自由基的定义聚合单体的反应类型判断自由基聚合的基元反应终止反应的类型链转移反应的定义引发剂的定义和种类引发剂效率小于1的原因在自由基聚合反应过程中所做的三点假设(简答题)自动加速效应的定义动力学链长的定义链转移常数的定义常见的阻聚剂自由基聚合四种实施方法的体系组成第四章阳离子聚合的单体和引发剂阳离子聚合机理特点阴离子聚合的单体和引发剂阴离子聚合机理特点活性聚合的定义配位聚合催化剂的组成第五章二元共聚物的四种类型共聚曲线的四种类型(简答题)判断单体和自由基的活性大小第六章高分子化学反应的分类影响高分子反应活性的化学因素高分子官能团反应的定义降解的定义和分类第七章结构单元的键接方式有高分子链的构造有高分子链的构型包括典型的构象状态包括链段的定义影响高分子链柔性的因素(简答题)高分子链柔性的表征聚集态结构的定义和意义高分子间作用力包括常用内聚能密度大小评价高分子分子间作用力高分子的结晶形态主要有球晶是高分子结晶中最重要的结晶形态,在正交偏光显微镜下出现特有的黑十字消光图案。
结晶度的定义和测定结晶度的方法链结构与结晶能力的关系(简答题)结晶过程包括晶核的生长和晶体生长,晶核生产包括和淬火和退火结晶度和晶体尺寸的影响取向的应用改善共混组分间相容性的有效途径是第八章高分子运动的特点(简答题)玻璃化转变温度的测定方法影响玻璃化转变温度的因素(简答题)P193 加入增塑剂的目的P195 熔点和熔限的定义P197 结晶温度对熔点的影响P201 高分子流动的机理P201 塑料的成型加工温度链的柔顺性、极性和分子量对粘流温度的影响P202 图8-22 识别牛顿流体、假塑性流体、胀塑性流体和宾汉流体大多数高分子熔体属于流体,黏度随剪切速率增大而P204 高分子流动行为的表征(填空)P212 熔体流动中的弹性效应第九章力学性能P218 泊松比和杨氏模量的定义P219 脆性断裂和韧性断裂、强迫高弹形变的定义P221 图9-6 屈服点和断裂点表9-1 高分子五种类型的应力-应变曲线P224 银纹和裂纹的区别(简答题)P230 橡胶高弹性的本质P233 粘弹性、蠕变和应力松弛的定义P241 时温等效原理第十章P243 高分子溶解过程需经两个阶段:先溶胀后溶解交联高分子只能溶胀,不能溶解,最后达到溶胀平衡P244 溶度参数的定义P247 溶解度参数相近原则Huggins参数X1判断溶剂的优劣P257 重均分子量的测定方法数均分子量的测定方法黏均分子量的测定方法,测定特性粘度常使用毛细管粘度计中的P267 凝胶渗透色谱法的分离过程完全有体积排除效应所致,分子量大的先被淋洗出来;分子量小的后被淋洗出来第11章P274 介电常数的定义考试题型一、选择题10小题,每题1分二、填空题20小题,每题2分三、简答题5小题,每题6分四、计算题2小题,每题10分。
高分子物理复习资料

第一章高分子链的结构与形态一、填空、选择题1、高分子链中反式、旁式构象越接近于无规排列,链的静态柔顺性越。
2、单烯类单体形成聚合物的键接方式有键接和键接。
3、聚丙烯分子可能产生的空间立构有、和。
4、聚丁二烯分子可能产生的几何异构有和。
5、交联聚合物不溶解也不。
6、构象熵(S)与构象数(W)的关系是。
7、橡胶产品的加工对分子量分布要求最(宽、窄)8、PAN、PVC、PP中柔性最大的是。
9、一般用末端距来衡量高分子链的大小。
10、碳链高分子,若其是自由结合链,由n个键组成,键长为l,其均方末端距为。
11、碳链高分子,若其是自由旋转链,由n个键组成,键长为l,其均方末端距为。
12、一般高分子主链键长较大,键角较大的键,其柔性更。
13、库恩的柔性链模型是一种自由结合链。
14、聚异丁烯的柔性于聚乙烯的柔性15、聚偏二氯乙烯的柔性于聚1,2-二氯乙烯的柔性16、聚氯丁二烯的柔性于聚氯乙烯的柔性。
17、分子链为伸直形态时,构想熵为。
18、长支链的存在,使聚合物的柔性。
19、高分子共聚物的序列结构指两种或两种以上共聚单体在分子中的排列,二元共聚物可以分为无规型、交替型、型和型共聚物。
20、下列四种聚合物中,不存在旋光异构和几何异构的为()。
A、聚丙烯,B、聚异丁烯,C、聚丁二烯,D、聚苯乙烯21、自由基聚合制得的聚丙烯酸为()聚合物。
A、全同立构,B、无规立构,C、间同立构,D、旋光22、热塑性弹性体SBS是苯乙烯和丁二烯的()。
A、无规共聚物,B、交替共聚物,C、嵌段共聚物,D、接枝共聚物23、下列四种聚合物中,链柔顺性最差的是()。
A、C H2C H2n,B、C H2C H nC l,C、C H2nC HC N,D、C HnC HC H324、下列说法,表述正确的是()。
A、自由连接链为真实存在,以化学键为研究对象。
B、自由旋转链为理想模型,以链段为研究对象。
C、等效自由连接链为理想模型,以化学键为研究对象。
高分子物理复习资料
高分子物理复习资料第一章高分子链的结构高分子结构的层次:●高分子链的结构:高分子的链结构又称一级结构,指的是单个分子的结构和形态,它研究的是单个分子链中原子或基团的几何排列情况。
包含一次结构和二次结构。
●高分子的一次结构:研究的范围为高分子的组成和构型,指的是单个高分子内一个或几个结构单元的化学结构和立体化学结构,故又称化学结构或近程结构。
●高分子的二次结构:研究的是整个分子的大小和在空间的形态(构象)。
例如:是伸直链、无规线团还是折叠链、螺旋链等。
这些形态随着条件和环境的变化而变化,故又称远程结构。
●高分子的聚集态结构:高分子的聚集态结构又称二级结构,是指具有一定构象的高分子链通过范德华力或氢键的作用,聚集成一定规则排列的高分子聚集体结构。
§1.1组成和构造1、结构单元的化学组成:按化学组成不同聚合物可分成下列几类:①碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。
如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。
②杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。
由缩聚反应和开环聚合反应制得。
如:聚酯、聚醚、聚酰胺、聚砜。
POM、PA66(工程塑料)PPS、PEEK。
③元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。
侧基含有有机基团,称作有机元素高分子,如: 有机硅橡胶有机钛聚合物侧基不含有机基团的则称作无机高分子,例如:梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。
※表1-1,一些通用高分子的化学结构,俗称2、高分子的构型:构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
高分子物理实验必备复习材料
高分子物理实验必备复习材料一、浊点滴定法测定聚合物的溶解度参数1、测定聚合物溶解度参数的实验方法有:黏度法、交联后的溶胀平衡法、反相色谱法和浊点滴定法等,实验用浊点滴定法2、溶解度参数是表示物体混合能与相互溶解的关系:2/1)(VE ?=δ,单位3/cm J ,根据溶解度参数的定义,溶解度参数δ应为“内聚能密度”的平方根原理:浊点滴定法是在两元互溶体系中,如果聚合物的溶解度参数p δ在两个互溶的溶剂s δ值的范围内,就可调节这两个互溶混合溶剂的溶解度参数sm δ,使sm δ与p δ很接近。
只要把两个互溶的溶剂按照一定的百分比配成混合溶剂,该混合溶剂的溶解度参数sm δ可以近似地表示成:2211δ?δ?δ+=sm3、混合溶剂的溶解度参数sm δ:2211δ?δ?δ+=sm,1?,2?分别是混合溶剂中组分1和组分2的体积分数。
1δ、2δ为混合溶剂中组分1和组分2的溶解度参数。
4、聚合物的溶解度参数p δ:2mlmh p δδδ+=,式中,mh δ为高溶解度参数的沉淀剂滴定聚合物溶液在混浊点时混合溶剂的溶解度参数;ml δ为低溶解度参数的沉淀剂滴定聚合物的混浊点时混合溶剂的溶解度参数。
5、试剂:三氯甲烷,正戊烷(ml δ),甲醇(mh δ),聚苯乙烯(PMMA ,溶于三氯甲烷)6、注意事项:(1)溶解PMMA 时,PMMA 与CHCl3要充分混匀,防止滴定时容易出现浑浊;(2)所用试剂为有机溶剂,故滴定管塞口不能涂凡士林,以免污染试剂;(3)读数时视线要与凹液面相平;(4)判定终点时,要将试剂对着阳光,以便判定终点;(5)CHCl3有挥发性,故在配制试样和移取过程中要准确迅速,防止其挥发,造成浓度变化,且其有剧毒,用完应回收,不可随意倾倒。
7、浊点滴定法测定聚合物溶解度参数时候,根据什么原则选择溶剂和沉淀剂?溶剂与聚合物的溶解度参数相近,能否保证二者相溶?为什么?答:对非极性溶剂,根据相似相溶原理,对极性溶剂,根据溶剂比原则来选择溶剂和沉淀剂。
高分子物理复习资料
高分子物理复习资料高分子物理复习资料高分子物理是研究高分子材料的物理性质和行为的学科,它在材料科学和工程领域中具有重要的地位。
对于学习高分子物理的学生来说,复习资料是提高复习效率和理解知识的重要工具。
本文将介绍一些高分子物理复习资料的内容和使用方法。
第一部分:高分子物理基础知识在复习高分子物理时,首先需要掌握一些基础知识。
这包括高分子的结构与性质、高分子的物理性质和高分子的力学性质等。
对于这些知识,可以通过查阅教材和课堂笔记来进行复习。
同时,还可以通过阅读相关的学术论文和综述来深入了解这些知识。
第二部分:高分子物理实验技术高分子物理实验技术是研究高分子物理的重要手段。
在复习时,可以通过学习实验技术来加深对高分子物理的理解。
这包括高分子的合成方法、高分子的表征方法和高分子的测试方法等。
可以通过查阅相关的实验教材和实验手册来学习这些实验技术。
第三部分:高分子物理理论模型高分子物理理论模型是解释高分子物理现象的重要工具。
在复习时,可以通过学习理论模型来深入理解高分子物理的本质。
这包括高分子的统计力学模型、高分子的自洽场理论和高分子的动力学模型等。
可以通过阅读相关的学术论文和专著来学习这些理论模型。
第四部分:高分子物理应用研究高分子物理的应用研究是将高分子物理理论应用于实际问题的重要领域。
在复习时,可以通过学习应用研究来了解高分子物理在材料科学和工程领域中的应用。
这包括高分子材料的功能性和高分子材料的性能调控等。
可以通过阅读相关的学术论文和专著来学习这些应用研究。
第五部分:高分子物理的前沿研究高分子物理的前沿研究是推动高分子物理学科发展的重要动力。
在复习时,可以通过学习前沿研究来了解高分子物理的最新进展。
这包括高分子自组装和高分子纳米材料等。
可以通过阅读相关的学术论文和综述来学习这些前沿研究。
总结:高分子物理复习资料的内容和使用方法多种多样,可以根据自己的学习需求选择合适的资料进行复习。
通过系统地学习高分子物理的基础知识、实验技术、理论模型、应用研究和前沿研究,可以提高对高分子物理的理解和应用能力。
高分子物理复习材料
1、高聚物结构包括 高分子的链结构 和高分子的聚集态结构,高分子的聚集态结构又包括 晶态结构 、 非晶态结构 、 取向态结构 和 液晶态结构以及织态结构 。
2、高分子链结构单元的化学组成有 碳链高分子 、 杂链高分子 、元素高分子和 梯形和双螺旋型高分子,元素高分子有 有机元素高分子 和 无机元素高分子 。
3、高分子的结晶形态有 折叠链片晶 、 串晶 、 伸直链片晶 和 纤维状晶 。
4、高聚物的晶态结构模型主要有 缨状胶束模型(或两相模型)、 折叠链结构模型 、 隧道-折叠链模型 、 插线板模型 ;高聚物的非晶态结构模型主要有 无规线团模型 和 折叠链缨状胶束粒子模型(或两相球粒模型) 。
5、测定分子量的方法有 端基分析法 、 气相渗透法 、 膜渗透法 、 光散射法 、 粘度法 和 凝胶色谱法 。
6、提高高分子材料耐热性的途径主要有 增加链刚性 、增加分子间作用力 、 结晶。
7、线性高聚物在溶液中通常为 无规线团 构象,在晶区通常为 伸直链 或 折叠链 现象。
8、高聚物稀溶液冷却结晶易生成 单晶 ,熔体冷却结晶通常生成 球晶 。
熔体在应力作用下冷却结晶常常形成 串晶 。
9、测定高聚物M n 、M w 、M η的方法分别有 膜渗透法 、 光散射法 、和 粘度法 。
测定高聚物相对分子质量分布的方法有 沉淀分级法 和 GPC ;其基本原理分别为 溶解度 和 体积排除 。
10、高聚物的熔体一般属于 假塑性 流体,其特性是 粘度随剪切速率增加而减小 。
高聚物悬浮体系、高填充体系、PVC 糊属于 胀塑性 流体,其特征是 粘度随剪切速率增加而增加 。
11、对于聚乙烯自由旋转链,均方末端距与链长的关系是 222nl h 。
12、当温度T= θ 时,第二维里系数A 2= 0 ,此时高分子溶液符合理想溶液性质。
13、测定PS 重均相对分子质量采用的方法可以是 光散射法 。
14、均相成核生长成为三维球晶时,Avranmi 指数n 为 4 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。
内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度等因素。
MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在10min 内从毛细管中压出的熔体克数少,样品的分子量大,如果平均分子量相同,粘度小,则表示物料流动性好,分子量分布较宽。
1、 测烯烃类。
2、聚酯(比如涤纶)不能测。
3、只能区别同种物质。
聚丙烯的熔点为165℃,聚酯的熔点为265℃。
熔融加工温度在熔点上30~50考:简述实验步骤:(聚丙烯230℃) ② 装上毛细管,预热2~3min 。
③ 加原料,“少加压实”。
平衡5min ,使其充分熔融。
④ 加砝码,剪掉一段料头。
1min 后,剪下一段。
⑤ 称量⑥ 重复10次,取平均值。
⑦ 关闭,清洁仪器。
思考题:1、影响熔融指数的外部因素是什么?(4个)2、 熔融指数单位:g/10min3、测定热塑性高聚物熔融指数有何意义?参考答案:热塑性高聚物制品大多在熔融状态加工成形,其熔体流动性对加工过程及成品性能有较大影响,为此必须了解热塑性高聚物熔体的流变性能,以确定最佳工艺条件。
熔融指数是用来表征熔体在低剪切速率下流变性能的一种相对指标。
4、聚合物的熔融指数与其分子量有什么关系?为什么熔融指数值不能在结构不同的聚合物之间进行比较? 答:见前文。
二、声速法测定纤维的取向度和模量测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -μs ;△t-μs ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④∆t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
背思考题。
)测定聚合物等温结晶速率的方法:比容、红外光谱、X 射线衍射、广谱核磁共振、双折射法等。
本实验采用光学解偏振法,它具有制样简便、操作容易、结晶温度平衡快、实验重复性好等优点。
实验原理:由实验测定等温结晶的解偏振光强-时间曲线,从曲线可以看出,在达到样品的热平衡时间后,首先是结晶速度很慢的诱导期,在此期间没有透过光的解偏振发生,而随着结晶开始,解偏振光强的增强越来越快,并以指数函数形式增大到某一数值后又逐渐减小,直到趋近于一个平衡值。
对于聚合物而言,因链段松弛时间范围很宽,结晶终止往往需要很长时间,为了实验测量的方便,通常采用211t 作为表征聚合物结晶速度的参数,即为图2中210=--∞∞I I I I t 时所对应的时间。
聚合物结晶过程可用下面的方程式描述:nKt eC -=-1 。
式中:C 为t 时刻的结晶度;K 为与成核及核成长有关的结晶速度常数;n 为Avrami 指数,为整数,它与成核机理和生长方式有关。
t n k I I I I t lg lg ln lg 0+=⎪⎪⎭⎫⎝⎛---∞∞ 若将上式左边对lg t 作图得一条直线,其斜率为Awami 指数n ,截距就是lg K 。
本实验以等规聚丙烯粒料为试样,采用结晶速度仪测定其结晶速率。
思考题:1、聚合物的结晶速度与哪些因素有关?答:分子主链结构,取代基侧链,分子量;温度,压力,应力、添加剂等。
2、根据实验图分析结晶温度对结晶速度的影响。
四、差示扫描量热法测定聚合物等温结晶速率实验原理:采用DSC 法测定聚合物的等温结晶速率时,首先将样品装入样品池,加热到熔点以上某温度保温一段时间,消除热历史,然后迅速降到并保持某一低于熔点的温度,记录结晶热随时间的变化,如图1(a )。
可以看到随结晶过程的进行,DSC 谱图上出现一个结晶放热峰。
当曲线回到基线时,表明结晶过程已完成。
记放热峰总面积为A0,从结晶起始时刻(t 0)到任一时刻t 的放热峰面积A t 与A 0之比记为结晶分数X(t):()0A A t X t=21t 解偏振光强时间图2 等温结晶的解偏振光强—时间曲线以结晶分数X(t)对时间作图,可得到图1(b )的S 形曲线。
这种形状代表了三个不同的结晶阶段。
第一阶段相当于曲线起始的低斜率段,代表成核阶段,又称为结晶的诱导期;第二阶段曲线斜率迅速增加,为晶体放射性生长,形成球晶的阶段,称为一次结晶;曲线斜率再次减小即进入第三阶段,到此阶段大多数球晶发生碰撞,结晶只能在球晶的缝隙间进行,生成附加晶片,称为二次结晶。
聚合物等温结晶过程可以用Avrami 方程进行描述: ()nKt X -=-ex p 1式中,X 为结晶分数,K 为总结晶速率常数,n 为Avrami 指数,与成核机理和晶粒生长的方式有关。
对Avrami 方程取两次对数: ()[]t n K X lg lg 1ln lg +=--以lg[-ln(1-X)]对lgt 作图得一直线,其斜率为Avrami 指数,其截距为lgK 。
实验内容:样品的质量取8~10mg ,保护气为N 2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。
2、马克(Mark)公式:[]αηKM =。
该式实用性很广,式中K 、α值主要依赖于大分子在溶液中的形态。
无规线团形状的大分子,α为0.5~0.8;在良溶剂中,大分子溶剂化,α为0.8~l ;硬棒状分子,α>1。
求某一高聚物溶剂系的K 、α值的具体测量,可取对数得: []M K lg lg lg αη+=3、几个粘度的关系(问答题):sp η为增比粘度,1-=τηηsp;τη为相对粘度,)()(0s s 溶剂粘度溶液粘度==ηηητ。
当C →0时, []CCc spc τηηη0limlim →→==4、特性粘度[η]的求得:(1)、稀释法(外推法)[][]C K CHuggins H sp2ηηη+=式:[][]C K CKramer K 2ln ηηητ+=式:外推至C →0,两直线相交于一点此截距即为[η]。
两条直线的斜率分别代表常数K H 和K K 。
(2)一点法5、换算前提:极稀溶液。
所以 00t t==ηηητ当选择的乌氏粘度计t 0<100s 时,需要动能校正。
6、该实验使用PVA (聚乙烯醇),溶剂为去离子水。
思考题答:毛细管粘度计的选择(选溶剂的流经时间>100s ),溶液浓度,测试温度。
2、什么情况下需要做动能校正?为什么?图2 的关系图C CC C sp 对和对τηln六、加聚反应动力学——膨胀计法测反应速度1、膨胀计是测定聚合速度的一种方法。
它的依据是单体密度小,聚合物密度大,此时随着聚合反应的进行,体积会发生收缩。
当一定量单体聚合时,体积的变化与转化率成正比。
如果将这种体积的变化放在一根直径很窄的毛细管中观察,其灵敏度将大为提高,这种方法就是膨胀计法。
2、几种方法测反应速度:直接法和间接法。
间接法有膨胀计法、测比重、测折射率、测比容等。
3、[][][]M I k dtM d v p 21=-=。
此式表示聚合反应速度v p 与引发剂浓度[I ]的平方根成正比,与单体浓度[M ]成正比。
如果转化率低(<16%),可假定引发剂浓度保持恒定,则反应速率只与本体浓度有关。
若对[]⎪⎪⎭⎫⎝⎛M M In 0作图,其斜率即为k 。
由于单体聚合物的密度不同,在单体聚合时必然发生体积变化,故可求得不同时间的单体浓度,进而可求得反应速度常数。
思考题:答:将膨胀计迅速放入预先已恒温的超级恒温水浴中,此时膨胀计内液面因液体受热膨胀而上升。
当达到平衡时,液面停止上升。
加聚反应开始后,使体积收缩。
2、实验结果的误差分析。
答:①空气②引发剂没完全溶解③毛细管标定时误差④读数方法误差⑤计时误差七、聚己二酰己二胺的制备1、等摩尔的己二酸和己二胺合成聚己二胺的主要化学反应为:n H 2N(CH 2)6NH 2+n HOOCH(CH 2)4COOHH [ HN(CH2)6NHCO(CH 2)4CO ]n OH+(2n -1)H 2O2、缩聚反应往往具有可逆平衡的性质。
欲提高产物的聚合度,必须使平衡向右移动,这样就得不断地排除反应中所析出的小分子。
反应体系中通入惰性气体或采用真空设施都是为了这个目的。
3、通常,控制分子量的可靠方法有两种。
(1)、控制原料单体的摩尔比:加己二酸 (2)、加入单官能团的化合物:加月桂酸4、气体钢瓶颜色:黑色——N 2,灰色——H 2,蓝——O 2,绿——Cl 2,黄——SO 2。
思考题:1答:氮气的作用是:开始时检验装置是否漏气,并排除空气,反应时排除产生的大量水分,最后起搅拌作用。
2、为什么在尼龙66盐熔融后会产生大量水分?而随着反应进行水分反而消失?答:尼龙66盐在200℃熔融以及发生缩聚反应,在水的脱出的同时伴随着酰胺键的生成,形成线型高分子,因此反应开始水分大量生成,产生水的速度比水蒸发的速度慢所以逐渐减少。
八、丝朊-聚丙烯腈系接枝共聚物的制备接枝共聚物一般借骨架高聚物的大分子接上支链而成。
接枝共聚反应亦单体和骨架高聚物所处的状态可分为均相接枝共聚物和非均相接枝共聚物反应。
后者又可以分为气一固相及液一固相介质共聚反应。
本实验采用链转移引发的自由基型接枝共聚反应,以丝朊为骨架高聚物,丙烯腈为单体制得丝朊一聚丙烯腈接枝共聚物。