锐角三角函数的基础训练题(北师大版九年级数学下册)

合集下载

九年级数学下册 1.1《锐角三角函数》典型例题 (新版)北师大版

九年级数学下册 1.1《锐角三角函数》典型例题 (新版)北师大版

《锐角三角函数》典型例题
例1 在Rt △ABC 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )
(A )都没有变化 (B )都扩大2倍
(C )都缩小2倍 (D )不能确定
分析与解答 当Rt △ABC 的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A 大小不变,因此选(A ).
例2 写出下图中∠A ,∠B 的四个锐角三角函数值:
解:∵ ;
∴ ; ;
; .
; ;
; .
说明:本题主要考查锐角三角函数的概念,关键是熟练掌握锐角三角函数的概念. 例3 在△ABC 中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有( )
A .
B .
C .
D .
解 本题主要考查锐角三角函数的定义,同学们只要依据
的图形,不难写出b
a A c a B c a A ===tan ,cos ,sin ,从而可判断C 正确. 例4 计算:
(1) ;
(2) ;
(3)
; (4) ;
分析:本题综合考查特殊角的三角函数值,将特殊角的三角函数值代入化简,并注意分母有理化的情况.
解 (1)原式22
314)2
1(110)21
(⨯+-+=8144081=+-+= (2)原式
(3)原式=
(4)原式
说明:三角函数的计算要遵循以下原则:当所给的角是特殊角时,只要把特殊角的三角函数值代入计算即可.
例5 学习四边形时,我们知道四边形是不稳定的.如图,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出的值吗?
解设原矩形边长分别为,则面积为,由题意得,平行四边形的面积
.又,
∴.
即.
∴.。

北师大版九年级数学下册第一章1 锐角三角函数 1.1正切练习题(含答案)

北师大版九年级数学下册第一章1 锐角三角函数 1.1正切练习题(含答案)

北师大版九年级数学下第一章1 锐角三角函数 1.1正切练习题(含答案)一、选择题1.如图1,已知在Rt △ABC 中,∠C =90°,AC =1,BC =3,则tanA 的值为( )图1A .3B.13C.1010D.3 10102.如图2,已知山坡AB 的坡度为1∶2,坡高BC =1 m ,则坡长AB 为( )图2A. 3 mB. 5 mC .2 mD .4 m3.如图3,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=32,则t 的值是( )图3A .1B .1.5C .2D .34.如图4,△ABC 的顶点都在正方形网格的格点上,则tanC 的值为( )图4A.12B.55C.53D.2 555.如图5,在Rt △ABC 中,∠C =90°,AB =10,tanA =34,则AC 的长是( )图5A .3B .4C .6D .86.如图6所示,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,已知CD =5,AC =6,则tanB 的值为( )图6A.45B.35C.34D.437.直角三角形纸片ABC 的两直角边长分别为6,8,现将△ABC 按图7中所示的方式折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )图7A.247B.73C.724D.13二、填空题8.在Rt △ABC 中,∠C =90°,若△ABC 各边的长度同时扩大为原来的10倍,则tanA 的值________.(填“变大”“不变”或“变小”)9.如图8,一座公路桥离地面的高度AC 为6米,引桥AB 的水平宽度BC 为24米,为降低坡度,现决定将引桥坡面改为AD ,使其坡度为1∶6,则BD 的长是________.图8三、解答题10.如图9,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,CD ⊥AB 于点D ,求tan ∠BCD 的值.图911.如图10所示,某公园入口处原有三级台阶,每级台阶高为18 cm,宽为30 cm.为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起点为C.现设计斜坡BC的坡度为1∶5,求AC的长.图1012.如图11所示,全全和品品分别将两根木棒AB,CD斜立在竖直的墙AE上,其中AB=10 cm,CD=6 cm,BE=6 cm,DE=2 cm,你能判断谁的木棒更陡吗?请说明理由.图11附加题1.如图12,在Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数y =1x (x >0)与y =-5x (x <0)的图象上,则tan ∠BAO 的值为________.图122.数学老师布置了这样一个问题:如果α,β都为锐角,且tanα=13,tanβ=12,求α+β的度数.甲、乙两名同学想利用正方形网格图来解决这个问题,他们分别设计了图13①和②. (1)请你分别利用图①、图②求出α+β的度数;(2)请参考以上解决问题的方法,选择一种方法解决下面的问题:如果α,β都为锐角,当tanα=5,tanβ=23时,在图③的正方形网格中,利用已作出的锐角α,画出∠MON ,使得∠MON =α-β,并求出α-β的度数.图13参考答案1.[答案] A2.[解析] B ∵山坡AB 的坡度为i =1∶2,坡高BC =1 m ,∴BC AC =12,∴AC =2 m .根据勾股定理,得AB=AC 2+BC 2=22+12=5(m).故选B.3.[解析] C 过点A 作AB ⊥x 轴于点B . ∵点A (t ,3)在第一象限,∴AB =3,OB =t . 又∵tan α=AB OB =32,∴t =2.4.[答案] A5.[解析] D 因为tan A =34=BCAC,所以设BC =3x ,AC =4x (x >0).由勾股定理,得BC 2+AC 2=AB 2,即(3x )2+(4x )2=100,解得x =2,所以AC =4x =4×2=8.故选D.6.[解析] C ∵CD 是斜边AB 上的中线,CD =5,∴AB =2CD =10. 在Rt △ABC 中,根据勾股定理,得BC =AB 2-AC 2=102-62=8, ∴tan B =AC BC =68=34.故选C.7.[解析] C 设CE =x ,根据折叠的性质,得BE =AE =8-x .在Rt △BCE 中,根据勾股定理列出关于x 的方程,得x 2+62=(8-x )2,解得x =74(负值已舍去),即可计算出tan ∠CBE =724.8.[答案] 不变 9.[答案] 12米10.解:∵∠ACB =90°,AB =5,BC =3, ∴AC =52-32=4. ∵∠ACB =90°,CD ⊥AB ,∴∠BCD +∠B =90°,∠A +∠B =90°, ∴∠A =∠BCD ,∴tan ∠BCD =tan A =BC AC =34.11.解:如图,过点B 作BD ⊥AC 于点D .依题意可求得AD =60 cm ,BD =54 cm.因为斜坡BC 的坡度i =1∶5,所以BD CD =15,所以CD =270 cm ,故AC =CD -AD =270-60=210(cm).12.解:能.品品的木棒CD 更陡.理由:∵AB =10 cm ,BE =6 cm ,∠AEB =90°, ∴AE =AB 2-BE 2=8 cm , ∴tan B =AE BE =43.∵CD =6 cm ,DE =2 cm ,∠CED =90°, ∴CE =CD 2-DE 2=4 2 cm , ∴tan D =CE DE =4 22=2 2.∵43<2 2,即tan B <tan D , ∴品品的木棒CD 更陡. 附加题 1.[答案] 5[解析] 过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D , 则∠BDO =∠ACO =90°.∵顶点A ,B 分别在反比例函数y =1x (x >0)与y =-5x (x <0)的图象上,∴S △BDO =52,S △OCA =12.∵∠BDO =∠AOB =90°,∴∠BOD +∠DBO =∠BOD +∠AOC =90°, ∴∠DBO =∠AOC ,∴△BDO ∽△OCA , ∴S BDO S △OCA =(OBOA)2=5212=5,∴OB OA =5,∴tan ∠BAO =OBOA= 5. 故答案为 5. 2.解:(1)如图①. 在△AMC 和△CNB 中,∵AM =CN ,∠AMC =∠CNB =90°,MC =NB , ∴△AMC ≌△CNB , ∴AC =CB ,∠ACM =∠CBN . ∵∠BCN +∠CBN =90°,∴∠ACM+∠BCN=90°,∴∠ACB=90°,∴∠CAB=∠CBA=45°,即α+β=45°.如图②,连接BE.设每个小正方形的边长均为1,则CE=1,AE=2,BE=2,∴CEBE=12=22,BEAE=22,∴CEBE=BEAE.又∵∠CEB=∠BEA,∴△CEB∽△BEA,∴∠CBE=∠BAE=α,∴∠BED=∠CBE+∠ECB=α+β.∵DE=DB,∠D=90°,∴∠BED=45°,∴α+β=45°.(2)如图③,∠MOE=α,∠NOH=β,∠MON=α-β.在△MFN和△NHO中,∵MF=NH,∠MFN=∠NHO=90°,FN=HO,∴△MFN≌△NHO,∴MN=NO,∠MNF=∠NOH.∵∠NOH+∠ONH=90°,∴∠ONH+∠MNF=90°,∴∠MNO=90°,∴∠MON=∠NMO=45°,即α-β=45°.。

北师大九年级数学下册《1.1锐角三角函数》同步训练含参考答案

北师大九年级数学下册《1.1锐角三角函数》同步训练含参考答案

4
22. 如图,在 cos㼀 的值.
㼀௭ 中, ௭ 㾠

是直角边 ௭ 上一点,
㼀 于点 ,
㾠 3,
㾠 4,求
23. 如图,在
㼀௭ 中, ௭ 㾠 1
, ௭ 㾠 4,tan㼀 㾠 8.
1
௭1 求 㼀௭ 的长; ௭2 利用此图形求 tan1 的值(精确到 .1,参考数据: 2 㾠 1.4, 3 㾠 1.7,
㾠 , ∴ ∴ 㾠2 . 21. 解:在 ∵tan㼀 㾠
௭ 㼀௭ ௭

3
4 3
㼀௭ 中, 㾠 , 4
௭㼀 㾠
, ௭ 㾠 3,tan㼀 㾠 3,
4
∴㼀௭ 㾠 tan㼀 㾠 则 㼀㾠
倍, ( 是大于 1 的自然数) ,则两个锐角的三角函数值( ) B.都缩小为原来的
1
B.cot㼀 㾠 3
D.cos㼀 㾠 3
2
2
A.1
8. 如图,在
㼀௭ 中,点
B.2
1
在 ௭ 上,
㼀௭,垂足为 ,若
C. 3
㾠 2 ௭, 㼀 㾠 4
D.
3
3
,则 sin㼀 等于( )
A.2
二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计 24 分 , ) . cos3 ________ cos4 (填大小关系) 㼀௭ 中, ௭ 㾠 1 . 在 ,如果 ௭ 㾠 , 㼀 㾠 13,那么 sin 㾠________. 㼀௭ 中, ௭ 㾠 11. 在 ,当已知 和 时,求 ,则 、 、 关系式是 㾠________. 㼀௭ 中, ௭ 为直角, ௭ 㾠 4 晦,㼀௭ 㾠 3 晦,sin 㾠________. 12. 已知在
4 2

北师大版九年级数学下册试题锐角三角函数课后练习.docx

北师大版九年级数学下册试题锐角三角函数课后练习.docx

& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷 D B A C B A C 初中数学试卷 桑水出品 九年级数学锐角三角函数课后练习 1、在Rt △ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______. 2、在Rt △ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______. 3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____. 4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )A.sinA=34B.cosA=35C.tanA=34D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则BC AC等于( ) A.34 B.43 C.35 D.456、Rt △ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( ) A.43 B.34 C.45 D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135B .1312C .125D .512 8、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( )A.tan α<tan βB.sin α<sin β;C.cos α<cos βD.cos α>cos β9、如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.CD AC B.DB CB C.CB AB D.CD CB 10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )mA.100sin βB.100sin βC.100cos βD. 100cos β 11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.13、在Rt △ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin ∠ACD,cos ∠ACD 和tan ∠ACD.。

新版北师大初中数学九年级(下册)第一章直角三角形的边角关系练习题【含答案】

新版北师大初中数学九年级(下册)第一章直角三角形的边角关系练习题【含答案】

北师大版初中数学 九(下) 第一章直角三角形的边角关系 分节练习(带答案)第1节 锐角三角函数1、【基础题】在Rt △ABC 中,∠C =90°,BC =3,tan A =125,求AC . ★ 1.1、【基础题】在Rt △ABC 中,∠C =90°,sin A =54,BC =20,求△ABC 的周长和面积. ★ 1.2、【基础题】在Rt △ABC 中,∠C =90°,sin A 和cos B 有什么关系?2、【综合Ⅰ】在等腰三角形ABC 中,AB =AC =5,BC =6,求sin B ,cos B ,tan B . ★2.1【综合Ⅰ】已知∠A 是锐角,cos A =53,求sin A 和tan A . 2.2、【综合Ⅰ】在Rt △ABC 中,∠BCA =90°,CD 是中线,BC =8,CD =5,求sin ∠ACD ,cos ∠ACD 和tan ∠ACD .2.3【综合Ⅰ】如图,点P 是∠α的边OA 上一点,且点P 的坐标为(4,3),则sin α和cos α的值分别是( )A. 34,35B. 54,53C. 53,54D. 34,432.4、【综合Ⅲ】如右图,在Rt △ABC 中,∠BCA =90°,CD ⊥AB ,垂足为D ,AD =8,BD =4,求tan A 的值. ☆第2、3节 30°,45°,60°角的三角函数值 & 三角函数的计算3、【基础题】计算:(1)sin 30°+cos 45°; (2)2sin 60°+2cos 60°-tan 45°.3.1、【综合Ⅱ】 化简2)130(tan - = ( ) A. 331- B. 13- C. 133- D. 13-3.2、【综合Ⅱ】 △ABC 中,∠A ,∠B 均为锐角,且有2|tan 2sin 0B A +=(,则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形4、【基础题】用计算器求下列锐角的三角函数值(结果保留4个有效数字)(1)sin 72°; (2)cos 36.43°; (3)tan 38° 24'25".4.1、【基础题】如左下图,河岸AD 、BC 互相平行,桥AB 垂直于两岸,桥AB 长12 m ,在C 处看桥两端A 、B ,夹角∠BCA =60°,求B 、C 间的距离(结果精确到1 m ).4.2、【基础题】如右图,AB =20 m ,∠CAB =50°,∠DAB =56°,求避雷针CD 的长度(结果精确到0.01 m )5、【基础题】根据下列条件利用计算器求∠A 的度数(用度、分、秒表示).(1)cos A =0.6753; (2)sin A =0.4553; (3)tan A =87.545.1、【基础题】一梯子斜靠在墙上,已知梯长4 m ,梯子位于地面上的一端离墙2.5 m ,求梯子与地面所成的锐角.第4节 解直角三角形6、【基础题】在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,根据下列条件求出直角三角形的其他元素. ★(1)5=a ,25=c ; (2)34=c ,∠A =60°第5节 三角函数的应用7、【综合Ⅱ】如左下图,小李想测量塔CD 的高度,他在A 处仰望塔顶,测得仰角是30°,再往塔的方向前进50 m至B 处,测得仰角是60°,那么该塔有多高?(小李的身高忽略不计,结果精确到1 m ) ★7.1、【综合Ⅱ】如右上图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30º,朝物体AB 方向前进20米,到达点C ,再次测得A 点的仰角为60º,则物体AB 的高度为( ) ★B.10米7.2【综合Ⅱ】(2012年陕西数学中考20题)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos 250.9063tan 250.4663sin 650.9063︒≈︒≈︒≈︒≈,,,,cos 650.4226tan 65 2.1445︒≈︒≈,)8、【综合Ⅱ】如左下图,大楼AD 高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及大楼与塔之间的距离AC (结果精确到0.01 m ).8.1【基础题】如图,线段AB 、DC 分别表示甲、乙两建筑物的高,某初三课外兴趣活动小组为了测量两建筑物的 高,用自制测角仪在B 处测得D 点的仰角为α,在A 处测得D 点的仰角为β. 已知甲、乙两建筑物之间的 距离BC 为m . 请你通过计算用含α、β、m 的式子分别表示出甲、乙两建筑物的高度.2,则AB的长是_________. ☆9、【综合Ⅲ】如左下图,在△ABC中,∠A=30°,∠B=45°,AC=39.1、【综合Ⅲ】如右上图,在四边形ABCD中,AD=30 m,DC=50 m,CB=20 m,AB=50 m,∠A=60°,m)∠C=60°,求此四边形ABCD的面积(结果精确到0.01 210、【综合Ⅰ】一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港. 求(1)A、C两港之间的距离(结果精确到0.1 km);(2)确定C港在A港的什么方向.10.1、【综合Ⅲ】如图,一艘船以每小时36海里的速度向正北航行到A处,发现它的东北方向有灯塔B,船继续向北航行2小时到达C处,发现灯塔B此时在它的北偏东75°方向,求此时船与灯塔的距离(结果保留根号).第6节利用三角函数测高11、【综合Ⅱ】如图,∠MCE=α,∠MDE=β,AC=BD=a,AB=b,那么物体MN的高度如何表示?九(下) 第一章直角三角形的边角关系 分节练习答案1、【答案】 AC =536 1.1、【答案】 周长60,面积150. 1.2、【答案】 相等 2、【答案】 sin B =54,cos B =53,tan B =34. 2.1【答案】 sin A =54,tan A =34. 2.2、【答案】 sin ∠ACD =54,cos ∠ACD =53,tan ∠ACD =34. 2.3【答案】 选C 2.4、【答案】 tan A =22 3、【答案】(1)221+; (2)0. 3.1、【答案】选A 3.2、【答案】选D 4、【答案】(1)sin 72°≈0.9511; (2)cos 36.43°≈0.8046; (3)tan 38° 24'25"≈0.79284.1、【答案】 BC =34≈7(m ) 4.2、【答案】 CD ≈5.82 m5、【答案】 (1)∠A ≈47° 31'21"; (2)∠A ≈27° 5'3"; (3)∠A ≈89° 20'44".5.1【答案】 梯子与地面所成的锐角是51° 19'4"6、【答案】 (1)5=b ,∠A =∠B =45°; (2)∠B =30°,6=a ,32=b .7、【答案】 CD ≈43 m 7.1、【答案】 选A 7.2【答案】 207米8、【答案】 用方程来解,设AC =x ,则DE =x , 可列方程 tan 60°·x -tan 30°·x =30,解得x =153≈25.98, BC =153×tan 60°=45.008.1【答案】 CD =BC ·tan α=m ·tan α, AB =m ·(tan α-tan β). 9、【答案】 33+9.1【答案】四边形ABCD 的面积是1082.53 2m 10、【答案】(1)14.1 km ; (2)北偏东15°方向. 10.1、【答案】11、【答案】 MN =a b +-αββαtan tan tan tan。

北师大九年级数学下册《1.1锐角三角函数》同步训练含参考答案

北师大九年级数学下册《1.1锐角三角函数》同步训练含参考答案
北师大九年级数学下册 1.1 锐角三角函数 同步训练
学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计 24 分 , ) 1. 如图, △ ������������������的三个顶点都在方格纸的格点上,则������������������������ = ( )
1 B.2
C. 3
3
1
7
3 7
3
A.2 D.4 B. 3 C. 7 二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计 24 分 , ) ∘ ∘ 9. ������������������30 ________ ������������������40 (填大小关系) ∘ 10. 在������������ △ ������������������中,∠������ = 90 ,如果������������ = 5,������������ = 13,那么������������������������ = ________. ∘ 11. 在������������ △ ������������������中,∠������ = 90 ,当已知∠������和������时,求������,则∠������、������、������关系式是������ = ________. 12. 已知在������������ △ ������������������中,∠������为直角,������������ = 4������������,������������ = 3������������,������������������∠������ = ________.
1

1.1 锐角三角函数(1)北师大版数学九年级下册练习(含答案)


14..如图,在 Rt△ABC 中,∠C=90°,tanA= ,BC=2,求 AB 的长.
参考答案
1.

2.6.
3.>
12
4. 13
5. D
6.A
7.C
8.A
9.B
10.C.
11. 解: ∵AB=2BC,
∴AC=
∴sinB=
故答案为

12. 解: = = 20, = 20,
∴设 AC=3x,BC=4x,故 AB=5x,
则 cosA=
故答案为:
14.解:∵在 Rt△ABC 中,∠C=90°,
∴tanA=
= .
∵BC=2,

= ,AC=6.
∵AB2=AC2+BC2=40,
∴AB=

A.
B.
C.
D.
7. 在 Rt△ABC 中,∠C=90°,AB=13,AC=12,则 cosA=( )
A.
B.
C.
D.
8.在 Rt△ABC 中,各边都扩大 5 倍,则∠A 的三角函数值( )
A.不变
B.扩大 5 倍
C.缩小 5 倍
D.不能确定
9. 如图,梯子跟地面的夹角为∠A,关于∠A 的三角函数值与梯子的倾斜程度之
1.1 锐角三角函数(1)
一、填空题
1. 如图,在 Rt△ABC 中,∠C=90°,AB=13,AC=7,则 sinB=____________
2 . 在 Rt △ ABC 中 , ∠ C = 90° , 如 果 cosB =
, BC = 4 , 那 么 AB 的 长
为 .
3. 比较下列三角函数值的大小:sin40°___________sin50°

【经典原创】学年北师大版初中数学九年级下册锐角三角函数专题练习及答案解析

北师大版数学九年级下册锐角三角函数课时练习一、单选题(共15题)1.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是( )A .13B .3C .24 D .22答案:D解析:解答:设BC=x ,则AB=3x ,由勾股定理得,AC=22x ,tanB=2222AC x BC x == 故选:D . 分析: 设BC=x ,则AB=3x ,由勾股定理求出AC ,根据三角函数的概念求出tanB 。

2. 如图,在△ABC 中,∠C=90°,AB=5,BC=3,则cosA 的值是( )A .34B . 43C .35D .45答案:D解析:解答: ∵AB=5,BC=3,∴AC=4,∴cosA=45AC AB 故选D .分析:根据锐角的余弦等于邻边比斜边求解即可3.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .255 C .55 D .12答案:D解析:解答:如图,由勾股定理,得AC=2,AB=22.tan∠B=12AC AB 故选:D .分析:根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案。

4.如图,点A 为∠α边上的任意一点,作AC⊥BC 于点C ,CD⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC答案:C解析:解答:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD=BD BC DC==,BC AB AC只有选项C错误,符合题意.分析:利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.5.已知sin6°=a,sin36°=b,则sin26°=()A.a2 B.2a C.b2 D.b答案:A解析:解答: ∵sin6°=a,∴sin26°=a2.故选:A.分析:根据一个数的平方的含义和求法,由sin6°=a,可得sin26°=a2,据此解答即可.6.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍答案:C解析:解答:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.分析:根据三边对应成比例,两三角形相似,可知扩大后的三角形与原三角形相似,再根据相似三角形对应角相等解答.7.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.bcosB=c B.csinA=a C.atanA=b D.tanB=bc答案:B解析:解答:∵a2+b2=c2,∴△ABC是直角三角形,且∠C=90°,即csinA=a,∴sinA=ac∴B选项正确.故选B.分析: 由于a2+b2=c2,根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根据锐角三角函数的定义即可得到正确选项.8.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是()D.a=bcosAA.b=atanB B.a=ccosB C.c=asinA答案:D解析:解答: ∵∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,,则b=atanB,故本选项正确,∴A.tanB=baB.cosB=a,故本选项正确,c,故本选项正确,C.sinA=acD.cosA=b,故本选项错误,c故选D.分析:根据三角函数的定义就可以解决.9.在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A .513B .512C .1213D .125答案:C解析:解答:∵Rt△ABC 中,∠C=90°,AB=13,AC=12, ∴cosA=1213AC AB 故选C .分析:直接根据余弦的定义即可得到答案.10.如果∠A 为锐角,且sinA=0.6,那么( )A .0°<A≤30° B.30°<A <45° C.45°<A <60° D.60°<A≤90°答案:B解析:解答:∵sin30°=12 =0.5,sin45°=22≈0.707,sinA=0.6,且sinα随α的增大而增大,∴30°<A <45°.故选B .分析:此题考查了正弦函数的增减性与特殊角的三角函数值.此题难度不大,注意掌握sinα随α的增大而增大.11.在Rt△ABC中,如果各边长度都扩大为原来的2倍,那么锐角A的正弦值()A.扩大2倍B.缩小2倍C.扩大4倍D.没有变化答案:D解析:解答:根据锐角三角函数的概念,知若各边长都扩大2倍,则sinA的值不变.故选D.分析:理解锐角三角函数的概念:锐角A的各个三角函数值等于直角三角形的边的比值.12.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sinA的值越小,梯子越陡B.cosA的值越小,梯子越陡C.tanA的值越小,梯子越陡D.陡缓程度与上A的函数值无关答案:B解析:解答: sinA的值越小,∠A越小,梯子越平缓;cosA的值越小,∠A就越大,梯子越陡;tanA的值越小,∠A越小,梯子越平缓,所以B正确.故选B.分析: 根据锐角三角函数的增减性即可得到答案13.sin70°,cos70°,tan70°的大小关系是()A.tan70°<cos70°<sin70° B.cos70°<tan70°<sin70° C.sin70°<cos70°<tan70° D.cos70°<sin70°<tan70°答案:D解析:解答:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°.故选D.分析: 首先根据锐角三角函数的概念,知:sin70°和cos70°都小于1,tan70°大于1,故tan70°最大;只需比较sin70°和cos70°,又cos70°=sin20°,再根据正弦值随着角的增大而增大,进行比较14.随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.增大还是减小不确定答案:B解析:解答:随着锐角α的增大,cosα的值减小.故选B.分析: 当角度在0°~90°间变化时,余弦值随着角度的增大而减小,依此求解即可.15.当角度在0°到90°之间变化时,函数值随着角度的增大而增大的三角函数是()A.正弦和余弦B.正弦和正切C.余弦和正切D.正弦、余弦和正切答案:B解析:解答:当角度在0°到90°之间变化时,函数值随着角度的增大而增大的三角函数是正弦和正切.故选B.分析:当角度在0°到90°之间变化时,正弦和正切函数值随着角度的增大而增大.二、填空题(共5题)1.如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB=____________答案:713解析:解答:∵在Rt△ABC中,∠C=90°,AB=13,AC=7,∴sinB=ACAB =7 13故答案是:713分析: 根据锐角三角函数定义直接进行解答。

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)试题部分一、选择题:1. 已知sinA = 0.6,cosA = 0.8,那么tanA的值为()A. 0.75B. 0.75C. 0.75D. 0.752. 在直角三角形ABC中,∠C = 90°,若sinB = 3/5,则cosA 的值为()A. 4/5B. 3/4C. 4/3D. 3/43. 若0°<θ<90°,且cosθ = 4/5,则sin(90° θ)的值为()A. 3/5B. 4/5C. 3/4D. 4/34. 已知tanα = 1,则sinα和cosα的值分别为()A. 1, 1B. 1, 0C. 1, 1D. 1, 05. 在直角坐标系中,点P(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若sinθ = 0.5,则θ的终边可能位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 已知sinα = √3/2,且α为锐角,则cosα的值为()A. 1/2B. √3/2C. 1/√2D. 1/28. 若0°<θ<180°,且cosθ = 1/2,则sinθ的值为()A. √3/2B. √3/2C. 1/2D. 1/29. 在直角三角形中,若一个锐角的正弦值为1/2,则这个锐角的度数为()A. 30°B. 45°C. 60°D. 90°A. sinAB. cosAC. tan(90° A)D. cotA二、判断题:1. 若一个角的正弦值等于它的余弦值,则这个角为45°。

()2. 在直角三角形中,锐角的正弦值随着角度的增大而增大。

()3. 若sinA = 0,则A为90°。

()4. 对于任意锐角α,sinα和cosα的值都在0到1之间。

()5. 在直角坐标系中,第二象限的点的横坐标为正,纵坐标为负。

北师大版九年级数学下册《1.1锐角三角函数》同步测试题及答案

北师大版九年级数学下册《1.1锐角三角函数》同步测试题及答案1.如图,在Rt ABC △中,AC=4,BC=3,90C ∠=︒则sin A 的值为( )A.34B.53C.43D.352.在Rt ABC △中90C ∠=︒ 3cos 5A =,AB=10,则BC 的( ) A.3 B.4 C.6 D.83.在Rt ABC △中,各边的长度都扩大4倍,那么锐角A 的余弦值( )A.扩大4倍B.保持不变C.缩小4倍D.扩大2倍4.如图,在Rt ABC △中,CD 是斜边AB 上的高,则下列正确的是( )A.3tan 4DCB ∠=B.5tan 3DCB ∠=C.4cos 5DCB ∠=D.4sin 5DCB ∠= 5.已知A B ∠∠=︒+90,且3cos 5A =,则tanB 的值为( ). A.45 B.35 C.34 D.43 6.ABC △中,A ∠和B ∠,C ∠的对边分别为a ,b ,c .已知6810a b c ===,,,则cos A ∠的值为( )A.35B.34C.45D.43 7.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则cos BAC ∠的值是( )A.55B.105C.255D.458.如图,的顶点分别在单位长度为1的正方形网格的格点上,则sin BAC∠的值为( ) A. B.55C. D.2539.已知ABC△中,90C∠=︒和3cos5A=,AC=6,那么AB的长是___________.10.在等腰三角形ABC中10AB AC==,BC=12,则tan B=_____________.11.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC△的顶点均是格点,则sin∠的值为_____.12.如图,在ACD中90C∠=︒,15A∠=︒点B在边AC上,且2AB BD==,则BC= _______________,tan CAD∠=_______________.ABC△51213.如图,在四边形ABCD 中90ABC ∠=︒ 45C ∠=︒ 2CD 3BD =.(1)求sin CBD ∠的值;(2)若3AB =,求AD 的长.14.如图,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内5BO = 3sin 5BOA ∠=求:(1)点B 的坐标;(2)cos BAO ∠的值.参考答案及解析1.答案:D解析:=4AC =3BC 90C ∠=︒∴2222345AB AC BC =++= ∴3sin 5BC A AB ==; 故选:D.2.答案:D解析:如图在Rt ABC △中 3cos 5AC A AB ==10AB =6AC ∴=在Rt ABC △中 22221068BC AB AC =-=-=. 故选:D.3.答案:B解析:在Rt ABC △中,各边的长度都扩大4倍 ∴各角的大小不变,即A ∠大小不变.一个角的锐角三角函数值只与角的大小有关∴锐角A 的余弦值保持不变.故选:B.4.答案:D解析:Rt ABC △中,CD 是斜边AB 上的高,AC=3,CB=4 5AB ∴= DCB DBC DBC A ∠+∠=∠+∠DCB A ∴∠=∠4tan tan 3DCB CAD ∴∠=∠=,故A 选项不正确; 4tan 3DCB ∴∠=,故B 选项不正确;3cos 5DCB ∴∠,故C 选项不正确; 4sin 5DCB ∴∠=,故D 选项正确 故选:D.5.答案:C解析:如图A B ∠∠=︒+90∴90C ∠=︒3cos5A =∴设3AC x = 5AB x =∴224BC AB AC x =-=∴33tan 44xB x ==故选:C.6.答案:C解析:在ABC △中6a = 8b = 10c =2222683664100a b ∴+=+=+=2100c = 222a b c ∴+=ABC ∴△是直角三角形84cos 105b A c ∴===.故选:C.7.答案:C解析:过点C 作AB 的垂线交AB 于一点D ,如图所示∵每个小正方形的边长为1∵5AC = 10= 5AB =设AD x =,则5BD x =-在Rt ACD △中 222DC AC AD =-在Rt BCD △中 222DC BC BD =-∵2210(5)5x x --=-解得2x =∵25cos 55AD BAC AC ∠=== 故选:C.8.答案:B解析:如图,过B 作BD AC ⊥于点D根据勾股定理得:22345AB =+= 223635AC =+=11111546313463,22222ABC S AC BD ∴=⋅=⨯-⨯⨯-⨯⨯-⨯⨯=△ 5BD ∴=5sin 5BD CAB AB ∴∠== 故选:B.9.答案:10解析:在Rt ABC △中3cos 5AC A AB == 6AC = 10AB ∴=故答案为:10.10.答案:43解析:本题易因忽略求tan B 的前提是将B ∠放在一个直角三角形中而出错. 11.答案:55解析:延长AC 到D ,连接BD ,如图:220AD = 25BD = 225AB = 222AD BD AB ∴+=90ADB ∴∠=︒55sin 525BD BAC AB ∴∠===. 故答案为:55. 12.答案:323/32解析:2AB BD ==∴15A ADB ∠=∠=︒∴30DBC A ADB ∠=∠+∠=︒ 90C ∠=︒∴112CD BD ==在Rt DBC △中,由勾股定理得:2222213BC BD CD =--= ∴23AC AB BC =+= ∴tan 2323CD CAD AC ∠===-+ 故答案为:3 3.13.答案:(1)1sin 3CBD ∠= (2)23AD =解析:(1)如图,过点D 作DE BC ⊥于点E .在Rt CED △中45C ︒∠= 2CD = 1CE DE ∴==.在Rt BDE △中1sin 3DE CBD BD ∠==. (2)如图,过点D 作DF AB ⊥于点F ,则90BFD BED ABC ∠=∠=∠=︒. ∴四边形BEDF 为矩形.1BF DE ∴==.2AF AB BF ∴=-= 2222DF BD BF =-=2223AD AF DF ∴=+.14.答案:(1)(4,3)B (2)2cos 55BAO ∠= 解析:(1)如图,过点B 作BC OA ⊥于点C . 3sin 5BCBOA BO ∠==.22534OC ∴=-=. .(2)易知10OA =.4OC = . 226335AB ∴=+5BO =3BC ∴=(4,3)B ∴6AC ∴=2cos 5535AC BAO AB ∴∠===。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 4
锐角三角函数的基础训练题
班级 姓名
一、基础知识
1、在△ABC 中,∠C=90°,∠B=30°,则cosA= ( )。

A .23
B .22
C .23
D .21
2、在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( ).
A. 43;
B. 34
; C. 53; D. 54. 3、在Rt △ABC 中,∠C 为直角,sinA=22
,则cosB 的值是( ). A. 21
; B. 23; C.1; D. 22.
4、已知在Rt ABC △中,90C ∠=,1
sin 2A =
,AC =BC 的值为( )
A .2
B .4
C
.D .6
5、在Rt ABC △中,90C ∠=
,BC =
AC =A ∠=( ) A .90
B .60
C .45
D .30
6、在Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( ).
A. sinA=135;
B.cosA=1312;
C. tanA=1213;
D. ctgA=125
.
7、已知,在Rt △ABC 中,∠C =900
,2
5
tan =
B ,那么cosA ( ) A 、
25 B 、35 C 、552 D 、3
2 8、在Rt △ABC 中,∠C =90°,下列各式中正确的是( )
A 、sinA =sin
B B 、sinA =cosB
C 、tanA =tanB
D 、c0tA =cotB
9、sin cos(90)a a =-。

tan cot(90)a a =-;已知:∠α是锐角,︒=36cos sin α,则α的度数是
10、一个斜坡的坡度为1=ι︰3,那么坡角α的余切值为
2 / 4
11、已知cosA=23
,且∠B=900—∠A,则sinB=__________.
12、若α为锐角,tan α=33
,则α=__________,sin α=_______, cos α= .
13、已知:∠α是锐角,︒=36cos sin α,则α的度数是 14、等腰△ABC 中,AB =AC =5,BC =6,则sinA =________ 15、已知Rt △ABC 中,若,900
=∠C cos 24,13
5
==BC A ,则._______=AC 二、基础训练
16、
1sin 30π+32-0
°+() 17
、1
012)4cos30|3-⎛⎫++- ⎪⎝⎭
°.
18、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c,已知a=25
,b=215,
求c 、∠A 、∠B.
19、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c,已知b=3, c=14. 求sin ∠A 、cos ∠A 、tan ∠A 的三角函数值.
20、如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆AB 的高
3 / 4
21、如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P
相距 (1)军舰N 在雷达站P 的什么方向? (2)两军舰M N 、的距离.(结果保留根号)
22、如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.
23、如图所示,A 、B 两城市相距100km .现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?
1.732 1.414)
A
B
C
D
A
B
F E P
45°
30°
4 A
D
45°
30°
24题图
24、今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B处接到报告:有受灾群众被困于一座遭水淹的楼顶A处,情况危急!救援队伍在B处测得A在B的北偏东600的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A处就人,同时第二组从陆地往正东方向奔跑120米到达C处,再从C处下水游向A处救人,已知A在C的北偏东300的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A处?请说明理由(参考数据3≈1.732)
25、某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C 有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号).
4 /。

相关文档
最新文档