二次型矩阵形式
二次型及其矩阵

第五章 二次型在解析几何中,为了便于研究二次曲线122=++cy bxy ax 的几何性质,可以选择适当的坐标旋转变换⎩⎨⎧'+'='-'=θθθθc o s s i n s i n c o s y x y y x x把方程化为标准形式122='+'y c x m .这类问题具有普遍性,在许多理论问题和实际问题中常会遇到,本章将把这类问题一般化,讨论n 个变量的二次多项式的化简问题.第一节 二次型及其矩阵内容分布图示★ 二次型的定义 ★ 例1 ★ 二次型的矩阵形式 ★ 例2 ★ 例3 ★ 例4 ★ 例5★ 线性变换★例6★ 矩阵的合同 ★ 内容小结 ★ 习题5-1 ★返回内容要点:一、二次型的概念定义1 含有n 个变量n x x x ,,,21 的二次齐次函数nn n n n n n n nnn n x x a x x a x x a x x a x x a x a x a x a x x x f 1,12232231121122222221112122222),,,(--+++++++++++=称为二次型. 当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型.在本章中只讨论实二次型.只含有平方项的二次型 2222211nn y k y k y k f +++= 称为二次型的标准型(或法式).二、二次型的矩阵取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=于是∑==++++++++++++=nj i ji ij nnn n n n n nn nn n x x ax a x x a x x a x x a x a x x a x x a x x a x a x x x f 1,222112222221221112112211121),,,()()()(22112222121212121111n nn n n n n n n n x a x a x a x x a x a x a x x a x a x a x ++++++++++++=.),,,(),,,(212122221112112122112222121121211121AX X x x x a a aa a aa a a x x x x a x a x a x a x a x a x a x a x a x x x T n nn n n n n n n nn n n n n n n n =⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++++++=其中 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n a a a a a a a a a A x x x X 21222211121121,.称AX X x f T =)(为二次型的矩阵形式. 其中实对称矩阵A 称为该二次型的矩阵.二次型f 称为实对称矩阵A 的二次型. 实对称矩阵A 的秩称为二次型的秩. 于是,二次型f 与其实对称矩阵A 之间有一一对应关系.三、线性变换定义2 关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 21122212121121111称为由变量n x x x ,,,21 到n y y y ,,,21 的线性变换. 矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c c c c c C212222111211 称为线性变换矩阵. 当0||≠C 时,称该线性变换为可逆线性变换.对于一般二次型AX X X f T =)(,我们的问题是:寻求可逆的线性变换CY X =将二次型化为标准型,将其代入得AX X X f T =)(Y AC C Y CY A CY T T T )()()(==这里,Y AC C Y T T )(为关于n y y y ,,,21 的二次型,对应的矩阵为AC C T .注: 要Y AC C Y T T )(为标准型,即要AC C T 为对角矩阵。
二次型及其矩阵表示

THANK YOU.
谢谢您的观看
二次型定义
二次型具有可加性、可乘性和可交换性,同时对于任意的实数或复数$c$,都有$c(aX+bY)=aXc+bYc$。
二次型的特性
什么是二次型
数学物理中的重要性
在数学和物理学中,许多问题都涉及到二次型的研究。例如,在数学中,二次型与欧几里得空间、平面几何等有密切关系;在物理学中,二次型常出现在力学、波动、热力学等领域。
二次型的矩阵表示的例子
设二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+4x_3^2+2x_1x_2+4x_1x_3-2x_2x_3$,可以表示为矩阵形式 $F=\begin{bmห้องสมุดไป่ตู้trix} 2 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 4 \end{bmatrix}$。
实对称矩阵的主子式一定大于等于零,因此当主子式小于零时,该二次型一定是负定的。
当实对称矩阵A的主子式大于零时,该二次型一定是正定的。
对于一个二次型f(x1,x2,...,xn)=X^tAX,其中X是n维向量,A是n阶实对称矩阵,可以用A来表示该二次型。
二次型的矩阵表示
03
二次型的矩阵表示的应用
矩阵的特征值和特征向量
例2
05
二次型的矩阵表示的总结与展望
二次型与线性代数紧密相连,是研究多变量二次关系的重要工具。
二次型矩阵表示的小结
二次型的矩阵表示具有直观、简便、易于操作等特点,有利于快速求解二次型的数值解。
通过引入矩阵这一数学工具,可以将二次型表示为矩阵的形式,从而对其进行深入分析和计算。
二次型标准型和规范型

二次型标准型和规范型二次型是矩阵形式的二次函数,通常用向量和矩阵的乘积来表示。
在线性代数中,二次型是一种将一个多元变量的向量映射到实数的函数,常用于描述抽象空间中的二次曲面。
对于一个n维实向量空间V上的二次型,可以通过一个对称矩阵A来定义,即二次型的矩阵表达式为Q(x) = x^T Ax,其中x是一个列向量。
二次型的标准型是指将二次型通过合适的线性变换转化为一个特定的形式,这个形式更便于研究和计算。
在实数域上,任何一个n维非退化二次型都可以通过合适的正交变换(即特征变换)化为标准型,即形如Q(x) = λ1y1^2 + λ2y2^2 + ... +λnyn^2,其中λi为非零实数,yi为变换后的新变量。
标准型中的每一项都是对应新变量的平方项,没有交叉项。
二次型的规范型是指将二次型通过一个线性变换转化为一个更简洁的形式,通常是对标准型进行变换。
规范型的形式为Q(x) = y1^2 + y2^2 + ... + yn^2,其中yi为变换后的新变量。
规范型相对于标准型来说,更加精简,变量之间没有相关性,也没有尺度差异。
这样的形式能够更好地研究和理解二次型的性质。
转化为二次型的标准型和规范型在研究和计算中起着重要的作用。
它们可以帮助我们更好地理解二次型的本质和性质,更清晰地描述和分析问题。
同时,标准型和规范型之间的转化可以通过线性变换来实现,这种变换能够保持二次型的性质不变,因此在问题求解中也可以通过变换将二次型转化为更容易处理的形式,简化计算过程。
总之,二次型的标准型和规范型是对其矩阵表达形式进行变换,将其转化为更方便研究和计算的形式。
标准型通过正交变换将二次型转化为形如λ1y1^2 + λ2y2^2 + ... + λnyn^2的形式,其中λi为非零实数,yi为变换后的新变量。
规范型是对标准型进行变换,将其转化为更简洁、更方便理解和分析的形式Q(x) = y1^2 + y2^2 + ... + yn^2,其中yi为变换后的新变量。
6.1二次型的定义及其矩阵表示

• 例1 用矩阵形式表示下列二次型 • (1) f (x, y) 5x2 8xy 3y2 • 解: a11 5, a12 a21 4, a22 3
• 所以
f
(x,
y)
x,Байду номын сангаас
y
5 4
4 x
3
y
• (2) • 解:
f
(x1, x2 , x3
a11 0, a12
一、二次型的概念
定义4.11
含有n个变量 x1 ,
x2 ,
,
x
的二次齐次函数
n
f x1 , x2 , , xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
称为二次型. 简记为 f f (x1, , xn )
当aij是复数时, f称为复二次型 ;
当aij是实数时, f称为实二次型 .
1/21
二、二次型的表示方法
1.用和号表示
对二次型
f x1 , x2 , , xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn 取a ji aij , 则2aij xi x j aij xi x j a ji x j xi ,于是
)12x, 3a2 13
x1x2
0;
2 x2
x3
a21
1 2
, a22
0, a23
1;
a31 0, a32 1, a33 1
• 所以:
0
1 2
0
A
1 2
0
6.1 二次型及其矩阵表示

6
第 六 章 二 次 型
§6.1 二次型及其矩阵表示
二、二次型的矩阵表示
推导 f ( x1 , x2 , L , xn ) =
2 a11 x1 + a12 x1 x2 + L + a1n x1 x n 2 + a 21 x 2 x1 + a22 x2 + L + a2 n x2 x n
LLLLLLLLLL 2 + a n1 xn x1 + an 2 xn x2 + L + ann xn
§6.1 二次型及其矩阵表示
一、二次型的概念
定义 含有 n 个变量的二次齐次多项式称为 n 元二次型。 个变量的二次齐次 二次齐次多项式称为 二次型。
(一般) 一般)
2 2 例如 (1) f ( x , y ) = 3 x + 8 x y + 2 y
是一个二 二次型。 是一个二元二次型。
2 2 2 (2) f ( x , y , z ) = x + 2 x y + 6 x z + 2 y + 4 y z + 4 z
2 2
3 4 x = ( x, y ) . 4 2 y
4
第 六 章 二 次 型
§6.1 二次型及其矩阵表示
一、二次型的概念
试试看: 试试看: (2) f ( x , y , z ) = x 2 + 2 x y + 6 x z + 2 y 2 + 4 y z + 4 z 2
=
x1 (a11 x1 + a12 x2 + L + a1n xn ) + x2 (a21 x1 + a22 x2 + L + a2 n x n )
矩阵二次型

0 3 3
练习 求二次型 f的矩阵
(1) f ( x1, x2 , x3 ) x12 2 x22 2 x1 x2 3 x2 x3
1 1 0
解: A 1
2
3
2
0
3
0
2
(2) f ( x1, x2 , x3 , x4 ) x12 2x22 7 x42 2x1x2 2x2 x3 4x3 x4
第八章 二次型
一、二次型及其标准形的概念
定义1 含有n个变量 x1, x2 ,, xn的二次齐次函数
f x1 , x2 ,, xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
称为二次型.
当aij是复数时, f称为复二次型 当aij是实数时, f称为实二次型
解:A
1 3
5 3
3 c
r( A) 2 A 0 c3
四、化二次型为标准形
对于二次型,我们讨论的主要问题是:寻求 可逆的线性变换,将二次型化为标准形.
设 x1 c11 y1 c12 y2 c1n yn ,
x2 c21 y1 c22 y2 c2n yn
,
xn cn1 y1 cn2 y2 cnn yn
记
a11
A
a21
a12
a22
a1n
a2n
,
x1
x
x2
,
an1 an2 ann
xn
则二次型可记作 f xT Ax,其中A为对称矩阵.
则 f xT Ax,
——二次型的矩阵表示式
A 其中 为对称阵:
. AT A
线性代数二次形及其标准型
f = x T Ax = (Qy )T A(Qy ) = y T (Q T AQ ) y = y T Λy
2 = λ1 y12 + λ 2 y22 + L + λn yn
线性代数
第五章
11 11
例4
通过正交变换 化二次型
2 2 2 f = 5 x1 + 5 x 2 + 2 x 3 − 8 x1 x 2 − 4 x1 x 3 + 4 x 2 x 3
a11 x1 + a12 x2 + L+ a1n xn a x a x L a x = ( x1 , x2 ,L, xn ) 21 1 + 22 2 + + 2n n LLLL a x + a x + L+ a x nn n n1 1 n2 2
线性代数
写成矩阵形式
解
.
½ 0 f ( x 1 , x 2 , x 3 ) = ( x 1 , x 2 , x 3 ) ½ 2 −3 2 ½
x1 −3 x 2 2 0 x 3
½
注
a ij = a ji ( i ≠ j )为交叉项 x i x j的系数的一半, 的系数的一半, a ii 为平方项 x i2的系数 ,
令正交变换X=QY,则 , 令正交变换
2 2 f = y12 + y 2 + 10 y 3
(注):正交变换化二次形为标准形具有保持几何图形不变 ):正交变换化二次形为标准形具有保持几何图形不变 的特点,使其易于识别。 , 。 线性代数 的特点 使其易于识别 第五章
14 14
(二)用满秩线性变换化二次型为标准形——配方法 用满秩线性变换化二次型为标准形 配方法 例2 化二次型
二次型的矩阵怎么求
二次型的矩阵怎么求
二次型的矩阵一定是实对称矩阵。
如果a是一个未必对称的方阵,令b=(a+a^t)/2,
那么b对称,并且二次型x^tax=x^tbx,也就是说即使a不对称,一定存在一个等效的对
称矩阵来表示这个二次型,所以为了研究方便就选择(或者理解成规定)用对称阵来表示
二次型。
实对称矩阵主要性质:
1、实等距矩阵a的相同特征值对应的特征向量就是拓扑的。
2、实对称矩阵a的特征值都是实数。
3、n阶实等距矩阵a必可相近对角化,且相近对角阵上的元素即为为矩阵本身特征值。
4、若a具有k重特征值λ0必有k个线性无关的特征向量,或者说秩r(λ0e-a)必为
n-k,其中e为单位矩阵。
5、实等距矩阵a一定可以拓扑相近对角化。
4.1-3 二次型(1)
1. 定义 : (1) 含有 n 个变量 x1 , x2 ,, xn 的二次齐次多项式 f ( x1 , x2 ,, xn ) aij xi x j
i 1 j 1 n n
其中 aij a ji ( i , j 1,2,, n), 称为一个 n 元二次型, 简称二次型 .
x Cy xT A x yT (C T AC ) y ,
且 C 可逆时 , 两个二次型的秩相等
定理4.1 二次型 f ( x1 , x2 ,, xn ) x T Ax (其中 AT A ) 经过可逆线性替换 x Cy , 就二次型的秩相等.
初等变换法
例. 化下列二次型为标准形 , 并写出所作的可逆线性 替换
f ( x1 , x2 , x3 ) x1 2 x1 x2 2 x1 x3 2 x2 4 x2 x3 x3
已知对称矩阵A, 求可逆矩阵C , 使得C T AC为对角阵
2 2 2
1 1 1 A 1 2 2 1 2 1
A合同于 E
A 的特征值全都大于零 A 的所有顺序主子式都大 于零
例. 设 A , B 为同阶正定矩阵, 则 (1) A 0 从而 A 可逆 (2) A B , Ak , A1 , A 也是正定矩阵 ( 3) A 的主对角线上的元素都 大于零
二. 二次型的有定性
定义 : 对具有对称矩阵 A的二次型 X T AX , (1) 如果对任何 X O , 都有 X T A X 0 , 则称该二次型 为负定二次型 , 矩阵 A 称为负定矩阵. A 负定 A 正定
设 A 为实对称矩阵, 则
A 正定(二次型 xT Ax 正定) 对任意的 x O, 都有 xT Ax 0(定义)
线性代数-二次型
在物理中的应用
在经典力学中,二次型常常用来描述物体的运动轨迹。例如,行星的运动轨迹可 以用一个二次型来表示,通过求解这个二次型的根,可以得到行星的运动轨迹。
在量子力学中,二次型也用于描述粒子的波函数。例如,一个自由粒子的波函数 可以用一个二次型来表示,通过求解这个二次型的根,可以得到粒子的能级和波 函数。
02
矩阵$A$的元素由二次型中各项的系数决定,即$A =
(a_{ij})$,其中$a_{ij} = frac{1}{2}(b_{ij} + b_{ ji})$。
03
矩阵表示的二次型可以方便地进行代数运算和变换,
例如求导数、求极值等。
二次型的几何意义
二次型在几何上表示一个二次 曲面或曲线,其形状由矩阵 $A$决定。
THANKS
感谢观看
在经济学中的应用
二次型在经济学中也有广泛的应用。 例如,在微观经济学中,二次型可以 用来描述消费者的效用函数,通过求 解这个二次型的最大值,可以得到消 费者的最优消费决策。
VS
在宏观经济学中,二次型可以用来描 述一个国家的生产函数,通过求解这 个二次型的最大值,可以得到一个国 家最优的产出水平。此外,二次型也 用于描述成本函数、需求函数等。
正定二次型
01
正定性
对于正定二次型,其矩阵的所有主子式都大于0,且没有实数根。
02
特征
正定二次型的特征值都大于0。
03
实例
对于二次型 $f(x,y,z)=x^2+y^2+z^2$,它是一个正定二次型,因为其
矩阵的所有主子式都大于0,且没有实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次型矩阵形式
二次型是数学中一个重要的概念,与矩阵紧密相关。
在接下来的文章中,我将详细介绍二次型及其矩阵形式,包括定义、性质、特征值和特征向量以及矩阵对角化等内容。
首先,我们来定义二次型。
给定一个n维向量x = (x1, x2, ..., xn),我们可以定义一个二次型Q(x)如下:
Q(x) = x1^2 + x2^2 + ... + xn^2
其中,x1, x2, ..., xn是向量x的分量。
上述二次型表示了一个向量x各个分量的平方和。
一般地,我们可以用一个n维向量x和一个实对称矩阵A来表示一个二次型,如下所示:
Q(x)=x^TAx
其中,x^T表示向量x的转置,表示行向量。
接下来,我们来探讨二次型的性质。
首先,我们看到二次型的系数矩阵A是实对称矩阵。
这是因为在二次型的定义中,我们可以通过转置操作将行向量x转换为列向量,从而使得系数矩阵A是对称的。
实对称矩阵有很多重要的性质,例如它总是可以对角化的。
另外,二次型对应的系数矩阵A也具有特殊的性质,即正定、负定或半正定、半负定。
如果对于任意非零向量x,都有Q(x)>0,那么二次型
Q(x)为正定;如果对于任意非零向量x,都有Q(x)<0,那么二次型Q(x)为负定;如果对于任意非零向量x,都有Q(x)>=0,那么二次型Q(x)为半正定;如果对于任意非零向量x,都有Q(x)<=0,那么二次型Q(x)为半负定。
正定、负定、半正定和半负定是描述二次型的重要概念,它们在优化
问题、凸优化和最小二乘等领域中有着广泛应用。
特征值和特征向量也是与二次型密切相关的概念。
给定一个二次型
Q(x)=x^TAx,其中A是一个n阶实对称矩阵,如果存在一个非零向量v,
使得Av=λv,其中λ是一个实数,那么v是矩阵A的特征向量,λ是对
应的特征值。
特征值和特征向量能够帮助我们更好地理解和分析二次型的
性质。
矩阵对角化也是二次型的一个重要应用。
对于一个n阶实对称矩阵A,如果存在一个可逆矩阵P,使得P^TAP是一个对角矩阵D,那么我们称矩
阵A可对角化。
对角矩阵D的对角线上的元素是矩阵A的特征值,P的列
向量是矩阵A的特征向量。
对角化可以简化二次型的计算和分析,并且更
容易展示二次型的性质。
总结一下,二次型是通过矩阵表示的一个重要数学概念。
我们可以通
过系数矩阵A来定义二次型,该矩阵是实对称矩阵。
二次型具有很多重要
的性质,例如正定、负定、半正定和半负定。
特征值和特征向量也与二次
型密切相关,它们可以帮助我们更好地理解和分析二次型的性质。
最后,
矩阵对角化是二次型的一个重要应用,它可以简化计算和分析过程。
二次型作为线性代数中的重要概念,具有广泛的应用。
它在优化问题、凸优化、最小二乘和信号处理等领域中有着重要的作用。
深入理解和掌握
二次型及其矩阵形式对于学习和应用这些领域的数学知识都是至关重要的。
希望本文能给读者提供一个清晰和详细的二次型矩阵形式的介绍,帮助读
者更好地理解和应用这一概念。