武大高等数学C(05上期末)

合集下载

武汉大学大一高数下五年期末考试试题

武汉大学大一高数下五年期末考试试题
D
[ey f (y) + y − x] dσ ≥ (e − 1)
பைடு நூலகம்
1 0
f (y) dy. 其中 D = {( x, y)|0 ≤
x ≤ 1, 0 ≤ y ≤ 1}.
3
武汉大学 2007 – 2008 学年第二学期
《 高等数学B 》 试题
一. (36 分) 试解下列各题 ⎧ ⎪ ⎪ 2x + y = 0 x y z ⎨ 1. (6 分) 求通过直线 ⎪ 且平行于直线 = = 的平面方程. ⎪ ⎩ 4 x + 2y + 3z = 6 1 2 4
x2 y2 z2 + + 在点 M (1, 2, 3) 处的梯度及方向导数的最大值. 6 12 18
x2 + y2 在点 (0, 0) 处的连续性, 偏导数的存在性.
4. 已知以 2π 为周期的连续函数 f ( x) 的傅里叶系数为 a0 , an , bn (n = 1, 2, · · · ), 求函数 f (− x) 的傅里叶系数.
D
∂2 z . ∂ x ∂y
xy d x dy, 其中 D = {( x, y)| x2 + y2 ≤ a2 , x ≥ 0, y ≥ 0}.
0 −1
6. (6 分) 交换积分次序
dx
1− x 2 x +1

f ( x, y) dy.
二. (10 分) 求函数 z = x + y +
1 ( x > 0, y > 0) 的极值. xy
x2 + y2 = 0
性. 三. (10 分) 验证变换 x = et 可将微分方程 x2 微分方程
d2 y dy −3 + 2y = tet 的通解. dt dt2

武大《高等数学》期末考试试题

武大《高等数学》期末考试试题

2000~2001学年第二学期《 高等数学 》期末考试试题(180学时) 专业班级 学号_______________ 姓名一、 已知一个二阶常系数线性齐次微分方程有相等的实根a ,试写出此微分方程及通解。

(8分)二、 设幂级数∑∞=−0)1(n n n x a在x =3处发散,在x =1处收敛,试求出此幂级数的收敛半径。

(8分) 三、 求曲面323=+xz y x 在点(1,1,1)处的切平面方程和法线方程 。

(10分)四、 设)(,0x f x >为连续可微函数,且2)1(=f ,对0>x 的任一闭曲线L,有0)(43=+∫L dy x xf ydx x ,求)(x f 。

(10分) 五、 设曲线L (起点为A ,终点为B )在极坐标下的方程为36(,2sin πθπθ≤≤=r ,其中θ=6π对应起点A ,3πθ=对应终点B ,试计算∫+−L xdy ydx 。

(10分) 六、 设空间闭区域Ω由曲面222y x a z −−=与平面0=z 围成,其中0>a ,Σ为Ω的表面外侧,且假定Ω的体积V 已知,计算:∫∫Σ=+−.)1(2222dxdy xyz z dzdx z xy dydz yz x 。

(10分)七、 函数),(y x z z =由0),(=z yy x F 所确定,F 具有连续的一阶偏导数,求dz 。

(12分) 八、 计算∫∫∫Ω+,)(22dxdydz y x 其中Ω是由平面z =2与曲面2222z y x =+所围成的闭区域。

(12分)九、 已知级数∑∞=1n n U 的部分和arctgn S n =,试写出该级数,并求其和,且判断级数∑∞=1n n tgU的敛散性。

(12分)十、 设)(x f 连续,证明∫∫∫−−=−AA D dt t A t f dxdy y x f |)|)(()(,其中A 为正常数。

D :2||,2||A y A x ≤≤。

(8分)。

05级高数(A-2)期末试卷

05级高数(A-2)期末试卷

2005级《高等数学A-2》期末试卷一、 单项选择题(将答案写在括号内,每题4分,共 48分)1.微分方程20y y y '''-+=的一个解是( ).(A) 2y x = (B) x y e = (C) sin y x = (D) x y e -=2.微分方程 x e x y y y 228644+=+'-'' 的一个特解应具形式 ( ).(a,b,c,d 为常数)(A) x ce bx ax 22++ (B) x e dx c bx ax 222+++(C) x x c x e be ax 222++ (D) x e cx bx ax 222)(++3. 若0),(00=y x f x ,0),(00=y x f y ,则在点),(00y x 处,函数),(y x f ( ).)A (连续. )B (取得极值. )C (可能取得极值. )D (全微分0d =z .4.设()f u 可微,⎰⎰≤++=222x 22d )()(t y y x f t F σ,则()F t '=( ).(A) ()tf t π (B) 22()tf t π (C) 22()tf t (D) 2()tf t π5.设曲面06333=-+++xyz z y x ,则在点)1,2,1(-处的切平面方程为( ).)A ( 018511=-++z y x )B ( 018511=-+-z y x)C ( 018511=--+z y x )D ( 018511=+++z y x6.)(d d 12222==⎰⎰≤++y x e I y x y x . (A))1(-e π (B)e π (C)1-e π (D)e π27. 函数),(y x f 在点),(00y x 处连续,且两个偏导数),(),,(0000y x f y x f y x存在是),(y x f 在该点可微的( ).)A ( 充分条件,但不是必要条件. )B (必要条件,但不是充分条件.)C ( 充分必要条件. )D (既不是充分条件,又不是必要条件.8. 已知)0,0(,)1,1(为函数22442),(y xy x y x y x f ---+=的两个驻点,则(). )A ()0,0(f 是极大值. )B ()0,0(f 是极小值.)C ()1,1(f 是极小值. )D ()1,1(f 是极大值.9. 周期为2的函数)(x f ,它在一个周期上的表达式为x x f =)(11 <≤-x ,设它的傅里叶级数的和函数为)(x S ,则=)23(S ( ). (A) 0 (B) 1 (C) 21 (D) 21- 10.设∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分,则曲面积分=⎰⎰∑S y d ( ). (A)34 (B)π34 (C)0 (D) π11.下列级数收敛的是( ).∑∞=1!)(n n n n n e A ∑∞=1!2)(n n n n n B ∑∞=1!2)(n n n n n C ∑∞=1!)(n nn n D . 12. 设幂级数∑∞=-1)2(n n n x a 在2-=x 时收敛,则该级数在5=x 处( ).)(A 发散 )(B 条件收敛 )(C 绝对收敛 )(D 不能判定其敛散性.二、 填空题(将答案填在横线上,每题4分,共24分)1.=-+=)1,(,arcsin )1(),(x f yx y x y x f x 则设 2. ⎰⎰=∑S x I d 2= .(其中∑是2222R z y x =++) 3.分表达式为化为球坐标下的三次积z z y x y x y x x d d d 22222221010⎰⎰⎰--+-4.=+⎰⎰≤+y x x y y x y x d d )sin sin (1225.设z yx z y x f 1)(),,(=,则=)1,1,1(df 6.=++⎰⎰⎰≤++1222222d d d )(z y x z y x z y x三、(6分)求幂级数∑∞=--111)1(n n n x n的收敛半径、收敛域及和函数. 四、(5分)计算I=y x z x x z z y z y y x ⎰⎰∑-+-+-d d )33(d d )3(d d )2(,其中:0,0,0x y z ∑===及1=++z y x 所围立体表面的外侧.五、(5分) 设,)(22ba z y e u ax ++=而b a x b z x a y ,,cos ,sin ==为常数,求.d d x u 六、(6分)设L 为x y x =+22从点)0,1(A 到点)0,0(O 的上半圆弧,求曲线积分⎰-++-L x x y y e x y y e d )1cos (d )1sin ( .七、(6分)设)(x f 有连续的二阶导数且满足[]0d )(d )(ln ='+'-⎰y x f x xy x f x c 其中c 为xoy 面上第一象限内任一简单闭曲线,且,0)1()1(='=f f 求)(x f。

2004~2005 学年第一学期《高等数学》期末考试试题A卷与答案

2004~2005 学年第一学期《高等数学》期末考试试题A卷与答案

n 22004~2005 学年第一学期《高等数学》期末考试试题 A 卷(216 学时) 专业班级学号 姓名一、填空题:(4×5 分)♣a (1 - cos x ) ♠ x > 0 ♠ x 21、设 f (x ) = ♦4 x = 0 连续,则常数 a = , b =♠b sin x + ⎰ x e t d t ♠ 0 ♥♠ x x < 0∞∞2、设∑ a xn的收敛半径为 3, 则∑ n a (x -1)n +1的收敛半径 R =n n =1nn =13、已知 f (x ) = x (1 - x )(2 - x )…(2005 - x ) ,则 f '(0) =∞14、级数∑ nn =1的和 S =二、选择题:(4×4 分)1、函数 f (x ) = (x 2- x - 2) x 3- x 不可导点的个数是A 、 0B 、1C 、2D 、32、设周期函数 f (x ) 在(-∞,+∞) 内可导,其周期为4,且limf (1) - f (1 - x )= -1,x →02x则曲线 y = f (x ) 在点(5, f (5)) 处的切线的斜率为A 、 2B 、-2C 、1D 、-1∞n -11 k3、对于常数k > 0 ,级数∑(-1)tan n + n 2n =1A 、绝对收敛B 、条件收敛C 、发散D 、收敛性与 k 的取值相关4、设函数 f (x ) 有任意阶导数且 f '(x ) = f 2(x ) ,则 f(n )(x ) = (n > 2) .A 、n ! fn +1(x ) B 、nfn +1(x ) C 、f 2n(x ) D 、n ! f 2n(x )x ⎰ ♥三、计算下列各题:(6×6 分)arctan x - x1、求极限: lim3x →0ln(1 + 2x )2、设 y = tan2x + 2sin x,求: d y x =π23、设函数 y = y (x ) 由方程e y+ 6xy + x 2- 1 = 0 确定,求: y '(0)e x + e - xf '(x ) f (x )4、已知 f (x ) =,计算不定积分: 2+ f (x ) f '(x )d x5、设函数 y = y (x ) 由参数方程4 ln x♣♠x = t 3 + 9t ♦♠ y = t 2- 2t 确定,求曲线 y = y (x ) 的下凸区间。

武汉大学高数上往届试题

武汉大学高数上往届试题

武汉大学2008–2009学年第一学期《高等数学B》试题一.试解下列各题:(每题7分,共42分)1.计算limn→∞[︃n−n3−1n(n+2)]︃.2.计算limx→0(sin x)·ln(1+2x)1−cos2x.3.设⎧⎪⎪⎨⎪⎪⎩x=t+sin ty=f(x−t)f二阶可导,求d2yd x2.4.计算π/2−π/2sin x(x+cos x)d x.5.设f′(ln x)=⎧⎪⎪⎨⎪⎪⎩1,0<x≤1x,x>1且f(0)=0,求f(x).6.计算反常积分+∞(1+2x)e−2x d x.二.(15分)已知函数y=(x−1)3(x+1)2,求:1.函数f(x)的单调增加、单调减少区间,极大、极小值;2.函数图形的凸性区间、拐点、渐近线.三.(12分)设有点A(3,1,−2)和直线l:x−4=y+32=z1,1.试求过点A且通过直线l的平面方程;2.求点A到直线l的距离.四.(12分)设f(x)=⎧⎪⎪⎨⎪⎪⎩e2x+b,x≤0sin ax,x>0问:1.a,b为何值时,f(x)在x=0处可导;2.若另有F(x)在x=0处可导,证明F[f(x)]在x=0处可导.五.(12分)一铅直倒立在水中的等腰三角形水闸门,其底为6米,高为3米,且底与水面相齐,求:1.水闸所受的压力(水的比重为1);2.作一水平线将此闸门分为上下两部分,使两部分所受的压力相等.六.(7分)设f(x)在区间[0,1]上连续,且1f(x)d x=0,证明:对于任意正整数k,在(0,1)内至少存在一点ξ,使kξf(x)d x=f(ξ).武汉大学2009–2010学年第一学期《高等数学B 》试题一.试解下列各题:(每题7分,共42分)1.计算lim x →0x −arctan x e x 3−12.求解微分方程y ′′−6y ′+9y =0的通解.3.计算 1−1x 2(1+√1+x 2sin x )d x4.计算 +∞0e −√x d x .5.求曲线⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩x = t 1cos u u d u y = t 1sin u u d u 自t =1到t =π2一段弧的长度.6.设y =1x 2+3x +2,求y (n ).二.(8分)已知u =e xy ,其中y =f (x )由方程y 0e t 2d t = x 20cos t d t 确定,求d u d x .三.(8分)设x 1=1,x n =1+x n 1+x n(n =1,2,···),试证明数列{x n }收敛,并求lim n →∞x n .四.(8分)证明结论:可导函数在其导数为正值的区间上为单调增加函数,并说明此结论的几何意义.五.(15分)已知函数y =x 3+4x 2,求1.函数f (x )的单调增加,单调减少区间,极大、极小值.2.函数图形的凸性区间、拐点、渐近线.六.(12分)已知函数y =y (x )满足微分方程y ′′−y ′=2(1−x ),且x 轴为曲线y =y (x )的过原点的一条切线,在曲线y =y (x )(x ≥0)上某B 点处作一切线,使之与曲线、x 轴所围成平面图形的面积为112,试求:1.曲线y =y (x )的方程;2.切点B 的坐标;3.由上述所围图形绕x 轴旋转一周所得立体的体积.七.(7分)若f (x )在[a ,b ]上连续,且f (a )=f (b )=0及f ′(a )f ′(b )>0,则f (x )在(a ,b )内至少存在一点ξ,使f (ξ)=0.武汉大学2010–2011学年第一学期《高等数学B 》试题一.计算题:(每题7分,共56分)1.求由方程ln xy =e x +y 所确定的隐函数y =y (x )的导数d y d x .2.求lim x →0√2−√1+cos x √1+x 2−1.3.求lim x →0+ x0sin t 3d tx 0cos t 2d t .4.(7分)求lim n →∞1n [︃(︃x +2n )︃+(︃x +4n )︃+···+(︃x +2n n )︃]︃.5.求不定积分 1√1+e 2xd x .6.求定积分 π/2x (1−sin x )d x .7.求方程y ′+2xy =xe −x 2的通解.8.设f ′(x )=e −x 2,lim x →+∞f (x )=0,求 +∞0x 2f (x )d x .二.(7分)证明当0<x <π2时,sin x >2πx .三.(10分)设抛物线y =ax 2+bx +c 过原点,当0≤x ≤1时,y ≥0.又已知该抛物线与x 轴及直线x =1所围成的图形的面积为13,试确定a ,b ,c 使此图形绕x 轴旋转一周所成的旋转体的体积V 最小.四.(7分)试判断函数f (x )=lim n →∞x 2n −1−1x 2n +1的间断点及其类型.五.(10分)设函数f (x ),g (x )满足f ′(x )=g (x ),g ′(x )=2e x −f (x ),且f (0)=0,g (0)=2,求f (x ),g (x )的表达式.六.(10分)设函数f (x )在[0,3]上连续,在(0,3)内可导,且f (0)+f (1)+f (2)=3,f (3)=1,试证:必存在ξ∈(0,3),使f ′(ξ)=0.武汉大学2011–2012学年第一学期《高等数学B》试题一.计算题:(每题8分,共56分)1.设⎧⎪⎪⎨⎪⎪⎩x=arcsin√1−t2y=1+t2,求d2yd x2.2.求limx→0e x−e sin x(x+x2)ln(1+x)arcsin x.3.已知limx→∞(︂x−ax+a)︂x=+∞a2xe−2x d x,求常数a的值.4.计算不定积分d x√ax+b+d(a 0).5.求定积分1x(1−x4)32d x.6.求解微分方程d yd x=x3y3−xy.7.设ϕ(x)=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩2xxe t2d tx,x 0a,x=0求a的值使得ϕ(x)在x=0处连续,并用导数的定义求ϕ′(0).二.(5分)设a n=(︃1+1n)︃sinnπ2,证明数列{a n}没有极限.三.(10分)设y=y(x)c满足微分方程y′′−3y′+2y=2e x,且其图形在点(0,1)处的切线与曲线y=x2−x+1在该点的切线重合,求y=y(x).四.(11分)已知函数y=x−1x2+1,求函数的增减区间,凹凸区间,极值、拐点和渐近线.五.(10分)求曲线y=e x,y=sin x,x=0,x=1所围成的平面图形的面积S,并求该平面图形绕x轴旋转一周所得的旋转体体积.六.(8分)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使f′′(ξ)=g′′(ξ).武汉大学2012–2013学年第一学期《高等数学B 》试题一.(5分)若lim x →x 0g (x )=0,且在x 0的某去心邻域内g (x ) 0,lim x →x 0f (x )g (x )=A ,则lim x →x 0f (x )必等于0,为什么?二.(8分)设f (x )=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ae x +be −x −c sin 2x ,x ∈(︁−π2,−π2)︁且x 0,1,x =0.试确定a ,b ,c 的一组值,使得f (x )在x =0处连续.三.(6分)设f (x )在x =a 处二阶可导,且f (a )=f ′(a )=0,f ′′(a )=1,求极限limx →a f (x )sin(x −a )(e x −e a )3.四.(5分)指出f (x )=11+e 1x 的间断点及其类型.五.(5分)设u ,v 均是x 的可微函数,y (x )=ln √u 2+v 2,求d y .六.(5分)求函数I (x )=x e ln t t 2−2t +1d t 在区间[e ,e 2]上的最大值.七.(5分)求 −1−2d xx √x 2−1.八.(5分)求微分方程y ′′+3y ′=cos 2x 的通解.九.(5分)若在x 0的某去心邻域内|f (x )|≤α(x ),且lim x →x 0α(x )=0,试证明:lim x →x 0f (x )=0.十.(5分)设y =y (x )由方程y =f [2x +ϕ(y )]所确定,其中f 与ϕ都是可微函数,求y ′.十一.(6分)设f (x )=lim t →∞x (︃1+1t)︃4xt ,求f ′′(x ).十二.(6分)求函数y =(x −1)3√x 2的极值.十三.(8分)求由不等式sin 3x ≤y ≤cos 3x ,0≤x ≤π4所确定的区域的面积.十四.(8分)设f (x )在[0,1]上连续,在(0,1)内可导,且f (0)=0,对任意x ∈(0,1)有f (x ) 0,证明存在c ∈(0,1)使得n f ′(c )f (c )=f ′(1−c )f (1−c ).(n 为自然数).十五.(8分)设f (x )在[0,+∞)上连续,0<a <b .若 +∞0f (x )x d x 收敛,证明 +∞0f (ax )−f (bx )x d x =f (0)ln b a.十六.(10分)设位于第一象限的曲线y =f (x )过点⎛⎜⎜⎜⎜⎝√22,12⎞⎟⎟⎟⎟⎠,其上任意一点P (x ,y )处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1)求曲线y =f (x )的方程.(2)已知曲线y =sin x 在[0,π]上的弧长为l ,试用l 表示曲线y =f (x )的弧长.。

大一上学期高等数学期末试题及解答

大一上学期高等数学期末试题及解答

Q( x) sin x , x
y
e
1 x
dx
s
in x
x
e
1 x
dx
dx
C
eln x sin x eln x dx C
x
1 x
sin x x
x dx
C
1 cos x C .
x
把y( ) 1代入通解,得 C 1.
故特解为
y 1 ( cos x 1).
x
四、计算题(每小题9分,共36分)
则f (ln x)定义域是 [1, e] .
知识点:复合函数的定义域
分析 0 ln x 1, 1 x e
一、 填空题(每小题3分,共15分) 2. 已知y x x ,则y _______ .
知识点:对数求导法
解 ln y x ln x , y =lnx 1, y
y xx (ln x 1).
( A) p 1,q 2; (B) p 2,q 3;
(C) p 2,q 1; (D) p 3,q 2 .
解: 特征方程为:r2 pr q 0 , 把特征根 r1 1 , r2 2 1 p q 0 分别代入特征方程,得 4 2 p q 0
解得
p 3,q 2 .
4. 求曲线y e x ( x 0)与y 0, x 0围成的
右边无限伸展的图形绕轴旋转一周所得立体的体积.
知识点: 反常积分,定积分的应用,旋转体的体积,
解 V + πy2dx + πe2xdx
0
0
π e2x 2
|0+
π. 2
五、解答题(每小题10分,共20分)
1. 在抛物线y x2 (0 x 1)上找一点P,使经过P的

武汉大学高数180学时05—06学年上

武汉大学数学与统计学院2005级第一学期《 高等数学 》期末考试试题(B 卷)(180学时)专业班级 学号_______________ 姓名一、单项选择题(以下5题,每题3分,共15分):1.空间直线121131-=-+=-z y x 与平面230x y z +-+=的位置关系是 ( ) (A)互相垂直; (B)不平行也不垂直; (C)平行但直线不在平面上; (D)直线在平面上. 2.对闭区间上的函数可以断言 ( ) (A)有界者必可积; (B)可积者必有原函数; (C)有原函数者必连续; (D)连续者必有界. 3.下述结论错误的是 ( ) (A)21x dx x +∞+⎰发散; (B)2011dx x +∞+⎰收敛; (C)201x dx x +∞-∞=+⎰; (D)21xdx x +∞-∞+⎰发散. 4.设)(x f 有连续导数,0)0(=f ,0)0(≠'f ,⎰+=xdt t f t x F 02)()1()(,则(0)F 一定是()F x 的( )(A)极小值; (B)极大值; (C)极值; (D)非极值.5.设)(x f 在),(b a 内可导,如果)(x f '在),(b a 内有间断点, 则间断点 ( ) (A)总是振荡型; (B)总是无穷型; (C)可能是可去型; (D)一定是不可去型.二、填空题(以下5题,每题3分,共15分):1.已知2a b a b ==⋅= , 则a b ⨯=( ).2.设111, xn n nI dx x +⎛⎫=+ ⎪⎝⎭⎰则lim n n I →∞=( ). 3.已知22211(arctan )arctan ln(1)22x y x x x x +=-++,则4x dy π==( )..4.设1arcsin)1()(+-=x xx x f ,则(1)f '=( ). 5.设1220011()11xxF x dt dt t t =+++⎰⎰,则()F π=( )..三、计算题(以下5题,每题8分,共40分): 1.求极限00limxx →⎰2.计算极限1lim x x +→⎰3. 计算定积分20cos cos sin xI dx a x xπ=+⎰.4. 设函数()x y y =由参数方程⎩⎨⎧=+=2,yt t e e te x 所确定,求2200,t t dyd y dx dx ==5.设t l 为曲线x y =在x t =处的切线,t l 与曲线以及直线0=x 和2=x 所围成的图形绕x 轴旋转生成的旋转体体积记为()V t ,1)给出()V t ;2)求()V t 的最小值点. 四、讨论题和证明题(以下3题,每题10分,共30分):1. 设⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f α在0=x 处连续可导,但其导数在0=x 处不连续, 试讨论α的取值范围. 2.已知()()()1f x x f x ''-=+,求()f x 的极值点,并说明是极大值点还是极小值点. 3. 设函数()arctan f x x =定义在区间[]0,b 上(0b >),证明: 1). 存在[0,]b η∈, 使得21arctan arctan ln(1)2b b b b η-=+, 2). 用1)的结果证明: 01lim2b bη→=.参考答案:一、单项选择题: 1.(D );2.(D );3.(C );4.(C );5.(D). 二、填空题:1. a b ⨯ =);2. lim n n I →∞=(e );3. 4x dyπ==(4π);4.(1)f '=(4π); 5. ()F π=(2π). 三、解答题: 1.原极限00limxx →⎰=0x →0x x →→===2.2.由==t t t t d 2)1ln(2⎰+=]d 12)1ln([2222⎰+-+t t t t t =⎰+-+-+t t t t t d 1114)1ln(2222=C t t t t ++-+arctan 44)1ln(22=C x x x x ++-+arctan 44)1ln(2.所以:原极限1lim x x +→⎰()01lim )x xx C +→=+-ln 44π=-+3. ()()2200cos sin cos sin cos cos sin cos sin A a x x dx Bd a x x xI dx dx a x x a x x ππ+++==++⎰⎰, 其中, A B 满足10Aa B A Ba +=⎧⎨-=⎩,求得:221, 11a A B a a ==++, 所以原积分I =()()02211ln cos sin (ln )112aax a x x a a a ππ=++=-++. (也可以令tan x t =求解).4. 对参数方程两边关于x 求导得:()110tx t yxx e t t e t y e '⎧=+⎪⎨=⎪⎩''+,进而()11x y t y e -=+',()2311x x t y y y t e e '''-+=. 注意 00, 0t x y =⇒==,于是有0011(1)y t t dy dx t e ==-==-+及()223200101x t y t t d y y dx t e e ==⎛⎫'=-= ⎪ ⎪+⎝⎭. 5. 1)设切点坐标为(t ,由ty 21=,可知曲线x y =在()t t ,处的切线方程为()t x tt y -=-21,或()t x ty +=21.因此所求旋转体的体积为:()2220125()()()4323t V t x t x dx t t ππ=+-=+-⎰;2)2()21032dV t dt tπ⎛⎫=-+= ⎪⎝⎭, 得驻点32±=t ,舍去32-=t.由于223403t t d V dt t π=>,因而函数()V t 在32=t 处达到极小值,而且也是最小值.四、讨论题和证明题 1. ()f x 在0=x 可导,即1000()(0)()1limlim lim sin x x x f x f f x x x x x α-→→→-==,而1sin x有界, 则当10α->时 101(0)=lim sin 0x f x x α-→'=, 即-1211sin cos ,0()= 0, 0x x x f x x xx ααα-⎧-≠⎪'⎨⎪=⎩, 易知, 当12α<≤时, ()f x '在0=x 不连续, 但()f x 在0=x 可导.2.在方程()()()1f x x f x ''-=+中令x t -=,得()()()1f t t f t ''=--+,从而得()()()()f x xf x xxf x f x x ''+-=-⎧⎪⎨''--=-⎪⎩,解出()221x x f x x --'=+. 由()221x x f x x--'=+得函数()x f 的驻点1,021-==x x . 而()()222121x x f x x --+''=+,所以,()010f ''=-<,()1102f ''-=>. 即:0x =是函数()x f 极大值点;1x =-是函数()x f 极小值点. 3. 1).由积分中值定理得arctan arctan bxdx b η=⎰,其中[0,]b η∈. 而20arctan arctan 1bbxxdx x x dx x =-=+⎰⎰201arctan ln(1)2b b x xx =-+=21arctan ln(1)2b b b -+, 则:21arctan arctan ln(1)2b b b b η-=+,[0,]b η∈. 2).注意0b →时,0η→及0arctan lim1ηηη→=,则200arctan arctan limlimlim b b b b bb b ηηηηη→→→====22001arctan ln(1)arctan 12lim ====lim 22b b b b b b b b −−−−−−−→→→-+=洛必塔法则.。

04,05级高数(上)试卷及答案

南昌大学04级、05级第一学期期末考试试卷一、填空题 (每空 3 分) :1. 函数21()1424x x x f x x x x -∞<<⎧⎪=≤≤⎨⎪<<+∞⎩的反函数为21116log 16xx y x x x -∞<<⎧⎪=≤≤⎨⎪<<+∞⎩。

2. 设函数 ()y f x = 是可导的函数,且()2()sin sin 1f x x '⎡⎤=+⎣⎦,(0)4f =,则()y f x =的反函数()x y ϕ=当自变量y 取4时的导数值是()21sin sin1。

3. 2lim x x x e→+∞=0。

4.设y =dy= 5. 曲线()2ln 1y x =+的凹区间为[]1,1-。

6、若()1x f e x '=+,则()f x =ln x x C+。

7、3x x e dx -=⎰13ln 3xe C e ⎛⎫+ ⎪⎝⎭。

二、单项选择题 (每题 3 分,):21. 0x =是函数21()arctan f x x=的( B ).(A) 跳跃间断点. (B) 可去间断点. (C) 无穷间断点. (D) 振荡间断点. 2. 当0x +→x 的( B ).(A)高阶无穷小 (B)低阶无穷小 (C)同阶但非等价无穷小 (D) 等价无穷小3. 下列函数中在给定的区间上满足罗尔定理条件的是( D ).(A) []1,50,51,5x x y x x +<⎧⎪=∈⎨⎪≥⎩(B)1y =[]0,2x ∈(C) x y xe -=,[]0,1x ∈ (D) 256y x x =-+,[]2,3x ∈4. 设a ,b ,是常数,且 0a ≠,若()()f x dx F x C =+⎰则()f ax b dx +⎰等于( B ).(A) ()aF ax b C ++ (B) ()1F ax b C a ++(C) ().aF x C + (D) ()1F x C a+第 3 页 共 6 页 35. 若222lim 22x x ax bx x →++=--, 则必有 ( D ).(A) 2a =,8b = (B) 2a =,5b =(C) 0a =,8b =- (D) 2a =,8b =- 6. 已知()32f x x ax bx =++, 在1x =处取得极小值2-则( B ).(A) 1a =,2b = (B) 0a =,3b =-(C) 2a =,2b = (D) 1a =,1b =三、计算下列极限 (每小题7分) :1. 02lim .sin x x x e e x x x-→--- 原式=02lim 1cos x x x e e x -→+--0limsin x xx e e x-→-= 0lim 2cos x xx e e x -→+==2、301sinlim.1cos x x x x→- 原式=3021sin lim 12x x x x →=012lim sin 0x x x→=3. 2221().1lim xx x x →∞-+4原式=222(1)1lim x x x →∞-++=222211222211lim x x x x e x -++--→∞⎡⎤-⎛⎫⎢⎥+= ⎪⎢⎥+⎝⎭⎢⎥⎣⎦4、tan 01lim .xx x +→⎛⎫ ⎪⎝⎭(1) 令tan 1xy x ⎛⎫= ⎪⎝⎭l n t a n l ny x x =- (2)0ln lim x y +→=0tan ln lim x x x +→-=0ln cot lim x x x +→=-=2010csc lim x x x +→-=- (3) tan 01()lim x x x +→=2lim x y π→ln 021lim y x e e π→===5、()222sin 0lim 1.x x x x e+→+原式=()22221sin 2201lim xxx e xxx e x x ee +→⎡⎤+=⎢⎥⎢⎥⎣⎦四. 解下列各题 (每小题7分):1.设2cos y =, 求.dydx2、设2x y x e =, 求()20.y3. 设函数()y y x =由方程()()sin ln xy y x x +-=,确定,求'(0).y第 5 页 共 6 页 54. 设函数()y y x =arctany xae=,确定,求.dy dx5. 设()()()x f t y tf t f t '⎧=⎪⎨'=-⎪⎩ 其中()f t ''存在且不为零, 求22d y dx6. 设()2ln 1arctan x ty t t⎧=+⎪⎨=-⎪⎩ 求221t d y dx =五.求下列不定积分 (每小题7分): 1、cos .x ⎰2. 2.x x a dx ⎰3. .x ⎰4..⎰5. 2arctan .x xdx ⎰6. 1.xxdx e e-+⎰ 7. ()221.x xe xdx +⎰8. 0π⎰9. 20sin cos x x dx π-⎰6六.设函数()f x 在[)0,+∞上连续,且满足条件()424011()41x f x x f x dx x x+∞+=+++⎰ 其中反常积分()411f x dx x+∞+⎰收敛, 求()f x 的表达式。

05-06-2高等数学C期末试卷

共 4 页 第 1 页 东 南 大 学 考 试 卷( A 卷) 共4页 第1页 课程名称 高等数学 考试学期 05-06-2 得分 适用专业 选学C 的各专业 考试形式 半开卷 考试时间长度 120分钟一.填空题(本题共7小题,每小题4分,满分28分) 1. ()2030e 1d lim x t x t x →-=⎰ ; 2.曲线322(1)x y x =+的斜渐近线方程是 ; 3.曲线32635y x x x =-++的拐点是 ; 4.曲线232y x x =+-在点 处的切线平行于直线52y x =+; 5.设21cos ,0(),0x x f x x ax b x -⎧<⎪=⎨⎪+≥⎩在0x =处可导,则a = ,b = ; 6.级数1sin p n n n ∞=∑当且仅当参数p 满足条件 时绝对收敛; 7.2212d x x x --=⎰ 。

二.计算下列各题(本题共4小题,每小题8分,满32分)1.111lim ln 1x x x →⎛⎫- ⎪-⎝⎭ 2.sin cos d sin cos x x x x x +⎰共 4 页 第 2 页 第2页3.40x x ⎰ 4.21d 1x x x +∞++⎰三.(本题满分8分)计算由曲线e x y -=与直线1,2y x ==所围图形绕x 轴旋转所成的旋转体的体积。

共 4 页 第 3 页 四.(本题共2小题,满分18分) 第3页1.(本题满分8分)求微分方程322xy y x '-=的通解。

2.(本题满分10分)求微分方程sin y y x x ''+=+满足初始条件3(0)1,(0)2y y '==的特解。

共 4 页 第 4 页 五.(本题满分7分) 第4页 求函数10()d f x x t t =-⎰在区间[0,1]上的最大值和最小值。

六.(本题满分7分)判别级数2211(1)11n n n n n ∞=⎡⎤--⎢⎥++⎣⎦∑是否收敛,如果收敛,是绝对收敛还是条件收敛?。

期末考试概率论与数理统计C...

所以 ,

(或 )
故(X,Y)的概率分布为
Y
X0 1
0 -------------------------------------------------------4分
1
(2)X,Y的概率分布分别为
X0 1Y0 1
则 , , , ,----------------------------------------------6分
标准答案和评分标准
﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉
一、选 择 题(10×3分)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
C
D
D
B
B
A
C
C
A
二、填 空 题(10×3分)
1、0.62、 3、 4、 ,0.45、 6、
7、18、有效性, 9、稳定10、t,2
三、 计 算 题(5×8分)
1、解:
(1)由全概率公式,得 ------------------------------------------ቤተ መጻሕፍቲ ባይዱ------------------5分
(2) -------------------------------------------------------------8分
2、解:(1) ,解得 ----------------------------------------------------------------2分
(2)因 ,
故 -------------------------------------------------------------------------8分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档