直线地倾斜角与斜率练习题

合集下载

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)一、单选题1.经过点A ( 3,-2)和B (0,1)的直线l 的倾斜角α为( )A .30°B .60°C .120°D .150°2.已知直线l 1: 3+m x +4y =5−3m ,l 2:2x + 5+m y =8平行,则实数m 的值为()A .−7B .−1C .−1或−7D .1333.已知直线l 1:x +my +7=0和l 2:(m −2)x +3y +2m =0互相平行,则实数m =( )A .m =−3B .m =−1C .m =−1或3D .m =1或m =−3 4.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为()A .1BC .2D .5.已知集合A ={(x ,y )|x +a 2y +6=0},集合B ={(x ,y )|(a -2)x +3ay +2a =0},若A ∩B =Ø,则a 的值是( )A .3B .0C .-1D .0或-16.直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A .2,13B .-2,−13C .−12,-3D .-2,-3 7.已知两直线1:230l x y -+=,2:210l mx y ++=平行,则m 的值是()A .4-B .1-C .1D .48.已知坐标平面内三点P(3,-1),M(6,2),N − ,直线l 过点P.若直线l 与线段MN 相交,则直线l 的倾斜角的取值范围()A . 450,1500B . 450,1350C . 600,1200D . 300,6009.直线1y =+的倾斜角为()A .30︒B .60︒C .150︒D .120︒二、填空题10.设直线l 1:(a +1)x +3y +2−a =0,直线l 2:2x +(a +2)y +1=0.若l 1⊥l 2,则实数a 的值为______,若l 1∥l 2,则实数a 的值为_______.11.直线l 1:x +2y −4=0与l 2:mx + 2−m y −1=0平行,则实数m =________.12.线2cos α•x﹣y ﹣1=0,α∈[π6,23π]的倾斜角θ的取值范围是__________13.直线x + 3y +1=0的倾斜角的大小是_________.14.若直线l 1:ax +2y =8与直线l 2:x +(a +1)y +4=0平行,则a =__________.15.已知点P 2,−3 ,Q 3,2 ,直线ax +y +2=0与线段PQ 相交,则实数a 的取值范围是____;16.若x ,y 满足约束条件 x −y +2≥0,2x +y −3≤0,y ≥1,则y +1x +2的最小值为__________.17.直线ax +(a −1)y +1=0与直线4x +ay −2=0互相平行,则实数a =________.18.直线x +2y +2=0与直线ax −y +1=0互相垂直,则实数a 等于________.三、解答题19.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,060,,BAD E F ∠=分别为,PA BD 的中点,2.PA PD AD ===(1)证明://EF 平面PBC ;(2)若PB =A DEF -的体积.20.已知直线1:220l x y ++=;2:40l mx y n ++=.(1)若12l l ⊥,求m 的值.(2)若12//l l ,且他们的距离为,求,m n 的值.21.已知直线l 经过点()P 2,5-,且斜率为 (1)求直线l 的方程.(2)求与直线l平行,且过点()2,3的直线方程.(3)求与直线l垂直,且过点()2,3的直线方程.22.已知椭圆C的方程为x2a2+y2b2=1a>b>0,P1,22在椭圆上,椭圆的左顶点为A,左、右焦点分别为F1、F2,△PAF1的面积是△POF2的面积的2−1倍.(1)求椭圆C的方程;(2)直线y=kx(k>0)与椭圆C交于M,N,连接MF1,NF1并延长交椭圆C于D,E,连接DE,指出k DE与k之间的关系,并说明理由.23.已知直线l:kx−y+1+2k=0(k∈R)(1))若直线l不经过第四象限,求k的取值范围;(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.24.已知直线l1:x+my+6=0,l2:( m−2 ) x+3y+2m=0.求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.25.已知直线l1:x−y+1=0,l2:(a−1)x+ay+12=0.(1)若l1//l2,求实数a的值;(2)在(1)的条件下,设l1,l2与x轴的交点分别为点A与点B,平面内一动点P到点A 和点B的距离之比为P的轨迹方程E.26.已知椭圆x2a2+y2b2=1(a>b>0)的焦距为2,离心率为22,右顶点为A.(I)求该椭圆的方程;(II)过点D(2,−2)作直线PQ交椭圆于两个不同点P、Q,求证:直线AP,AQ的斜率之和为定值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且椭圆C与圆M:(x−3)2+y2=34的公共弦长为(1)求椭圆C的方程(2)椭圆C的左右两个顶点分别为A1,A2,直线l:y=kx+1与椭圆C交于E,F两点,且满足k A1F =2k A2E,求k的值.参考答案1.C【解析】分析:先由直线的斜率公式求出直线的斜率,再根据倾斜角的范围及倾斜角的正切值等于斜率,求得倾斜角的值.详解:由直线的斜率公式得,经过点A(,-2)和B(0,1)的直线l的斜率为0−3=-,又倾斜角大于或等于0°小于180°,倾斜角的正切值等于-3,故倾斜角等于120°,故选C.点睛:本题考查直线的斜率公式以及倾斜角的范围、倾斜角与斜率的关系.2.A【解析】【分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出.【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=−3+m4x+5−3m4,y=−25+mx+85+m,∵两条直线平行,∴−3+m4=−25+m,5−3m4≠85+m,解得m=﹣7.综上可得:m=﹣7.故选:A.【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题.3.C【解析】【分析】根据直线平行充要关系得等式,解得结果.【详解】由题意得1m−2=m3≠72m∴m=−1或3,选C.【点睛】本题考查直线平行位置关系,考查基本转化求解能力,属基础题.4.D【解析】设12AF F ∆的内切圆圆心为1,I ,12BF F ∆的内切圆圆心为2,I ,边1212A F A F F F 、、上的切点分别为M N E 、、,易见1I E 、横坐标相等,则1122AM AN F M F E F N F E ===,,,由122AF AF a -=, 即122AM MF AN NF a +-+=(),得122MF NF a -=,即122F E F E a -=,记1I 的横坐标为0x ,则00E x (,),于是002x c c x a +--=(),得0x a =,同理内心2I 的横坐标也为a ,则有12I I x ⊥轴,设直线的倾斜角为θ,则22129022OF I I F O θθ∠=∠=︒-,,则211212221tan ,tan tan 90222tan 2r r I F O r r F E F E θθθ⎛⎫=∠=︒-=== ⎪⎝⎭ ,222tan 12tan ,tan tan 22221tan 2θθθθθ∴==∴==- 故选D.5.D 【解析】A B ?⋂=,即直线()212602320l x a y l a x ay a :++=与:-++=平行, 令()2132a a a ⨯=-,解得01a a =或=-或3a =.0a =时,l 1:x +6=0,l 2:x =0,l 1∥l 2.a =-1时,l 1:x +y +6=0,l 2:-3x -3y -2=0.l 1∥l 2.a =3时,l 1:x +9y +6=0,l 2:x +9y +6=0,l 1与l 2重合,不合题意.∴a =0或a =-1.答案:D.点睛:本题考查两条直线平行的判定;已知两直线的一般式判定两直线平行或垂直时,若化成斜截式再判定往往要讨论该直线的斜率是否存在,容易出错,可记住以下结论进行判定: 已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,(1)121221//0l l A B A B ⇔-=且12210AC A C -≠;(2))1212120l l A A B B ⊥⇔+=.6.B【解析】【分析】可分别令x =0,y =0,求出相应的y 和x 的值,即为相应坐标轴上的截距.【详解】令x =0,解得:y =−13,即为y 轴上截距; 令y =0,解得:x =−2,即为x 轴上截距.故选B.【点睛】本题考查截距的求法,即直线分别与x 轴、y 轴交点的横坐标和纵坐标,根据坐标轴上点的特点将0代入即可.7.A【解析】由两直线1:230l x y -+=,2:210l mx y ++=平行可得,斜率相等,截距不相等,即22m =-且132≠-,解得4m =-,故选A. 8.A【解析】【分析】先由P (3,﹣1),N (﹣ 3, 3),M (6,2),求得直线NP 和MP 的斜率,再根据直线l 的倾斜角为锐角或钝角加以讨论,将直线l 绕P 点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l 斜率的范围,进而得到直线l 的倾斜角的取值范围.【详解】∵P (3,﹣1),N (﹣ 3, 3),∴直线NP 的斜率k 1= 3+1− 3−3=﹣ 33.同理可得直线MP 的斜率k 2=2+16−3=1.设直线l 与线段AB 交于Q 点,当直线的倾斜角为锐角时,随着Q 从M 向N 移动的过程中,l 的倾斜角变大,l 的斜率也变大,直到PQ 平行y 轴时l 的斜率不存在,此时l 的斜率k ≥1;当直线的倾斜角为钝角时,随着l 的倾斜角变大,l 的斜率从负无穷增大到直线NP 的斜率,此时l 的斜率k ≤﹣ 33.可得直线l 的斜率取值范围为:(﹣∞,﹣ 33]∪[1,+∞).∴直线l 的倾斜角的取值范围 450,1500故选:A .【点睛】本题给出经过定点P 的直线l 与线段MN 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.9.B【解析】设倾斜角为θ,直线1y =+tan θ=60θ=︒,故选B .10.−85−4 【解析】分析:由题意得到关于a 的方程或方程组,据此求解方程即可求得最终结果. 详解:若l 1⊥l 2,则:2 a +1 +3 a +2 =0,整理可得:5a +8=0,求解关于实数a 的方程可得:a =−85. 若l 1∥l 2,则a +12=3a +2≠2−a 1,据此可得:a =−4.点睛:本题主要考查直线垂直、平行的充分必要条件,意在考查学生的转化能力和计算求解能力.11.23【解析】【分析】由直线的平行关系可得1× 2−m −2m =0,解之可得答案【详解】∵直线l1:x+2y−4=0与l2:mx+2−m y−1=0平行,∴1×2−m−2m=0,解得m=23故答案为23【点睛】本题主要考查的是直线的与直线的平行关系,继而求得斜率与斜率之间的关系,属于基础题。

直线的倾斜角和斜率练习题

直线的倾斜角和斜率练习题

2、1 直线的倾斜角和斜率1、下列命题正确的是( )A 、若直线的斜率存在,则必有倾斜角α与它对应B 、若直线的倾斜角存在,则必有斜率与它对应C 、直线的斜率为k ,则这条直线的倾斜角为arctan kD 、直线的倾斜角为α,则这条直线的斜率为tan α2、过点M (2,a ), N (a ,4)的直线的斜率为21,则a 等于( ) A 、–8 B 、10 C 、2 D 、43、过点A (2,b )和点B (3,2)的直线的倾斜角为43π,则b 的值是( ) A 、–1 B 、1 C 、–5 D 、54、如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则( )A 、k 1<k 2<k 3B 、k 3<k 1<k 2C 、k 3<k 2<k 1D 、k 1<k 3<k 25、设直线l 过原点,其倾斜角为α,将直线绕原点按逆时针方向旋转60o ,得到直线的倾斜角为( )A 、60o α+B 、120o α-C 、120o α-D 、当0120o o α≤<时为60o α+,当120180o o α≤<时为120o α-6、已知,A(3,1)、B(2,4),则直线AB 上方向向量AB u u u r 的坐标是( )A 、(5,5)B 、(1,3)C 、(5,5)D 、(3,1)7、直线l 过点()1,2A ,且不过第四象限,则直线l 的斜率的取值范围是( )A 、[]0,2B 、[]0,1C 、10,2⎡⎤⎢⎥⎣⎦D 、1,02⎡⎤-⎢⎥⎣⎦8、直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 .9、设直线l1:x-2y+2=0的倾斜角为α,直线l2:mx-y+4=0的倾斜角为2α,且1α=1α+90°,则m的值为 .210、已知直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是 .11、直线l的倾斜角60oα=,直线m l⊥,则直线m的斜率为。

直线的倾斜角与斜率经典例题

直线的倾斜角与斜率经典例题

直线的倾斜角与斜率经典例题1、已知直线l的斜率为k,倾斜角为α,若45°<α<135°,则k的取值范围为2、已知直线l的倾斜角为α,且则直线l的斜率的取值范围是 .3、若某直线的斜率k∈(−∞,√3],则该直线的倾斜角a的取值范围是 .4、直线l的方程为x-ysinθ+2=0(θ∈R),则直线l的倾斜角α的范围是 .5、直线l的一个方向向量为P1P2⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2√3),则它的倾斜角为 .7、直线x+2cos5π6y+6=0的倾斜角为a⃗⃗⃗ =(sinπ7,cosπ7),则6、若直线l的一个方向向量直线l的倾斜角θ= .8、经过点P(0,-1)作直线¹,若直线l与连接 A(2,3),B(-1,2)的线段总有公共点,则直线l的斜率的取值范围是 .9、已知A(1,√3),B(√3,1)两点,若直线l:y=kx与线段AB恒有交点,则k的取值范围是 .10、已知A(-1,2), B(2,4),点P(x,y)是线段AB上的动点,则yx的取值范围是 .11、 P(x,y)在线段AB上运动,已知A(2,4),B(5,-2),则y+1x+1的取值范围是 .12、若A(5,-1),B(1,1),C(2,3),则△ABC的外接圆面积为 .13、若A(a,0),B(0,b),C(-2,-2)三点共线,则1a +1b=¯.14、直线x−√2y+2=0与直线√2x+2y=1所成夹角的余弦值等于 .,则实数m的值为 .15、若直线x+my+3=0与直线x+2y+1=0的夹角为π416、若等边三角形的一条中线所在直线的斜率为1,则该等边三角形的三边所在直线的斜率之和为.。

倾斜角与斜率5种常见考法归类(58题)(教师版)2025学年高二数学高频考点与解题(人教A版选修一)

倾斜角与斜率5种常见考法归类(58题)(教师版)2025学年高二数学高频考点与解题(人教A版选修一)

专题2.1.1 倾斜角与斜率5种常见考法归类(58题)题型一 求直线的倾斜角题型二 求直线的斜率(一)由定义求斜率(二)由斜率公式求斜率(三)由方向向量求斜率(四)几何图形中的斜率问题题型三 斜率与倾斜角的关系(一)由倾斜角求斜率值(范围)(二)由斜率求倾斜角的值(范围)题型四斜率公式的应用(一)利用斜率求参数(二)利用直线斜率处理共线问题(三)比较大小(四)斜率公式的几何意义的应用题型五 直线与线段的相交关系求斜率的范围以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(1)当直线l 与x 轴平行或者重合时,我们规定它的倾斜角为0 ;所以倾斜角的取值范围为:0180α≤< ;特别地,当直线l 与x 轴垂直时,直线l 的倾斜角为90.(2)所有直线都有唯一确定的倾斜角,倾斜角表示的是直线的倾斜程度.2.对直线倾斜角的理解(1)倾斜角定义中含有三个条件①x 轴正向;②直线向上的方向;③小于180°的非负角.(2)从运动变化的观点来看,当直线与x 轴相交时,直线的倾斜角是由x 轴绕直线与x 轴交点按逆时针方向旋转到与直线重合时所得到的最小正角.(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x 轴的倾斜程度.(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.题型一 求直线的倾斜角解题策略:求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x 轴平行或重合时,倾斜角为0°,当直线与x 轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°.1.(2024··江西九江·高二校考阶段练习)直线的倾斜角α的取值范围是( )A .()0,πB .[0,π)C .(0,π]D .[0,]p 【答案】B【分析】利用直线倾斜角的定义得解.【详解】直线的倾斜角α的取值范围是[0,π).故选:B .2.(2024··高二课时练习)对于下列命题:①若q 是直线l 的倾斜角,则0180q °≤<°;②若直线倾斜角为α,则它斜率tan k α=;③任一直线都有倾斜角,但不一定有斜率;④任一直线都有斜率,但不一定有倾斜角.其中正确命题的个数为( )A .1B .2C .3D .4【答案】B【分析】通过直线的倾斜角的范围判断①的正误;直线的斜率的定义,判断②的正误;直线的斜率与倾斜角的关系判断③和④的正误.【详解】对于①:若q 是直线的倾斜角,则0180q °≤<°;满足直线倾斜角的定义,则①正确;对于②:直线倾斜角为α且90α¹°,它的斜率tan k α=;倾斜角为90°时没有斜率,所以②错误;对于③和④:可知直线都有倾斜角,但不一定有斜率;因为倾斜角为90°时没有斜率,所以③正确;④错误;其中正确说法的个数为2.故选:B.3.(23-24高二上·内蒙古呼伦贝尔·月考)下列图中α能表示直线l 的倾斜角的是( )A .B .C .D .【答案】A【解析】由倾斜角的定义,直线向上的方向与x 轴正向之间所成角为倾斜角,可知只有选项A 中的α表示直线l 的倾斜角.故选:A4.(2023春·江苏泰州·高二靖江高级中学校考阶段练习)已知直线l 经过()1,4A -,()1,2B 两点,则直线l 的倾斜角为( )A .π6B .π4C .2π3D .3π4【答案】D【详解】设直线l 的倾斜角为α,[)0,παÎ,则42tan 111α-==---,3π4α\=.故选:D.5.(2024··上海黄浦·高二格致中学校考期中)若直线l 的一个方向向量为(-,则它的倾斜角为( )A .30°B .60°C .120°D .150°【答案】C【分析】由题意,求出直线的斜率,从而得出结果.【详解】依题意,(-是直线l 的一个方向向量,所以直线l 的斜率k =所以直线l 的倾斜角为120°.故选:C .6.(23-24高二上·江苏·专题练习)已知直线l 的倾斜角为α,则与l 关于x 轴对称的直线的倾斜角为( )A .αB .90α°-C .180α°-D .90α°+【答案】C【解析】根据倾斜角的定义,并结合图形知,所求直线的倾斜角为180α°-.故选:C.7.(2024·江苏·高二假期作业)已知直线1l 的倾斜角115α=,直线1l 与2l 的交点为A ,直线1l 和2l 向上的方向所成的角为120 ,如图,则直线2l 的倾斜角为________.【答案】135【分析】根据三角形的外角与内角的关系,结合直线倾斜角的定义可得出直线2l 的倾斜角.【详解】设直线2l 的倾斜角为2α,因为1l 和2l 向上的方向所成的角为120 ,所以,120BAC Ð= ,故2112012015135αα=+=+=.故答案为:135 .8.(2024·江苏·高二假期作业)如图,直线l 的倾斜角为( )A .60°B .120°C .30°D .150°【答案】D【分析】根据图形结合三角形的一个外角等于和它不相邻的两个内角之和可求得结果.【详解】由题图易知l 的倾斜角为45°+105°=150°.故选:D9.(2024·江西吉安·高二江西省吉水中学校考期末)已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是( ).A .090α≤< B .0180α<<C .90180α≤<D .90180α<<【答案】D【详解】直线倾斜角的取值范围是0180α≤< ,又直线l 经过第二、四象限,∴直线l 的倾斜角α的取值范围是90180α<< ,故选:D.10.【多选】(2024··高二课时练习)若直线l 与x 轴交于点A ,其倾斜角为α,直线l 绕点A 顺时针旋转45°后得直线1l ,则直线1l 的倾斜角可能为( )A .45α+°B .135α+°C .45α-°D .135α°-【答案】BC【分析】由倾斜角的定义,分类讨论作出图形,数形结合分析即可.【详解】解析:当45α³°时,直线1l 的倾斜角为45α-°(如直线AC 旋转至直线AD );当045α°≤<°时,直线1l 的倾斜角为180(45)135αα°-°-=°+(如直线AD 旋转至直线AB ).故选:BC.把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α.注:(1)倾斜角α不是90 的直线都有斜率,倾斜角不同,直线的斜率也不同;(2)倾斜角90α= 时,直线的斜率不存在。

专题05 直线的倾斜角与斜率(解析版)

专题05 直线的倾斜角与斜率(解析版)

专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x ( )A .30B .45C .60D .90【答案】D 【解析】直线x ∴其倾斜角为90.故选:D .2.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( )A .0B .3πC .2π D .π【答案】C 【解析】直线1x =与x 轴垂直,故倾斜角为2π. 故选:C.3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( ) A .4π B .34π C .54π D .2π 【答案】B 【解析】由题意,直线10x y ++=的斜率为1k =- 故3tan 14k παα==-∴= 故选:B4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( )A .-6B .-7C .-8D .-9【答案】D 【解析】(3,1)A 、(2,)B k -、(8,11)C 三点在同一条直线上,∴直线AB 和直线AC 的斜率相等, ∴11112383k --=---,解得9k =-. 故选:D .5.(2019·山东省高二期中)若直线过点(2,4),(1,4,则此直线的倾斜角是( ) A .30︒ B .60︒C .120︒D .150︒【答案】C 【解析】由题意知,直线的斜率k = 即直线的倾斜角α满足tan α=又0180α︒︒≤<,120α︒∴=,故选:C6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3) B .(0,1)C .(3,3)D .(3,2)【答案】B 【解析】由直线的倾斜角为45°,则直线的斜率为tan 451k ==, 则过点()2,3-与点(1,2)的直线的斜率为321213-=---,显然点()2,3-不满足题意;过点()0,1与点(1,2)的直线的斜率为12101-=-,显然点()0,1满足题意; 过点()3,3与点(1,2)的直线的斜率为321312-=-,显然点()3,3不满足题意; 过点()3,2与点(1,2)的直线的斜率为22031-=-,显然点()2,3-不满足题意; 即点()0,1在倾斜角为45°且过点(1,2)的直线上, 故选:B.7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( ) A .-1 B .-2C .2D .1【答案】D 【解析】由直线斜率的定义知,tan1351AB k ==-, 由直线的斜率公式可得,542AB k a -=-, 所以5412a -=--,解得1a =. 故选:D8.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃ 【答案】B 【解析】直线xsin α+y +2=0的斜率为k =﹣sin α, ∵﹣1≤sin α≤1,∴﹣1≤k ≤1 ∴倾斜角的取值范围是[0,4π]∪[34π,π)故选:B .9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( ) A .0 B .2π C .56π D .π【答案】A 【解析】tan 3πα⎛⎫+== ⎪⎝⎭tan 0α=,0απ≤<,0α∴=.故选:A10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( )A.⎡⎣ B.(,-∞)+∞C.33⎡-⎢⎣⎦D.,3⎛-∞- ⎝⎦3⎫+∞⎪⎪⎣⎭【答案】B 【解析】因为直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤ ⎥⎝⎦,又直线的斜率tan k α=,,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦.故tan tan3πα≥=2tan tan3πα≤=故(,k ∈-∞)+∞. 故选:B 二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角 【答案】ABC 【解析】A. 若α是直线l 的倾斜角,则0180α≤<,是正确的;B. 若k 是直线l 的斜率,则tan k α=∈R ,是正确的;C. 任意一条直线都有倾斜角,但不一定有斜率,倾斜角为90°的直线没有斜率,是正确的;D. 任意一条直线都有斜率,但不一定有倾斜角,是错误的,倾斜角为90°的直线没有斜率. 故选:ABC12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角; D .坐标平面上所有的直线都有斜率. 【答案】BD 【解析】任何一条直线都有倾斜角,但不是任何一条直线都有斜率 当倾斜角为90︒时,斜率不存在 故选:BD13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...【答案】AC 【解析】逐一考查所给的选项:A .存在0k =,使得2l 的方程为0x =,其倾斜角为90°,故选项不正确.B 直线1:10l x y --=过定点()0,1-,直线()()()2:1010l k x ky k k R k x y x +++=∈⇒+++=过定点()0,1-,故B 是正确的.C .当12x =-时,直线2l 的方程为1110222x y --=,即10x y --=,1l 与2l 都重合,选项C 错误; D .两直线重合,则:()()1110k k ⨯++-⨯=,方程无解,故对任意的k ,1l 与2l 都不垂直,选项D 正确.故选:AC. 三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____. 【答案】(0,-2) 【解析】因为Q 在y 轴上,所以可设Q 点坐标为()0,y , 又因为tan120︒==2y =-,因此()0,2Q -,故答案为()0,2-.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限. 【答案】0, 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________. 【答案】[0°,45°)∪(135°,180°) 【解析】直线的斜率为负时,斜率也随着倾斜角的增大而增大由于斜率有正也有负,且直线的斜率为正时,斜率随着倾斜角的增大而增大,故α∈(0°,45°);又直线的斜率为负时,斜率也随着倾斜角的增大而增大,故α∈(135°,180°);斜率为0时,α=0°.所以α∈[0°,45°)∪(135°,180°)故答案为[0°,45°)∪(135°,180°)17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 【答案】3[0,][,)44πππ【解析】当直线l 过B 时,设直线l 的倾斜角为α,则3tan 14παα=-⇒=当直线l 过A 时,设直线l 的倾斜角为β,则tan 14πββ=⇒=综合:直线l 经过点()P 1,0且与以()A 2,1,()B 3,2-为端点的线段AB 有公共点时,直线l 的倾斜角的取值范围为][30,,44πππ⎡⎫⋃⎪⎢⎣⎭四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒.【答案】(0,2P 【解析】设(0,)P y ,201PA y k -=-,tan120︒∴=201y --,2y ∴=P ∴点坐标为(0,2.19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.【答案】15,63⎡⎤-⎢⎥⎣⎦【解析】1(1)1(1)y y x x +--=+--的几何意义是过(,),(1,1)M x y N --两点的直线的斜率,点M 在线段28,[2,5]y x x =-+∈上运动,易知当2x =时,4y =,此时(2,4)M 与(1,1)N --两项连线的斜率最大,为53;当5x =时,2y =-,此时(5,2)M -与(1,1)N --两点连线的斜率最小,为16-.115613y x +∴-+,即HF 的取值范围为15,63⎡⎤-⎢⎥⎣⎦20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α. (1)求tan α;(2)求sin α,cos 2α的值. 【答案】(1)13-;(245 【解析】(1)因为直线320x y +-=的斜率为13-,且直线的倾斜角为角α, 所以1tan 3α=-(2)由(1)知1tan 3α=-, 22sin 1tan cos 3sin cos 1ααααα⎧==-⎪∴⎨⎪+=⎩解得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以sin cos 10αα⎧=⎪⎪⎨⎪=-⎪⎩224cos 22cos 1215αα⎛∴=-=⨯-= ⎝⎭21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α. (1)写出α关于m 的函数解析式; (2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围.【答案】(1)3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)3,3m.【解析】(1)直线l 的方程为320x my -+=,其倾斜角为α,当0m =时,2πα= 当0m >时,则斜率3tan k m α==,3arctan m α=, 当0m <时,则斜率3tan k m α==,3arctan mαπ=+, 所以3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)当,32ππα时,33,,0,3km m,当2πα=时,0m =, 当3,24ππα时,3,1,3,0km m,综上所述:3,3m .22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围; (2)直线l 倾斜角α的范围; 【答案】(1)11k -≤≤(2)3044ππααπ≤≤≤<或【解析】(1)2(1)110pA k --==-- 1(1)120pB k --==- l 与线段AB 相交pA pB k k k ∴≤≤11k ∴-≤≤(2)由(1)知0tan 11tan 0αα≤≤-≤<或由于tan 0,2y x π⎡⎫=⎪⎢⎣⎭在及(,0)2π-均为减函数 3044ππααπ∴≤≤≤<或 23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.【答案】(1) 15t =;(2) k ∈(-∞.,-1]⋃[2,+∞],3[arctan 2,]4πθ∈ 【解析】(1)由题意可得()42,30(6,3)AB =+-=,(6,3)AM t AB t t ==, ()12,30(3,3)AC =+--=-,所以(63,33)CM AM AC t t =-=-+, ∵CM AB ⊥,则CM AB ⊥,∴()()6633334590CM AB t t t ⋅=-++=-=,∴解得15t =; (2)由01t ≤≤,AM t AB =,可得点M 在线段AB 上,由题中A 、B 、C 点坐标,可得经过A 、C 两点的直线的斜率11k =-,对应的倾斜角为34π,经过C 、B 两点的直线的斜率22k =,对应的倾斜角为2arctan ,则由图像可知(如图所示),直线CM 的斜率k 的取值范围为:1k ≤-或2k ≥,倾斜角的范围为:3[arctan 2,]4πθ∈.。

高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案

高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案

直线的倾斜角与斜率、直线方程知识点1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。

当直线l 与x 轴平行或重合时,规定它的倾斜角为0°。

(2)范围:直线l 倾斜角的范围是[0,π)。

2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ。

(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1。

3.直线方程的五种形式基础专练一 、走进教材1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B.3 C .- 3 D .-332. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线方程为( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0走进教材答案1.A ; 2. B ;二、查漏补缺1.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或42.直线x +3y +m =0(m ∈R )的倾斜角为( )A .30°B .60°C .150°D .120°3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=04.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________。

5.过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是________。

查漏补缺答案5.4x -y +16=0或x +3y -9=0直击考点考点一 直线的倾斜角与斜率……母题发散【典例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________。

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角为.【答案】【解析】设直线的倾斜角为,则.【考点】直线的倾斜角.2.已知一条直线过点(3,-2)与点(-1,-2),则这条直线的倾斜角是().A.B.C.D.【答案】A【解析】直线过点与,直线的斜率,则直线的倾斜角为.【考点】直线的斜率、倾斜角.3.已知若直线:与线段PQ的延长线相交,则的取值范围是 .【答案】【解析】直线的方程为,显然经过定点,过点M作直线,显然的斜率,过M、Q作直线的斜率为,依题意,应夹在直线与之间,即于是,即。

【考点】(1)斜率公式的应用;(2)数形结合思想的应用。

4.直线的倾斜角的大小为。

【答案】【解析】,所以倾斜角为.【考点】1.直线方程;2.倾斜角和斜率.5.经过点的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或4【答案】A【解析】由题意可知,性的判断与证得m=1,故选A.【考点】直线斜率公式.6.过点(-3,0)和点(-4,)的直线的倾斜角是()A.30°B.150°C.60D.120°【答案】D【解析】因为,,所以,直线的倾斜角是120°,选D。

【考点】直线的斜率、倾斜角点评:简单题,利用斜率的坐标计算公式求得倾斜角的正切。

7.若直线经过A(-2,9)、B(6,-15)两点,则直线AB的倾斜角是( )A.45°B.60°C.120°D.135°【答案】C【解析】设直线AB的倾斜角是θ,由直线的斜率公式得k="tan" θ=,再根据倾斜角的范围求出倾斜角的大小。

解:设直线AB的倾斜角是θ,由直线的斜率公式得k=tanθ==又0≤θ<π,θ=120°,故选 C.【考点】直线的倾斜角和斜率点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出斜率tanθ是解题的关键8.如图,若图中直线1,2,3的斜率分别为k1, k2, k3,则A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2【答案】B【解析】由于直线L2、L1的倾斜角都是锐角,且直线L2的倾斜角大于直线L1的倾斜角,可得 K2>K1>0.由于直线L3、的倾斜角为钝角,K3<0,由此可得结论.k3<k1<k2,,故可知选B.【考点】直线的倾斜角和斜率点评:本题主要考查直线的倾斜角和斜率的关系,属于基础题.9.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键10.已知点,,则直线的倾斜角是.【答案】【解析】直线垂直于x轴,倾斜角为【考点】直线斜率与倾斜角点评:若则直线的斜率为,倾斜角满足11.(本小题满分6分)求经过两条直线和的交点,并且与直线垂直的直线方程的一般式.【答案】【解析】由解得,则两直线的交点为………2分直线的斜率为,则所求的直线的斜率为……………4分故所求的直线为即………………6分【考点】本题考查了直线的位置关系及直线方程的求法点评:熟练运用直线的位置关系求直线方程是解题的关键12.直线的倾斜角是( )A.150oB.135oC.120oD.30o【答案】A【解析】解:因为直线,故倾斜角是150o,选A13..过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为.【答案】1【解析】由斜率公式可知,所以m=1.14.如果直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是 .【答案】【解析】设直线l的方程为y=kx+b,由题意知平移后直线方程为y=k(x+3)+b+1,即y=kx+3k+b+1,由于直线平移后还回到原来的位置,所以3k+b+1=b,所以15.直线的倾斜角等于__________.【答案】【解析】直线的斜率为,则倾斜角满足即直线的倾斜角为.16.直线的倾斜角是()A.30°B.120°C.60°D.150°【答案】A【解析】17.倾斜角为135°,在轴上的截距为的直线方程是()A.B.C.D.【答案】D【解析】直线斜率为所以直线方程为故选D18.直线的倾斜角是()A B C D【答案】C【解析】略19.已知点. 若直线与线段相交,则的取值范围是_____________.【答案】[-2,2]【解析】略20.以下直线中,倾斜角是的是()..【答案】C【解析】略21.已知点,若直线过点与线段相交,则直线的斜率的取值范围是A.B.C.D.【答案】C【解析】略22.当时,如果直线的倾斜角满足关系式,则此直线方程的斜率为;【答案】【解析】略23.直线的倾斜角为,则的值为( )A.B.C.D.【答案】A【解析】略24.长方形OABC各点的坐标如图所示,D为OA的中点,由D点发出的一束光线,入射到边AB上的点E处,经AB、BC、CO依次反射后恰好经过点A,则入射光线DE所在直线斜率为【答案】【解析】如图:作关于的对称点,关于的对称点,关于的对称点,关于的对称点,则的延长线过完点,因为,所以根据对称性得,所以【考点】点关于线对称的点25.对于直线x sin+y+1=0,其斜率的取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,因此斜率的取值范围是[-1,1],答案选B.【考点】直线的一般方程与斜率26.如图所示,直线的斜率分别为,则的大小关系为(按从大到小的顺序排列).【答案】【解析】由图形可知,比的倾斜角大,所以【考点】斜率与倾斜角的关系27.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】C【解析】确定的直线方程为,代入点得【考点】直线方程28.若图,直线的斜率分别为,则()A.B.C.D.【答案】C【解析】切斜角为钝角,斜率为负,切斜角为锐角,斜率为正,因为倾斜角大于倾斜角,所以【考点】直线倾斜角与斜率的关系29.直线经过点,且倾斜角范围是,则的范围是()A.B.C.D.【答案】C【解析】【考点】直线倾斜角与斜率的关系30.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】B【解析】确定的直线方程为,代入点得【考点】直线方程。

高一数学必修二《直线的倾斜角与斜率》经典例题

第三章直线与方程3.1直线的倾斜角与斜率3.1.1倾斜角与斜率一、基础达标1.下列说法中,正确的是() A.直线的倾斜角为α,则此直线的斜率为tan αB.直线的斜率为tan α,则此直线的倾斜角为αC.若直线的倾斜角为α,则sin α>0D.任意直线都有倾斜角α,且α≠90°时,斜率为tan α答案 D解析对于A,当α=90°时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,α=0°,sin α=0,故C不正确,故选D. 2.若A、B两点的横坐标相等,则直线AB的倾斜角和斜率分别是() A.45°,1 B.135°,-1C.90°,不存在D.180°,不存在答案 C解析由于A、B两点的横坐标相等,所以直线与x轴垂直,倾斜角为90°,斜率不存在.故选C.3.(2014·乌鲁木齐高一检测)过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5C.-1 D.-5答案 D解析由斜率公式可得:y+34-2=tan 135°,∴y+32=-1,∴y=-5.∴选D.4.直线l 过原点(0,0),且不过第三象限,那么l 的倾斜角α的取值范围是( ) A .0°≤α≤90°B .90°≤α<180°C .90°≤α<180°或α=0°D .90°≤α≤135°答案 C解析 倾斜角的取值范围为0°≤α<180°,直线过原点且不过第三象限,切勿忽略x 轴和y 轴.5.斜率为2的直线经过点A (3,5)、B (a,7)、C (-1,b )三点,则a 、b 的值为( ) A .a =4,b =0 B .a =-4,b =-3 C .a =4,b =-3 D .a =-4,b =3 答案 C解析 由题意,得⎩⎨⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2.解得a =4,b =-3.6.如果过点(-2,m )和Q (m,4)的直线的斜率等于1,则m =________. 答案 1解析 由斜率公式知4-mm +2=1,解得m =1.7.已知直线l 上两点A (-2,3),B (3,-2),求其斜率.若点C (a ,b )在直线l 上,求a ,b 间应满足的关系,并求当a =12时,b 的值. 解 由斜率公式得k AB =-2-33+2=-1. ∴C 在l 上,k AC =-1,即b -3a +2=-1. ∴a +b -1=0.当a =12时,b =1-a =12. 二、能力提升8.在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为( )A.-2 3 B.0C. 3 D.2 3答案 B解析由题意知,AB,AC所在直线的倾斜角分别为60°,120°,所以tan 60°+tan 120°=3+(-3)=0.9.(2014·合肥高一检测)若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围为________.答案(-2,1)解析∵k=a-1a+2且直线的倾斜角为钝角,∴a-1a+2<0,解得-2<a<1.10.直线l过点A(1,2),且不过第四象限,则直线l的斜率的取值范围是________.答案[0,2]解析如图,当直线l在l1位置时,k=tan 0°=0;当直线l在l2位置时,k=2-01-0=2.故直线l的斜率的取值范围是[0,2].11.过点M(0,-3)的直线l与以点A(3,0),B(-4,1)为端点的线段AB有公共点,求直线l的斜率k的取值范围.解如图所示,(1)直线l过点A(3,0)时,即为直线MA,倾斜角α1为最小值.∵tan α1=0-(-3)3-0=1,∴α1=45°.(2)直线l过点B(-4,1)时,即为直线MB,倾斜角α2为最大值,∵tan α2=1-(-3)-4-0=-1,∴α2=135°.所以直线l 倾斜角α的取值范围是45°≤α≤135°. 当α=90°时,直线l 的斜率不存在;当45°≤α<90°时,直线l 的斜率k =tan α≥1; 当90°<α≤135°时,直线l 的斜率k =tan α≤-1. 所以直线l 的斜率k 的取值范围是 (-∞,-1]∪[1,+∞). 三、探究与创新12.已知A (-1,1),B (1,1),C (2,3+1), (1)求直线AB 和AC 的斜率;(2)若点D 在线段AB (包括端点)上移动时,求直线CD 的斜率的变化范围. 解 (1)由斜率公式得 k AB =1-11-(-1)=0,k AC =3+1-12-(-1)=33.(2)如图所示. k BC =3+1-12-1= 3.设直线CD 的斜率为k ,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针方向旋转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,所以k 的取值范围为⎣⎢⎡⎦⎥⎤33,3.13.光线从点A (2,1)射到y 轴上的点Q ,经y 轴反射后过点B (4,3),试求点Q 的坐标及入射光线的斜率.解 法一 设Q (0,y ),则由题意得k QA =-k QB .∵k QA=1-y2,k QB=3-y4,∴1-y2=-3-y4.解得y=53,即点Q的坐标为⎝⎛⎭⎪⎫0,53,∴k入=k QA=1-y2=-13.法二如图,点B(4,3)关于y轴的对称点为B′(-4,3),k AB′=1-32+4=-13,由题意得,A、Q、B′三点共线.从而入射光线的斜率为k AQ=k AB′=-1 3.设Q(0,y),则k入=k QA=1-y2=-13.解得y=53,即点Q的坐标为⎝⎛⎭⎪⎫0,53.。

第08讲 倾斜角与斜率(4种题型)(原卷版)-2024年高二数学核心知识点与常见题型通关讲解练(人教

第08讲倾斜角与斜率(4种题型)【知识梳理】一.确定直线位置的几何要素如何确定一条直线,其实相当于如何求出这条直线的表达式,一般满足以下几点直线便可确定,第一:两点确定一条直线,只要知道直线上的两个点即可;第二,已知直线的斜率和直线上的某一个点;第三,与某条已知直线有确切的关系,如关于某某直线对称,已知互相平行的直线彼此间的距离,求另一条直线.二.直线的倾斜角1.定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l 的倾斜角.2.范围:[0,π)(特别地:当直线l和x轴平行或重合时,规定直线l的倾斜角为0°)3.意义:体现了直线对x轴正方向的倾斜程度.4.斜率与倾斜角的区别和联系(1)区别:①每条直线都有倾斜角,范围是[0,π),但并不是每条直线都有斜率.②倾斜角是从几何的角度刻画直线的方向,而斜率是从代数的角度刻画直线的方向.(2)联系:①当a≠时,k=tanα;当α=时,斜率不存在;②根据正切函数k=tanα的单调性:当α∈[0,)时,k>0且tanα随α的增大而增大,当α∈(,π)时,k<0 且tanα随α的增大而增大.三.直线的斜率1.定义:当直线倾斜角α≠时,其倾斜角的正切值叫做这条直线的斜率.用小写字母k表示,即k=tanα.2.斜率的求法(1)定义:k=tanα(α≠)(2)斜率公式:k=.3.斜率与倾斜角的区别和联系(1)区别:①每条直线都有倾斜角,范围是[0,π),但并不是每条直线都有斜率.②倾斜角是从几何的角度刻画直线的方向,而斜率是从代数的角度刻画直线的方向.(2)联系:①当α≠时,k=tanα;当α=时,斜率不存在;②根据正切函数k=tanα的单调性:当α∈[0,)时,k>0且随α的增大而增大,当α∈(,π)时,k<0且随α的增大而增大.常见题型:(1)已知倾斜角范围求斜率的范围;(2)已知斜率求倾斜角的问题.(3)斜率在数形结合中的应用.四.直线的图象特征与倾斜角、斜率的关系直线的倾斜角、斜率对直线的图象的影响:(1)直线在y轴上的截距大于0时:若倾斜角为锐角,则斜率大于0,这时直线的图象过第一二三象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;若倾斜角为钝角,则斜率小于0,这时直线的图象过第一二四象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;(2)直线在y轴上的截距小于0时:若倾斜角为锐角,则斜率大于0,这时直线的图象过第一三四象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;若倾斜角为钝角,则斜率小于0,这时直线的图象过第二三四象限,并且倾斜角越大斜率就越大,直线相对于x轴的正方向的倾斜程度也就越大;(3)当直线的倾斜角为直角时,斜率不存在,直线的图线与x轴垂直;(4)当直线的倾斜角为0度时,斜率为0,直线的图线与x轴平行或重合.【考点剖析】一.确定直线位置的几何要素(共5小题)1.(2022秋•浏阳市期末)如果AB>0且BC<0,那么直线Ax+By+C=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2022秋•西固区校级期末)直线ax+by+c=0经过第一、二、四象限,则a、b、c应满足()A.ab>0,bc<0B.ab<0,bc<0C.ab>0,bc>0D.ab<0,bc>03.(2022秋•连江县校级期中)已知直线l方程:kx﹣y+2k﹣2=0(k∈R),若l不经过第二象限,则k的取值范围为()A.k≤1B.k≥0C.0≤k≤1D.k≤04.(2022秋•永昌县校级月考)若bc<0,ab>0,则直线ax+by+c=0的图象只能是()A.B.C.D.(多选)5.(2022秋•定州市期末)如果AB>0,BC>0,那么直线Ax+By+C=0经过()A.第一象限B.第二象限C.第三象限D.第四象限二.直线的倾斜角(共13小题)6.(2023春•靖江市校级月考)已知直线l经过A(﹣1,4),B(1,2)两点,则直线l的倾斜角为()A.B.C.D.7.(2022秋•湘潭期末)直线的倾斜角为()A.30°B.60°C.120°D.150°8.(2022秋•宁德期末)若直线l经过点,则直线l的倾斜角为()A.30°B.60°C.120°D.150°9.(2022秋•龙凤区校级期末)设直线l的方程为6x﹣6y cosβ+13=0,则直线l的倾斜角α的范围是()A.[0,π]B.C.D.(多选)10.(2022秋•丹东期末)已知直线l:kx﹣2y﹣4k+1=0,则下列表述正确的是()A.当k=2时,直线的倾斜角为45°B.当实数k变化时,直线l恒过点C.当直线l与直线x+2y﹣4=0平行时,则两条直线的距离为1D.直线l与两坐标轴正半轴围成的三角形面积的最小值为4(多选)11.(2022秋•诸暨市期末)已知直线y=1,下列说法中正确的是()A.倾斜角为180°B.倾斜角为0°C.斜率不存在D.斜率为012.(2022秋•河南月考)已知A(3,1),B(2,4),C(m,2)三点.(1)若直线BC的倾斜角为135°,求m的值;(2)是否存在m,使得A,B,C三点共线?若存在,求m的值;若不存在,说明理由.13.(2021秋•望奎县校级期末)直线mx+ny﹣1=0的倾斜角是直线2x﹣y+1=0的倾斜角的2倍,与两坐标轴围成的三角形的面积等于6,试求m和n的值.14.(2022秋•泗水县期中)已知直线方程为y+2=k(x+1).(1)若直线的倾斜角为135°,求k的值;(2)若k=﹣2,直线分别与x轴、y轴交于A、B两点,O为坐标原点,求△AOB面积.15.(2022秋•宜昌期中)已知平面内三点A(﹣2,4),B(4,﹣2),C(7,1).(1)若直线l1经过点B且与线段AC有交点,求直线l1的倾斜角α的取值范围;(2)若直线l2经过点A,且与两坐标轴的正半轴所围成的三角形的面积为2,求直线l2的方程.16.(2022秋•和平区校级月考)已知M(1,﹣1),N(2,2),P(3,0).(1)若点Q满足PQ⊥MN,PN∥MQ,求点Q的坐标;(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.17.(2022秋•浦东新区校级月考)设直线的方程为3x+(t﹣1)y+1=0,其倾斜角为α.(1)将倾斜角α表示成t的函数;(2)①若,求t的取值范围;②若,求α的取值范围.18.(2022•浦东新区校级开学)设直线l的方程是2x+my﹣1=0,其倾斜角为α.(1)若,求实数m的取值范围;(2)若将倾斜角α用m表示,求α关于m的函数关系.三.直线的斜率(共10小题)19.(2022秋•长春期末)经过点A(1,4)和点B(5,12)的直线的斜率是()A.2B.﹣2C.4D.﹣420.(2022秋•金安区校级期末)已知直线kx﹣y﹣k﹣1=0和以M(﹣3,1),N(3,2)为端点的线段相交,则实数k的取值范围为()A.B.C.或D.k≤﹣2或21.(2023春•金山区校级期末)已知直线l:x=2y+1,则直线l的斜率k=.22.(2023春•宣化区校级月考)经过点A(﹣3,1)和点B(4,﹣2)的直线l的斜率是.23.(2022秋•兴化市期中)在平面直角坐标系xOy中,已知点A(1,1),B(5,1),点C在x轴上,且.(1)求直线AC的斜率;(2)求直线BC的方程.24.(2022秋•蓟州区校级月考)已知点A(2,3),B(3,0).(1)求直线AB的斜率;(2)过点D(1,m),E(3,﹣m),若AB⊥DE,求m的值.25.(2022秋•沙河口区校级月考)如图,直线l过点(3,2),与x轴、y轴的正半轴分别交于A,B两点,△AOB的面积为12.点P为线段AB上一动点,且PQ∥OB交OA于点Q.(1)求直线AB斜率的大小;(2)在y轴上是否存在点M,使△MPQ为等腰直角三角形?若存在,求出点M的坐标;若不存在,说明理由.26.(2022秋•勃利县校级月考)经过点P(0,﹣1)作直线l,且直线l与连接点A(1,﹣2),B(2,1)的线段没有公共点,求直线l的倾斜角α和斜率k的取值范围.27.(2022秋•武清区月考)已知坐标平面内三点A(﹣2,﹣4),B(2,0),C(﹣1,1).(1)求直线AB的斜率和倾斜角;(2)若A,B,C,D可以构成平行四边形,且点D在第一象限,求点D的坐标.28.(2022秋•河南月考)已知坐标平面内三点A(﹣2,﹣4),B(2,0),C(﹣1,1).(1)求直线AB的斜率和倾斜角;(2)若A,B,C,D可以构成平行四边形,且点D在第一象限,求点D的坐标;(3)若E(m,n)是线段AC上一动点,求:的取值范围.四.直线的图象特征与倾斜角、斜率的关系(共5小题)29.(2022秋•惠州期末)已知直线l1的方程是y=mx+n,l2的方程是y=nx﹣m(mn≠0,m≠n),则下列各图形中,正确的是()A.B.C.D.30.(2022秋•南湖区校级期中)若直线ax﹣y+c=0经过第一、二、四象限,则有()A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<031.(2022秋•深圳校级月考)如图,已知直线PM、QP、QM的斜率分别为k1、k2、k3,则k1、k2、k3的大小关系为()A.k1<k2<k3B.k1<k3<k2C.k2<k1<k3D.k3<k2<k132.(2021秋•陈仓区期末)直线l绕它与x轴的交点逆时针旋转,得到直线,则直线l的直线方程()A.B.x﹣y﹣3=0C.D.33.(2022秋•大丰区校级期末)已知直线l的斜率的绝对值等于,则直线的倾斜角为.【过关检测】一、单选题30601201502023·江苏高二假期作业)如图,直线的倾斜角为(为ABC的边60,则实数二、多选题D .若一条直线的倾斜角为α,则此直线的斜率为tan α三、填空题13.(2023春·上海静安·高二上海市新中高级中学校考期中)将直线MN 绕原点旋转60°得到直线M N '',若四、解答题17.(2023·江苏·高二假期作业)经过下列两点的直线的斜率是否存在?如果存在,求其斜率.(1)()()2,3,4,5A B ;(2)()()2,3,2,1C D --;(3)()()3,1,3,10P Q --.18.(2023·江苏·高二假期作业)直线过两点(1,3),(2,7)A B ,求直线的斜率.19.(2023·江苏·高二假期作业)已知()()()3,3,4,2,0,2A B C --.(1)求直线AB 和AC 的斜率;(2)若点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围.20.(2023·江苏·高二假期作业)已知两点(3,4),(3,2)-A B ,过点(1,0)P 的直线l 与线段AB 有公共点.(1)求直线l 的斜率k 的取值范围;(2)求直线l 的倾斜角α的取值范围.21.(2023春·广西柳州·高二校考阶段练习)已知(3,3),(4,2),(0,2)A B C --.(1)求直线AB 的斜率并写出直线BC 的一个方向向量;(2)若点D 在线段BC (包括端点)上移动,求直线AD 的斜率的变化范围.。

高二数学直线的倾斜角与斜率试题

高二数学直线的倾斜角与斜率试题1.直线的参数方程为 (t为参数),则直线的倾斜角为()A.40°B.50°C.140°D.130°【答案】C【解析】,所以,故选C.【考点】直线的参数方程2.直线xsinα+y+2=0的倾斜角的取值范围是( )A.[0,π)B.∪C.D.∪【答案】B【解析】xsinα+y+2=0的斜率为-sina,-sina取值范围为[-1,1],故斜率范围为[-1,1],即倾斜角的范围就是∪.【考点】倾斜角与斜率.3.若直线y=0的倾斜角为α,则α的值是( )A.0B.C.D.不存在【答案】A【解析】∵直线y=0的斜率为0,倾斜角的正切值是斜率,∴α=0。

【考点】直线的倾斜角与斜率.4.过点和的直线的斜率为 .【答案】【解析】根据求斜率的公式可知:.【考点】直线的斜率.5.在平面直角坐标系中,直线的倾斜角的大小是___ __.【答案】【解析】根据直线方程知道直线的倾斜角为零角.【考点】由直线的方程求直线的斜率.6.在平面直角坐标系中,已知直线的斜率为.(Ⅰ)若直线过点,求直线的方程;(Ⅱ)若直线在轴、轴上的截距之和为,求直线的方程.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意知道所求直线的斜率为,经过点.由点斜式方程可得的方程;(Ⅱ)设直线的方程为.再由直线在轴、轴上的截距之和为解得.试题解析:(Ⅰ)由题意,直线的斜率为,所以直线的方程为,即:.(Ⅱ)由题意,直线的斜率为,所以设直线的方程为.令,得.令,得.由题知,解得.所以直线的方程为,即.【考点】直线的点斜式方程;直线方程中的截距.7.直线l经过点,则它的倾斜角是()A.300B.600C.1500D.1200【答案】D【解析】由二点先求斜率,通过斜率再求倾斜角.由斜率公式,再由倾斜角的范围知, 故选D【考点】直线的倾斜角8.直线的倾斜角是.【答案】【解析】直线的倾斜角满足=,所以,=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的倾斜角与斜率练习题一.选择题(共16小题)1.直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,则l1与l2的位置关系是()A.平行B.重合C.相交但不垂直D.垂直2.直线x+y﹣1=0的倾斜角为()A.B.C.D.3.若直线x﹣y﹣1=0的倾斜角为α,则α的值是()A.B.C.D.4.直线l:x+y+3=0的倾斜角α为()A.30°B.60°C.120°D.150°5.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣96.直线的倾斜角是()A.30°B.45°C.60°D.120°7.若直线l经过第二、四象限,则直线l的倾斜角的范围是()A.[0°,90°)B.[0°,180°)C.[90°,180°)D.(90°,180°)8.若直线l过点A(﹣1,1),B(2,﹣1),则l的斜率为()A.﹣B.﹣C.D.9.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°10.若直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.11.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1 B.﹣2 C.1或﹣2 D.﹣1或212.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣213.若直线2mx+y+6=0与直线(m﹣3)x﹣y+7=0平行,则m的值为()A.﹣1 B.1 C.1或﹣1 D.314.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+a2﹣1=0垂直,则a=()A.2 B.C.1 D.﹣215.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④16.直线xcosθ+ysinθ+a=0与xsinθ﹣ycosθ+b=0的位置关系是()A.平行B.垂直C.斜交D.与a,b,θ的值有关二.填空题(共1小题)17.已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay+a=0互相垂直,则实数a的值是.三.解答题(共1小题)18.已知直线l1的方程为3x+4y﹣12=0.(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.直线的倾斜角与斜率练习题参考答案与试题解析一.选择题(共16小题)1.直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,则l1与l2的位置关系是()A.平行B.重合C.相交但不垂直D.垂直【解答】解:设直线l1、l2的斜率分别为k1,k2,∵直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,∴k1k2=﹣1.∴l1⊥l2.故选:D.2.直线x+y﹣1=0的倾斜角为()A.B.C.D.【解答】解:设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,∴tanθ=﹣,∵θ∈[0,π),∴θ=.故选:C.3.若直线x﹣y﹣1=0的倾斜角为α,则α的值是()A.B.C.D.【解答】解:由题意,直线的斜率为k=直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角α为°故选:A.4.直线l:x+y+3=0的倾斜角α为()A.30°B.60°C.120°D.150°【解答】解:由于直线l:x+y+3=0的倾斜角为α,则直线的斜率tanα=﹣,再由0°≤α<180°,可得α=120°,故选:C.5.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣9【解答】解:∵三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,∴kAC =kAB,即,解得b=﹣9.故选:D.6.直线的倾斜角是()A.30°B.45°C.60°D.120°【解答】解:设直线y=x+2的倾斜角是α,则tanα=,又0°≤α<180°,∴α=60°.故选:C.7.若直线l经过第二、四象限,则直线l的倾斜角的范围是()A.[0°,90°)B.[0°,180°)C.[90°,180°)D.(90°,180°)【解答】解:若直线l经过第二、四象限,则直线l的斜率小于零,故直线的倾斜角为钝角,故选:D.8.若直线l过点A(﹣1,1),B(2,﹣1),则l的斜率为()A.﹣B.﹣C.D.【解答】解:根据题意,直线l过点A(﹣1,1),B(2,﹣1),则其斜率kAB==﹣;故选:A.9.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°【解答】解:∵直线过点M(1,2),N(4,2+),∴该直线的斜率为k==,即tanα=,α∈[0°,180°);∴该直线的倾斜角为α=30°.故选:A.10.若直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.【解答】解:直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,可得,得:m=1,故选:A.11.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1 B.﹣2 C.1或﹣2 D.﹣1或2【解答】解:∵直线l1:ax+2y+a+3=0,l2:x+(a+1)y+4=0,l1∥l2,∴=≠,解得a=1或a=﹣2.∵当a=1时,两直线重合,∴a≠1.∴a=﹣2.故选:B.12.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣2【解答】解:直线L1:ax+3y+1=0的斜率为:,直线L1∥L2,所以L2:2x+(a+1)y+1=0的斜率为:所以=;解得a=﹣3,a=2(舍去)故选:A.13.若直线2mx+y+6=0与直线(m﹣3)x﹣y+7=0平行,则m的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:因为两条直线平行,所以:解得 m=1故选:B.14.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+a2﹣1=0垂直,则a=()A.2 B.C.1 D.﹣2【解答】解:直线l1:ax+2y+6=0,l2:x+(a﹣1)y+a2﹣1=0,且l1⊥l2,∴a•1+2(a﹣1)=0;解得:a=.故选:B.15.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④【解答】解:①过一点有且仅有一个平面与已知直线垂直,满足直线与平面垂直的条件,成立;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面,如果两点在平面两侧,不成立;③两条相交直线在同一平面内的射影必为相交直线,如果两条相交直线所在平面与已知平面垂直,射影则是一条直线,不正确;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.正确.故选:D.16.直线xcosθ+ysinθ+a=0与xsinθ﹣ycosθ+b=0的位置关系是()A.平行B.垂直C.斜交D.与a,b,θ的值有关【解答】解:当cosθ=0或sinθ=0时,这两条直线中,有一条斜率为0,另一条斜率不存在,两条直线垂直.当cosθ和sinθ都不等于0时,这两条直线的斜率分别为﹣和tanθ,显然,斜率之积等于﹣1,故两直线垂直.综上,两条直线一定是垂直的关系,故选:B.二.填空题(共1小题)17.已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay+a=0互相垂直,则实数a的值是0或1 .【解答】解:∵直线l1:ax﹣y+2a=0与直线l2:(2a﹣1)x+ay+a=0互相垂直,∴a×(2a﹣1)+(﹣1)×a=0,解之得a=0或1故答案为:0或1三.解答题(共1小题)18.已知直线l1的方程为3x+4y﹣12=0.(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.【解答】解:(1)由直线l2与l1平行,可设l2的方程为3x+4y+m=0,以x=﹣1,y=3代入,得﹣3+12+m=0,即得m=﹣9,∴直线l2的方程为3x+4y﹣9=0.(2)由直线l2与l1垂直,可设l2的方程为4x﹣3y+n=0,令y=0,得x=﹣,令x=0,得y=,故三角形面积S=•|﹣|•||=4∴得n2=96,即n=±4∴直线l2的方程是4x﹣3y+4=0或4x﹣3y﹣4=0.。

相关文档
最新文档