磁畴和磁晶各向异性-20160516

合集下载

磁性材料中的磁畴结构与磁各向异性研究

磁性材料中的磁畴结构与磁各向异性研究

磁性材料中的磁畴结构与磁各向异性研究磁性材料是一类具有重要应用价值的材料,在电子、通信、医疗等领域都有广泛的应用。

而磁性材料中的磁畴结构与磁各向异性则是决定其性能与应用的重要因素。

本文将围绕磁畴结构与磁各向异性进行探讨,并介绍当前研究的进展。

首先,了解磁畴结构是理解磁性材料中磁性行为的基础。

在磁性材料中,存在着许多微小的区域,称为磁畴。

每个磁畴具有相同的磁矩方向,而不同磁畴之间的磁矩方向可以各不相同。

通过研究磁畴的结构和演变过程,我们能够了解材料的磁性转变机制。

传统的磁畴模型主要有Weiss磁畴模型、Néel磁畴模型和Bloch磁畴模型。

这些模型描述了不同材料中的磁畴形态,从而帮助人们理解磁性材料的磁性行为。

在磁畴结构的研究中,一直存在一个重要问题,即磁畴的尺寸。

由于磁畴一般非常小,直接观测磁畴非常困难。

因此,研究者们利用各种分析方法来间接探测磁畴的结构和演变规律。

例如,通过X射线和中子衍射技术,可以了解材料中的磁畴形态和尺寸分布。

此外,高分辨率的透射电子显微镜(TEM)也常用于磁畴结构的研究中。

这些技术的发展为我们深入了解磁畴结构提供了有效手段。

磁各向异性是磁性材料中另一个重要的性质。

它是指材料在不同方向上对磁场的响应差异。

磁各向异性的存在使得磁性材料具有特定的磁畴结构,并表现出不同的磁性行为。

磁各向异性通常由晶体结构和磁畴结构之间的相互作用决定。

目前,磁各向异性的研究主要集中在两个方面:一是探索磁各向异性的机制,二是开发能够实现调控磁性材料磁各向异性的方法。

在磁各向异性的机制研究方面,研究者们提出了许多理论模型。

最为常见的是磁晶各向异性模型,该模型认为晶格中存在一些偏压场,使得材料在特定方向上具有更高的磁化强度。

此外,还有自旋轨道各向异性模型,它考虑了自旋和轨道运动之间的相互作用。

这些理论模型帮助我们理解磁各向异性的来源和本质。

为了实现对磁各向异性的调控,研究者们开发了许多方法。

一个常用的方法是控制材料的微观结构和组成。

磁晶各向异性

磁晶各向异性

磁晶各向异性
晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。

晶体的各向异性具体表现在晶体不同方向上的弹性模量、硬度、断裂抗力、屈服强度、热膨胀系数、导热性、电阻率、电位移矢量、电极化强度、磁化率和折射率等都是不同的。

各向异性作为晶体的一个重要特性具有相当重要的研究价值。

常用密勒指数来标志晶体的不同取向。

磁晶各向异性
定义:单晶体中原子排列的各向异性往往会导致其许多物理和化学性能具有各向异性,磁性为其中一种。

单晶体沿不同晶轴方向上磁化所测得的磁化曲线和磁化到饱和的难易程度不同。

即,在某些晶轴方向的晶体容易磁化,而沿某些晶轴方向不容易磁化,这种现象称为磁晶各向异性。

磁晶各向异性的强弱用磁晶各向异性常数衡量。

相关概念
(1)磁晶各向异性常数K
磁晶各向异性的大小用磁晶各向异性常数K来衡量。

对于立方晶体,磁晶各向异性常数可以这样定义:单位体积的铁磁单晶体沿[111]轴与沿[100]轴饱和磁化所需要的能量差。

(2)磁晶各向异性能Fk
通常最容易磁化的晶轴方向称为易磁化方向,所在的轴称为易磁化轴;与之相反的是难磁化方向和难磁化轴。

晶体在磁化过程中沿不同晶轴方向所增加的自由能不同,通常沿易磁化轴方向最小,沿难磁化轴方向最大。

我们称这种与磁化方向有关的自由能为磁晶各向异性能。

(注意与磁各向异性能相区别)
(3)磁晶各向异性场Hk
磁晶各向异性场是一种等效场,其含义是当磁化强度矢量偏离易磁化轴方向时好像受到沿易磁化轴方向的一个磁场作用,使它恢复到易磁化轴方向。

3、磁晶各向异性机理

3、磁晶各向异性机理

随着4f电子的数目增加,磁量子
数m=3,2,1,0,-1,-2,-3,电子云的形状 与m的正负无关。m=0的电子云沿 C轴延伸,使C轴成为易轴。因为 L=0总的电子云变成球形。
Tb的轨道矩 L=3为稀土元素 中最大值,轨道面垂直于J 伸 展,形成薄饼状的电子云。
Tb的六角晶格的c/a值为1.59, 它比密堆积的六角晶格的理 想值1.633小的多,也就是说 晶格沿C轴被压缩了。
二重态
在立方晶体中有四个<111>轴, 若离子平均的分布在具有不同的 <111>轴的八面体间隙位。
EA 1 4 N LS cos 1 cos 2 cos 3 cos 4

式中1 ,2 ,3 ,4为自旋磁矩与四个<111>轴的夹角
EA
1 4
N LS cos 1 cos 2 cos 3 cos 4
第三项为起源相同的高价项,称为四极相互作用。磁晶各向
异性可以通过对晶体中所有自旋对的能量相加而计算出来
这模型称为自旋对(spin-pair)模型。
EA
w
i
i
i表示自旋对。仅考虑近邻,最多到次近邻之间的相互作用。
设(1,2,3 )为平行自旋对的方向余弦。 对原子连线方向与x-轴平行的自旋对,cos可以用1代替, 对平行y-,z-轴的自旋对,cos可分别用2和3替代。
2
3 35
) ......
然而真正测得的磁各向异性相应的l 值比此项给出的值大 100到1000倍。因此产生磁晶各向异性的机制不是偶极相互 作用,虽然形式相同,但其系数是来源于磁晶各向异性,这 种相互作用被称为赝偶极相互作用
机理:部分未淬灭的轨道矩与自旋相互耦合,随着磁化强度的

磁晶各项异性

磁晶各项异性

试验测定:
对于立方晶体,上式仍不随方向变化,需要考虑准四极
矩相互作用能,其中与方向有关旳部分为:
Dij rij (Si rij )2 (S j rij )2
Dij rij
Cij 2 A g 2 4 A
Fe:计算值:K1 Dij 1017 erg / 原子
实测值:K1 0.541017 erg / 原子(在数量级上符合)
(二)、单离子模型
这是因为磁性离子本身旳自旋-轨道耦合作用与晶 体场旳联合效应所产生旳磁晶各向异性。
在离子化合物(如铁氧体)中,磁性离子被非磁性 离子隔开,所以磁性离子间旳各向异性互换作用较弱, 不足以产生强旳磁晶各向异性。但磁性离子受到很强旳 晶场作用,使磁电子旳状态发生变化,造成轨道动量矩 “部分冻结”,未被冻结旳那一部分轨道动量矩受晶场 旳作用被固定于某些特定旳方向上,经过自旋-轨道耦 合,使自旋磁矩在空间旳方向受到约束,从而造成各向 异性。

F故k ~只能把磁偶极,矩而相其互磁作偶用极视矩为间产生相磁互晶作各用向能异仅性有
旳异性互换作用产生于电子旳自旋-轨道
耦合与各向同性旳海森堡互换作用旳联合效应。
在电子自旋旳相互作用中,除了各向同性旳互换作
用外,还要受电子自旋矩与轨道矩之间旳耦合作用旳影
响。分布于晶格上旳原子或离子,因为受到领近原子旳
c. 易锥面时
HK
(2Ku1 / Ku2 )(Ku1 2Ku2 ) 0M s
单轴各向异性
Ku1,Ku2
易磁化方向 0:与C轴夹角
Ku1>0
Ku2<0
Ku1+Ku2>0 Ku1+Ku2<0 Ku1+2Ku2<0 Ku1+2Ku2>0

磁晶各向异性PPT课件

磁晶各向异性PPT课件

5
产生铁磁性条件
铁磁性除与电子结构有关外,还决定于晶体结构。
产生铁磁性条件:
(1).有固有磁矩(未满电子壳层); (2) .原子磁矩之间有相互作用,且Rab/r > 3,即一定的点阵结构。
Rab: 原子间距;
r :未满电子壳层半径.
交换作用能:
Eex = -AS1·S2 = -Acosφ;
A>0时,自发平行排列;
A<0时,反平行排列。
2021/3/7
CHENLI
6
铁磁性的起源----直接交换相互作用
原子间距离太远,表现孤立原子特性
a.b原子核外电子因库仑相互作用相 互排斥,在原子中间电子密度减少。
原子间距离适当时,a原子核将吸引
(1) a(1)
a
b
b(2) (2)
rab
b原子的外囲电子,同样b原子核将吸引 b原子的外囲电子。原子间电子密度增
由于磁晶各向异性的存 在,如果没有其它因素 的影响,显然自发磁化 在磁畴中的取向不是任 意的,而是在磁晶各向 异性能最小的各个易磁 化方向上。
2021/3/7
CHENLI
10
•磁晶各向异性能
磁晶各向异性大的适于作永磁材料,小的适于软磁材 料。
材料制备中人工地使晶粒的易磁化方向排在一特定方 向以提高该方向磁性能。(如硅钢片生产工艺上的冷 扎退化,铝镍钴生产中的定向浇铸(柱晶取向)和磁 场中热处理,磁场成型等都是利用磁晶各向异性。
称为磁畴壁 。
2021/3/7
CHENLI
3
MFM: NG-HD
表面形貌图
Topography
表面磁力图
MFM Phase
2021/3/7

磁畴和磁晶各向异性-20160516

磁畴和磁晶各向异性-20160516

施加偏场H
,畴壁移动
b
施加面内场H,磁畴转动
磁化方向垂直于原子排成的直线,邻近原子的电子运动区
偏光显微镜
偏光
显微镜
直流稳压
直流偏场
电磁铁
直流偏磁场H b =0b 升高至磁畴全部消失
直流偏磁场H 升高降低至0,回到迷宫畴
面内场H=0
面内场H升高
升高至磁畴全部消失
降低至0,黑白泡畴共存
升高至磁畴全部消失面内场H=0
面内场H升高
降低至0,平行条畴
in
偏光显微镜
切泡场H
B
=(H
N
-0.32)kA/m
= (H
N -0.02)A
直流偏磁
b 直流偏磁
b
直流偏磁场H
b
升高至饱和磁化
不是形核
形核场
畴形
直流偏磁场H=H
直流偏磁场H升高成泡场,成泡直径
外切内切
用测微目镜测量磁泡直径时,目镜中的数字读百位,鼓轮上的刻度读十位和个位。

磁晶各向异性常数定义

磁晶各向异性常数定义

磁晶各向异性常数定义磁晶各向异性常数定义是指在物理学中,当物体被投入非线性磁场时,物体磁化矢量的模和方向也将随非线性磁场而改变,这过程就是叫做磁晶各向异性,而磁晶各向异性常数定义是描述这种磁晶各向异性的物理量,是指非线性磁化率的定义。

磁晶各向异性常数定义的精确含义是指,在物理学中,磁晶各向异性常数可以被描述为一个三元组或者六元组,用来描述在物体中不同方向上,物体电磁特性的变化情况,这样可以更容易地描述物体表面不同方向上,其磁化率之间的关系。

磁晶各向异性常数由一个物理量强度矢量表示,它定义了在不同方向下物体的磁化反应情况,以及物体内部受磁场作用时,能量的改变情况。

例如可以定义一个三元组来表示磁晶的X方向的磁化反应程度,Y方向的磁化反应程度和Z方向的磁化反应程度,这样可以精确地描述它们之间的差异,以及整体响应磁场作用时能量的改变情况。

由此可见,磁晶各向异性常数定义具有很强的精度,可以有效地描述物体不同方向上的磁化反应程度,定义了在物体内部受磁场作用时,能量的改变情况,可以用来描述像磁体、小分子、大分子及导电体有关物理现象的磁化率,广泛应用于电机、电磁学设计领域等。

磁晶各向异性常数的定义是有参考的,普遍的标准是引用国际标准化组织(ISO)所发表的《磁体及其他波导内各向异性参考模型(TARI)》给定的磁晶各向异性常数,也就是六个矢量参数,即六元组参数。

磁晶各向异性常数实验也是重要环节,实验结果多用于校核和验证磁晶各向异性常数的计算方法,以及可以提高设计的准确性。

总之,磁晶各向异性常数定义是指,当物体被投入非线性磁场时,物体磁化矢量的模和方向也将随非线性磁场而改变,由一个物理量强度矢量表示,它定义了在不同方向下物体的磁化反应情况,以及物体内部受磁场作用时,能量的改变情况,其定义是有参考的,普遍的标准是引用国际标准化组织(ISO)所发表的《磁体及其他波导内各向异性参考模型(TARI)》给定的磁晶各向异性常数,它与实验相结合,可以提高设计的准确性,广泛应用于电机、电磁学设计领域等。

磁场对磁性材料的磁晶各向异性和磁晶畴的影响

磁场对磁性材料的磁晶各向异性和磁晶畴的影响

磁场对磁性材料的磁晶各向异性和磁晶畴的影响磁场是一个强大的物理力量,在磁性材料中,它可以对材料的磁性产生重要影响。

具体而言,磁场可以影响材料的磁晶各向异性和磁晶畴。

本文将探讨磁场对磁性材料的这些影响。

1. 磁晶各向异性磁晶各向异性是指磁性材料在不同晶向上具有不同的磁性能。

磁场可以改变磁晶各向异性,从而影响材料的磁性质。

当材料处于无外加磁场状态时,磁晶各向异性主要由晶格结构和自旋排列决定。

然而,一旦外加磁场作用于材料,它可以改变材料的电子轨道和自旋状态,进而改变磁晶各向异性。

2. 磁晶畴磁晶畴是指磁性材料中由有序的磁矩构成的微观结构。

磁晶畴的形成与磁场密切相关。

在无外加磁场状态下,磁性材料的磁矩会随机排列,形成无序的磁晶畴结构。

然而,当外加磁场作用于材料时,它会对材料中的磁矩施加力,使磁矩重新排列,从而形成有序的磁晶畴结构。

3. 磁场对磁晶各向异性的影响磁场可以改变磁晶各向异性。

当外加磁场作用于材料时,它会对材料中的磁矩施加力矩,使磁矩重新排列。

这种重新排列导致了磁晶各向异性的改变。

具体而言,外加磁场可以使磁晶各向异性增强或减弱,甚至可以改变材料的磁易化方向。

这对于磁性材料的应用有重要意义,例如在磁存储器件和磁传感器中。

4. 磁场对磁晶畴的影响磁场也对磁晶畴的形成和演化起到了重要作用。

外加磁场可以改变材料中的磁矩排列,使磁晶畴重新组织。

具体而言,磁场可以增强或减弱磁晶畴的长大速率,影响磁晶畴壁的运动和畴间磁矩的相互作用。

这些变化直接影响材料的磁性能,在磁存储和磁制冷领域具有潜在应用。

综上所述,磁场对磁性材料的磁晶各向异性和磁晶畴具有显著影响。

通过改变磁晶各向异性,磁场可以调控材料的磁性能,对磁性材料的应用具有重要意义。

同时,磁场还可以改变磁晶畴的形态和演化,影响材料的磁性质。

随着对磁性材料的研究不断深入,我们对磁场对磁晶各向异性和磁晶畴的影响也会有更加深入的了解,为磁性材料的开发和应用提供更多的可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

施加偏场H
,畴壁移动
b
施加面内场H,磁畴转动
磁化方向垂直于原子排成的直线,邻近原子的电子运动区
偏光显微镜
偏光
显微镜
直流稳压
直流偏场
电磁铁
直流偏磁场H b =0b 升高至磁畴全部消失
直流偏磁场H 升高降低至0,回到迷宫畴
面内场H=0
面内场H升高
升高至磁畴全部消失
降低至0,黑白泡畴共存
升高至磁畴全部消失面内场H=0
面内场H升高
降低至0,平行条畴
in
偏光显微镜
切泡场H
B
=(H
N
-0.32)kA/m
= (H
N -0.02)A
直流偏磁
b 直流偏磁
b
直流偏磁场H
b
升高至饱和磁化
不是形核
形核场
畴形
直流偏磁场H=H
直流偏磁场H升高成泡场,成泡直径
外切内切
用测微目镜测量磁泡直径时,目镜中的数字读百位,鼓轮上的刻度读十位和个位。

相关文档
最新文档