保险精算第四章人寿保险的精算现值

合集下载

(荐)保险事务专业保险精算习题及答案(财经类)保险事务)

(荐)保险事务专业保险精算习题及答案(财经类)保险事务)

2014年保险事务专业保险精算习题及答案第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

6.设m >1,按从大到小的次序排列 ()222x x v b q e p +与δ。

7.如果0.01t t δ=,求10 000元在第12年年末的积累值。

8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。

A. 7.19B. 4.04C. 3.31D. 5.2112.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。

寿险精算现值

寿险精算现值
附加保险费:补偿保险公司因出售和管理保单发生的费用 需要的缴费部分。
主要内容:
寿险精算现值
生存年金精算现值
净保费
寿险精算现值
终身寿险 定期寿险 两全寿险 精算现值是保险赔付在投保时的期望现值。
死亡年年末赔付的寿险
1、终身寿险
用Ax表示终身寿险的精算现值.
Ax



vk 1d xk
或者
n
Ax

Ax

A1 x:n
证明:n Ax vn n px Axn
给出实际意义的解释。
5、延期m年的n年定期寿险
延期m年的定期n年寿险:用m n Ax表示,某人x岁开始投保, 延期m年后n年内死亡年末给付1单位元的延期寿险的现值。 现值随机变量为:
0 Z vK 1
K 0,1,..., m 1 K m, m 1,..., m n 1
bk
1v
k
1 k
qx
.
k 0
本节介绍当保险金随保险时期按等差数列变动时的现值表达式。
(1)递增型人寿保险的趸缴净保费
(2)递减型人寿保险的趸缴净保费
(1)标准递增终身寿险
某x岁的人投保,保单规定,若被保险人在第一年死亡,保险金为1单
位元;若被保险人在第二年内死亡,保险金为2单位元
用 IA 表示这种保险的现值,则 x
x岁的lx人共趸缴净保费为A1x:n lx,由平衡原理,有:
A1 x:n
lx

vd x
v2dx1

vnd xn1
所以:
A1 vdx v2dx1
x:n
lx
vndxn1
v 0 qx v2 1 qx vn q n1 x

保险精算学人寿保险的精算现值

保险精算学人寿保险的精算现值

5.3.4 离散型生存年金的精算累积值
对于期初付n年定期生存年金,有
5.4 每年付数次的生存年金
1、终身生存年金
基本公式:
axm
k 0
1
v
k m
m
k m
px
类似于上一节的公式,有
UDD假定下的公式 近似公式(实际操作公式)
2、定期生存年金
UDD假设下的公式
近似公式(实际操作公式)
一年递增无穷次(连续递增):
对于递增的n年定期寿险,只需将积分上限换成n即可。
2.死亡年度末给付的递增型终身寿险的趸缴纯保 费
相应地,对于n年定期保险,有
4.4.2 递减型寿险 1.立即给付型递减型寿险(n年定期寿险为例)
2. 死亡年末给付型递减型寿险(n年定期寿险为例)
4.4.3 两类精算现值的换算
假定:(x)岁的人,保额1元终身寿险 基本函数关系
vt vt , t 0 bt 1 , t 0
zt btvt vt , t 0
符号: Ax
厘定:
Ax E(zt ) 0 zt fT (t)dt
0
vt
t
pxxt dt
0
e t
t
pxxt dt
方差公式
Var(zt ) E(zt2 ) E(zt )2
由于死亡可能发生在被保险人投保之后的任意时 刻,所以死亡即刻赔付时刻是一个连续随机变量, 它距保单生效日的时期长度就等于被保险人签约 时的剩余寿命。
4.1.1 精算现值的概念
精算现值即趸缴纯保费,未来保险金给付 在签单时的现值,即一次性缴清的纯保费, 它是以预定利率和预定死亡率为基础计算 的。
主要险种的精算现值(趸缴纯保费)的厘定

第4章 人寿保险的精算现值

第4章 人寿保险的精算现值

第4章 人寿保险的精算现值人寿保险的精算现值也称为趸交纯保费。

4.2 死亡年末给付的人寿保险死亡年末给付的人寿保险是指保险金的支付是在死亡发生的(保险期)年末进行的人寿保险。

4.2.1 定期寿险的趸交纯保费设)(x 投保n 年期定期寿险,保险金额为1元,保险金在死亡年度末给付。

设K = ][T ,即取整余命随机变量,给付函数用b K 1+表示,则有 b K 1+ = 1,当K = 0,1,2,…,n-10, 其它相应的贴现因子用v K 1+表示,保险金给付额折换成购买保险合同签单时的现值用随机变量Z 表示。

Z 的可能取值为z K 1+(K = 0,1,2,…,n-1)z K 1+ = v b K K 11++⋅ = vK 1+定期寿险的趸交纯保费用统一的精算符号1x n A 表示,那么1x nA= )(Z E =∑-=++⋅⋅11n k kx xk qp vk)(Z Var = )]([22)(ZE Z E -=2211()x nx nAA-其中 21x nA= )(2Z E = ∑-=++⋅⋅1)1(2n k kx xk qp vk4.2.2 生存保险n 年期生存保险是当被保险人生存至n 年期满时,保险人在第n 年年末支付保险金的保险。

设)(x 投保n 年期生存寿险,保险金额为1元,保险金在第n 年年末给付。

精算中用1x nA表示该生存保险的趸交纯保费。

可以推出1x nA=pvnxn⋅相应的方差为)(Z Var = )]([22)(Z E Z E - = 2112()x nx n A A-= q pvn nxxn⋅⋅24.2.3 终身寿险的趸交纯保费Ax=1lim x nn A→∞=∑∞=++⋅⋅1k kx xk qp vk相应的方差为)(Z Var = )]([22)(ZE Z E -= )(22A Ax x-4.2.4 两全保险的趸交纯保费设)(x 投保n 年期两全保险,保险金额为1元,若)(x 在n 年内死亡,则在死亡年末给付保险金,若)(x 生存满n 年,则在第n 年年末支付满期保险金。

第四章 人寿保险的精算现值(.3.27)共91页文档

第四章 人寿保险的精算现值(.3.27)共91页文档
已知未来给付的现值,再考虑该给付发生的概 率,就可以得出期望给付额
E(Zt)E(bK1vK1)= Zt.kqx E(Zt)E(bTvT) Zt.fT(t)dt
寿险精算
8
这个期望给付就等于被保险人的趸缴纯保费 也就是精算现值,即
精算现值= E ( Z t )
净均衡原理并不是指每个被保险人个人缴 纳的净保费恰好等于他个人得到的保险给 付金额。它的实质是把相同风险的人视作 一个总体,这个总体在统计意义上的收支 平衡
寿险精算
9
§4.1 死亡即付的人寿保险
• 死亡即刻赔付就是指如果被保险人在保障 期内发生保险责任范围内的死亡,保险公 司将在死亡事件发生之后,立刻给予保险 赔付。它是在实际应用场合,保险公司通 常采用的理赔方式。
• 由于死亡可能发生在被保险人投保之后的 任意时刻,所以死亡即刻赔付时刻是一个 连续随机变量,它距保单生效日的时期长 度就等于被保险人签约时的剩余寿命。
连续型寿险
寿险精算
10
主要险种的精算现值(趸缴纯保费)的厘定 1.n年定期保险 2.终身保险 3.生存保险 4.n年期两全保险 5.延期寿险 ——延期m年的终身保险 ——延期m年的n年定期保险 ——延期m年的n年期两全保险
寿险精算
11
一、n年定期保险的精算现值
1.定义——什么是定期保险
2.基础模型假定条件
寿险精算
5
• 为了解决以上问题,趸缴净保费的厘定给 出了以下三条假设:
假定一:同性别、同年龄、同时参保的被保 险人的剩余寿命独立同分布 假定二:被保险人的剩余寿命分布可以用经 验生命表进行拟合 假定三:保险人可以预测将来的投资收益
这三条假定将单个被保险人的风险事故转 化为一个同质总体的风险事故

保险精算习题及答案

保险精算习题及答案

第一章:利息的基本概念练习题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=∵2.(1)假设A(t)=100+10t,试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A −−−======(2)假设()()100 1.1nA n =×,试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A −−−======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为110%i =,第2年的利率为28%i =,第3年的利率为36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎞⎜⎟=+=⎜⎟⎜⎟⎝⎠6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。

保险精算1-5章答案(第二版)李秀芳

保险精算1-5章答案(第二版)李秀芳

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算中的人寿保险的精算现值的模型

保险精算中的人寿保险的精算现值的模型

保险精算中的人寿保险的精算现值的模型一、人寿保险简介保险精算学主要分为两大类:一个是所谓的人寿保险(寿险精算),另一个是非人寿保险。

前者主要以人的寿命、身体或健康为“保险标的”的保险。

非人身保险主要包括:汽车保险、屋主保险、运输保险、责任保险、信用保险、保证保险等。

而这次我们主要讨论人寿保险。

狭义的人寿保险是以被保险人在保障期是否死亡作为保险标的的一种保险。

广义的人寿保险是以被保险人的寿命作为保险标的的一种保险。

它包括以保障期内被保险人死亡为标的的狭义寿险,也包括以保障期内被保险人生存为标底的生存保险和两全保险。

人寿保险的分类根据不同的标准,人寿保险有不同的分类:(1)以被保险人的受益金额是否恒定进行划分,可分为:定额受益保险,变额受益保险。

(2)以保障期是否有限进行划分,可分为:定期寿险和终身寿险。

(3)以保单签约日和保障期是否同时进行划分分为:非延期保险和延期保险。

(4)以保障标的进行划分,可分为:人寿保险(狭义)、生存保险和两全保险。

人寿保险的特点1:保障的长期性这使得从投保到赔付期间的投资收益(利息)成为不容忽视的因素。

2:保险赔付金额和赔付时间的不确定性人寿保险的赔付金额和赔付时间依赖于被保险人的生命状况。

被保险人的死亡时间是一个随机变量。

这就意味着保险公司的赔付额也是一个随机变量,它依赖于被保险人剩余寿命分布。

3:被保障人群的大多数性保险公司可以依靠概率统计的原理计算出平均赔付并可预测将来的风险。

人寿保险趸缴纯保费厘定的原理1、假定传统的人寿保险产品的趸缴纯保费是在如下假定下厘定的:假定一:同性别、同年龄、同时参保的被保险人的剩余寿命独立同分布。

假定二:被保险人的剩余寿命分布可以用经验生命表进行拟合。

假定三:保险公司可以预测将来的投资受益(即预定利率)。

2、原理保险公司在上面三个假定条件下,按照净均衡的原则来厘定趸缴纯保费的数额。

而趸缴纯保费是指在保单生效日一次性支付将来保险赔付金的期望现时值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档