数学建模优化模型与Lingo Lindo软件

合集下载

lindo 与Lingo入门

lindo 与Lingo入门

优化建模
在LINGO中使用LINDO模型
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 当前光标 的位置 • 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
• 状态行(最左边显 示“Ready”,表示 “准备就绪”)
即证券A,C,E分别投资2.182百万元,7.364 百万元,0.454百万元,最大税后收益为0.298 百万元. (2)由(1)的结果中影子价格可知,若资金增加 100万元,收益可增加0.0298百万元.大于 2.75%的利率借到100万元资金的利息,所以 应借贷.投资方案需将上面模型第2个约束右 端改为11,求解得到:证券A,C,E分别投资2.40 百万元,8.10百万元,0.50百万元,最大税后收 益为0.3007百万元.
除“LG4”文件外, 另外几种格式的文件 都是普通的文本文件, 可以用任何文本编辑 器打开和编辑。
•.MPS:示MPS(数学规划系统)格式的模型文件。
优化建模
在LINGO中使用LINDO模型
在LINGO中可以直接使用LINDO语法编写的优化模型(即优化程序)。 作为一个最简单的例子,在名为EXAM0201.LTX的模型文件中保存了一个 LINDO模型,我们现在看看如何用LINGO把它打开。
选择菜单命令 “File|Open(F3)”, 可以看到 “打开文 件”对话框。 (如 图)

优化建模
在LINGO中使用LINDO模型

打开“EXAM0201.LTX”文件 (如下图)
选择“LINGO|Solve (Ctrl+S)”来运行这 个程序(运行状态窗口 如右图)

优化模型与LINDOLINGO优化软件

优化模型与LINDOLINGO优化软件

前面是两个循环语句的用法,函数以 “@”开头,里面是循环变量以及界定循环 变量的变化范围,后面是循环体。还有另 外的两个循环函数:@min和@max,其用 法相类似。
从一维数组派生二维数组在数学上是常 用的,比如运输问题,由顶点集可以派生 边,大家可以使用本方法产生标准的运输 问题的Lingo程序。可以参考例子。
• Preprocess:预处理(生成割平面); • Preferred Branch:优先的分枝方式:
“Default”(缺省方式)、 “Up”(向上取整优先)、 “Down”(向下取整优先);
• IP Optimality Tol:IP最优值允许的误 差上限(一个百分数,如5%即0.05); • IP Objective Hurdle:IP目标函数的篱 笆值,即只寻找比这个值更优最优解
2,Lingo程序的结构和语法
一个规划问题,包括下面的一些内容:变量、常量、目标、约束。还是以 前面的例子,说明最基本的程序构成。 model: linear programming sets:
cargo/1..n/:c,x; rhs/1..m/:b; mat(rhs,cargo):a; endsets data c=2,3; b=2,1/2; A=1,1,1,-2; enddata max=@sum(cargo(i):c(i)*x(i)); @for(rhs(j):@sum(cargo(i):a(j,i)*x(i))<b(j));
1 )现 有 2料 场 , 位 于 A (5 ,1 ),B (2 ,7 ), 记 (x j,y j),j= 1 ,2 , 日 储 量 e j各 有 2 0吨 。
目标:制定每天的供应计划,即从 A, B 两料场分别向
各工地运送多少吨水泥,使总的吨公里数最小。

优化建模与LINGO第02章2

优化建模与LINGO第02章2
输出格式(Output)中所包括的4个选项: Status Window(状态窗口)选项: 用于控制求解模型时是否显示状态窗口(缺省设置为显示)。 Terse Output(以简明的形式显示结果)选项: 用于控制是否以简明的形式报告结果(缺省设置为以详细 (Verbose)的形式报告结果)。 Page Length Limit(页长限制): 用于控制输出时每页最多显示多少行(可以设置为任意正整数; 缺省设置是“None”,表示无限制)。 Terminal Width(终端宽度): 每行的最大宽度(每行多少字符),可以设为40-132之间的整 数(缺省设置为80)。
保存时可以有三种文件格式可供选择:*.PUN (以MPS(数 学规划系统)的"Punch" 格式保存); *.FBS(以LINDO格式 保存);*. SDBC (以数据库格式按列(变量)保存)。具体请 参考2.6节中对应的行命令。
优化建模
File|Title 显示当前模型的名称(如果该模型被命名过,即模型的程序 中出现过Title语句)。
File|Save (F5) 保存文件
Edit|Paste
(Ctrl+V) 粘贴
Edit | Paste Symbol (Ctrl+P) 粘贴符号
Report | Solution (Alt+0) 显示解答
Window|Tile (Alt+T) 平铺窗口
File|View (F4) 浏览文件
Edit|Copy (Ctrl+C ) 复制
EDIT|OPTIONS 该命令打开一个对话框(见下一页),用于设置LINDO系统 运行的内部参数,这对于比较专业的用户是有帮助的。
优化建模
从对话框可以看出,可修改的参数分成两大类: 左边一类是关于优化程序的(Optimizer这里是指优化程序, 也就是LINDO求解器,而不是最优解的意思), 右边一类是关于输出格式的(Output)。

数学建模——LINDO_LINGO的实用与优化模型

数学建模——LINDO_LINGO的实用与优化模型
目标:制定每天的供应计划,即从 A, B 两料场分别
向各工地运送多少吨水泥,使总的吨公里数最小。
决策变量:ci j (料场j到工地i的
运量)~12维
26
mi n
cij [(x j ai )2 ( y j bi )2 ]1/ 2
j 1 i1
2
s.t.
cij di , i 1,..., 6
X1
20.000000
0.000000
X2
30.000000
0.000000
end
ROW SLACK OR SURPLUS DUAL PRICES

原料无剩余 2)
0.000000
48.000000

时间无剩余 3)
0.000000
2.000000
资 源
加工能力剩余40
4)
40.000000
0.000000
不变!
结果解释
影子价格有意义
RANGES IN WHICH THE BASIS IS UNCHANGED: 时约束右端的允
OBJ COEFFICIENT RANGES
许变化范围
VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE
(目标函数不变)
例如: “sub x1 10”的作用等价于“x1<=10”
但用“SUB”和“SLB”表示的上下界约束不计入模 型的约束,也不能给出其松紧判断和敏感性分析。
14. “END”后对0-1变量说明:INT n 或 INT name
15. “END”后对整数变量说明:GIN n 或 GIN name
LINGO求解举例 — 例:选址问题

数学建模讲座优化建模与LINGO优化软件

数学建模讲座优化建模与LINGO优化软件

x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型求解
OBJECTIVE FUNCTION VALUE
max =72*x1+64*x2; x1+x2<50;
REDUCED COST 0.000000
Lingo

基 础
计算结果为
Objective value:89.88349
模型的集部分



LINGO 有 两 种 类 型 的 集 : 原 始 集 ( primitive set) 和 派 生 集 ( derived set)。 一个原始集是由一些最基本的对象组成 的。 一个派生集是用一个或多个其它集来定 义的,也就是说,它的成员来自于其它 已存在的集。
如果在Lingo文件example3_4.lg4 加上以下内容 其他不变 data:
@ole("d:\ 数 学 建 \EXAMPLE3_4.XLS","result")=c; @ole("d:\ 数 学 \EXAMPLE3_4.XLS","x")=x; 建 模 模
@ole("d:\ 数 学 \EXAMPLE3_4.XLS","y")=y;
@OLE 的使用例子 Lingo文件example3_4.lg4 的内容 data: a,b,d,e=@OLE("d:\数学建模 \EXAMPLE3_4.XLS"); enddata init: x,y=@Ole("d:\数学建模 \Example3_4.xls"); endinit

(外校培训课件)优化模型与LINGO软件求解——LINGO学习集全资料文档

(外校培训课件)优化模型与LINGO软件求解——LINGO学习集全资料文档

NLP: 非线性规划
(2)最优状态 全局全优
(3)最优目标值: 10
约束条件情况最优解: (1)约束总个数X4=100,按方法4 (2)非线性个数X6=50, 按方法6
25
[例1] 下料(截割问题)及求解
❖ [模型-2]的求解结果:
最优目标函 数值:90
x1=40, 按方法1截割 x2=20, 按方法2截割 x6=30. 按方法6截割
26
[例1] 下料(截割问题)及求解
❖ 求解结果分析:
在追求“余料最少”目标时,“≥”约 束把条件放宽了。
修正方法:改为“=”约束
模型(1)的求解结果: 最优目标(余料)=10m
(x4,x6)=(100,50) 耗用原料 = 150根
是否符 合原问 题要求?
不符合。 (1)问题出在哪里? (2)如何修正?
2
一、竞赛题中的优化模型总结
❖ 2.优化类竞赛题小结 ❖ 在全国数模竞赛中,优化问题是出现频率最
高的一类竞赛题。 ❖ 从1992-20××年全国大学生数模竞赛试题
的解题方法统计结果来看,优化模型共出现 了17次以上,占到了50%。 ❖ 即每两道竞赛题中就有一道涉及到利用优化 理论来建模和求解。
3
一、竞赛题中的优化模型总结

13
(三) 典型数学规划问题及求解
❖ 例1 下料(截割)问题及求解 ❖ 例2 运输问题及求解 ❖ 例3 非线性规划问题及求解 ❖ 例4 分派(选址)问题及求解 ❖ 例5 动态规划问题及求解
14
[例1] 下料(截割)问题及求解
1. 问题提出 2. 建立数学模型 3. 编写LINGO求解程序 4. 执行程序 5. 获得计算结果并分析 6. 修正模型,重新求解 7.课后作业 8.编程小结

优化建模与LINGO

优化建模与LINGO

1 2 3 4

•LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 而除注释语句和TITLE语句外的其他语句都是约束条 件,因此语句的顺序并不重要 。 •限定变量取整数值的语句为“@GIN(X1)”和 “@GIN(X2)”,不可以写成“@GIN(2)”,否则 LINGO将把这个模型看成没有整数变量。
• 运行状态窗口
优化建模 当前模型的类型 :LP,QP,ILP,IQP,PILP, PIQP,NLP,INLP,PINLP (以I开头表示 IP,以PI开头表示PIP) 当前解的状态 : "Global Optimum", "Local Optimum", "Feasible", "Infeasible“(不可行), "Unbounded“(无界), "Interrupted“(中断), "Undetermined“(未确定) 当前约束不满足的总量(不是不 满足的约束的个数):实数(即使 该值=0,当前解也可能不可行, 因为这个量中没有考虑用上下界 命令形式给出的约束)
•LINGO中函数一律需要以“@”开头,其中整型变量 函数(@BIN、@GIN)和上下界限定函数(@FREE、 @SUB、@SLB)与LINDO中的命令类似。而且0/1变 量函数是@BIN函数。
优化建模
输出结果: 运行菜单命令“LINGO|Solve”
最大利润=11077.5
最优整数解 X=(35,65)
优化建模
1. LINGO入门 2.在LINGO中使用集合
3. 运算符和函数
2.在LINGO中使用集合 4. LINGO的主要菜单命令 5. LINGO命令窗口 6.习题
优化建模

LINGO软件在优化模型中的应用

LINGO软件在优化模型中的应用
羊羽lingo是linearinteractivegeneraloptimizer的缩写即交互式的线性和通用优化求解器由美国lindo系统公司推出的可以用于求解非线性规划也可以用于一些线性和非线性方程组的求解等功能十分强大是求解优化模型的最佳选择
LINGO软件 ——在优化模型中的应用
腾讯微博:羊羽
LINGO软件在优化模型中的应用
LINGO软件在优化模型中的应用
解:设每天用x1 桶牛奶在甲车间生产,用x2 桶牛 奶在乙车间生产,可获利z 元。
则该问题的数学模型为: max z=72x1+64x2 s.t x1+x2≤50 12x1+8x2≤480 3x1≤100 x1,x2≥0
LINGO软件在优化模型中的应用
结果:
这个线性规划的最优解为x1=20,x2=30,最优值 为z=3360,即用20 桶牛奶在甲车间生产,30 桶 牛奶在乙车间生产,可获最大利润3360 元。
优点
3)强大的求解器 LINGO拥有一整套快速的,内建的求 解器用来求解线性、非线性、二次约束和 整数优化问题。
LINGO软件在优化模型中的应用
优点
4)交互式模型 在LINGO内可以直接创建和求解模型, 也可以从自己编写的应用程序中直接调用 LINGO。对于开发交互式模型,LINGO提 供了一整套建模环境,用来求解和分析构 建的模型。
从该问题的求解我们可以看到用LINGO 软件求 解线性规划是非常方便、快捷的,比单纯形法人 工计算效率高很多。
LINGO软ห้องสมุดไป่ตู้在优化模型中的应用
附加问题:
1) 若用35元可以买到1桶牛奶,应否作这项投资? 若投资,每天最多购买多少桶牛奶? 2) 若可以聘用临时工人以增加劳动时间,付给临 时工人的工资最多是每小时几元? 3) 由于市场需求变化,甲车间奶制品的获利增加 到30元,应否改变生产计划?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


表二 :5名队员4中泳姿百米平均成绩
队员





蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
例-1 某服务部门一周中每天需要不同数目的
雇员:周一到周四每天至少需要50人,周五
需要80人,周六和周日需要90人。现规定应
聘者需连续工作5天,试确定聘用方案,即周
线
一到周日每天聘用多少人,是5在满足需要的 前况下聘用总人数最少?

优化模型

决策变量:记周一到周日每天聘用的人数分别为X1,

X2,X3,X4,X5,X6 ,X7,这就是问题的决策变量。
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
目标函数:当队员队员 i 入选泳姿 j 的比赛时,
cij xij表示他的成绩,否则cij xij=0。于是接力队的成绩
可以表示为:
45
f
cij xij
j1 i1
约束条件:根据组成接力队的要求, xij 应该满足下面
方案。显然这不是解决问题的最好方法,随着问题
线
规模的变大,穷举法的计算量是无法接受的。

可以用0-1变量表示一个队员是否入选接力队, 从而建立这个问题的0-1规划模型.

记甲、乙、丙、丁、戊分别为队员 i=1,2,3,4,5;

记蝶泳、仰泳、蛙泳、自由泳分别为泳姿 j=1,2,3,

4;记队员 i 的第 j 种泳姿的百米成绩为 cij(s),则表 一可以表示成为:
3.此外,为了解决实际问题的需要,还可以分为: 单目标规划,多目标规划,动态规划,多层规划等。
(1)线性规划(LP)的一般形式

目标函数和所有的约束条件都是变量的线性 函数。

n
的 min f x ci xi , i 1,2,...,n

i 1
化 模 型
n
s.t. i1
ai xi
bi , bi
蛙泳 1’27” 1’06”4 1’24”6 1’09”6 1’23”8
自由泳 58”6
53”
59”4
57”2 1’02”4
问题分析:问题要求从5名队员中选出4人组成接
力队,每人一种泳姿,且四人的泳姿各不相同,使
接力队成绩最好。容易想到穷举法,组成接力队的
方案有5!=120中,逐一计算并做比较即可找出最优
(1)
s. t. h( x ) 0 i 1,2, ,m
(2)
g( x ) 0 j 1,2, ,n (3)
这里opt 最优化的意思,可以是min(求极大, 即minamize的缩写)或max (求极小,即minamize 的缩写)的两者之一;s.t. (即subject to)“受约 束于”之意。
优化模型基本类型
1.决策变量x的所有分量xi均为连续数值
a)f ,hi ,gi都是线性函数,则为线性规划(LP) b)f ,hi ,gi至少有一个是非线性,则为非线性规划(NLP)
c) f 是二次函数,hi ,gi 都是线性,则为二次规划(QP)
2.决策变量x的的一个或多个分量xi取离散值
a) x的至少一个分量只取整数数值,则为整数规划(IP) b) x的分量限定只取整数0或1,则为0-1规划(ZOP)
优化模型:Lingo Lindo软件
优化模型
优化模型的三要素
(1)决策变量,通常是某一问题需要求解的未知量,
用n维向量x= x1 ,x2 , xn T 表示,当对x赋值后它通常
称为该问题的一个解;
(2)目标函数,通常是某一问题需要优化(最大或 最小)的那个目标的数学表达式,它是决策变量x的 函数,可以 抽象的记作f ( x );
两个约束条件:
① 每人最多只能入选4种泳姿之一,即对于员 i=1,2,3,
4,应该有:
4
xij 1
j 1
② 每种泳姿有且只能有1人入选,即对于员 j=1,2,3,4,
5,应该有:
5
xij 1
i 1
综上所述,这个问题的优化模型可以写作:
45
min
cij xij ;
x1 x2 x3 x6 x7 50
线 性 规
x1 x2 x3 x4 x7 50 x1 x2 x3 x4 x5 80 x2 x3 x4 x5 x6 90

x3 x4 x5 x6 x7 90

显然,人数应该是正整数,所以

xi 0 i 1, 2, 7
问题归结为在以上约束条件下求解min z的 整数规划模型。由于目标函数和约束条件关于 决策变量都是线性函数,所以这是一个整数向 行规划模型。

目标函数:目标函数即是聘用总人数,即

z x1 x2 x3 x4 x5 x6 x7
约束条件:由每天需要的人数确定。由于每人连续
工作五天,所以一周的雇员应该是周四到周一聘用的, 按照需要至少50人,于是
x1 x4 x5 x6 x7 50
类似的,有
x1 x2 x5 x6 x7 50
(3)约束条件,由该问题对决策变量的现实条件给 出,即x允许的取值范围为x ,称为可行域,常
用一组关于x的等式hi( x ) 0i 1,2, m和(或)不 等式g j( x ) 0 j 1,2, n来界定,分别称为等式约
束和不等式约束。
于是,优化模型从数学上可以表述为
opt z f ( x )
, bi ,
形 式
xi 0,i 1,2,...,n
(2)二次规划问题

目标函数为二次函数,约束条件为线性约束。
用 的
n
1n
min f
x
i 1
ci xi
2
i,
bij
j 1
xi
x
Hale Waihona Puke j优 化 模 型 形 式
n
ai xi bi , bi
, bi .
s
.t
.
i 1
xi
0.
i, j 1,2,...,n.
例-2 某班准备从5名游泳队员中选择4人组成
接力队,参加学校的4*100混合泳接力比赛。
5名队员4中泳姿的百米平均成绩如下表所示,
线
问应该如何选拔队员组成接力队?


表一 :5名队员4中泳姿百米平均成绩

队员






蝶泳 1’06”8 57”2 1’18” 1’10” 1’07”4

仰泳 1’15”6 1’06” 1’07”8 1’14”2 1’11”
相关文档
最新文档