最 难 熔 的 金 属
40个稀有金属介绍

40种稀有金属之最1、最纯的金属锗:区域融熔技术提纯的锗,纯度达“13个9”(99.99999999999%)。
2、最多的金属铝:其丰度约占地壳的8%,地球上到处都有铝的化合物,普通的泥土中,也含有许多氧化铝。
3、最少的金属钋:在地壳中的总量极微。
4、最轻的金属锂:相当水的重量的二分之一,不但能浮在水面上,在煤油里也可能浮起来。
5、最难熔的金属钨:熔点为3410℃,沸点为5700℃。
当电灯亮时,灯丝的温度高达3000℃以上,只有钨才能顶得住这样高的温度。
中国是世界上最大的钨储藏国,主要为白钨矿和黑钨矿。
6、熔点最低的金属汞:其凝固点为–38.7℃。
7、产量最高的金属铁:铁是年产量最高的金属,2017年全球粗钢产量达到16.912亿吨。
同时,铁也是是地壳含量第二高的金属元素。
8、最能吸收气体的金属钯:常温下1体积金属钯能吸收900-2800体积的氢气。
9、展性最好的金属金:1克金可拉成4000米长的细丝;若捶成金箔,厚度可达5×10-4毫米。
10、延性最好的金属铂:最细的铂丝直径只有1/5000mm。
11、导电性最好的金属银:其导电性为汞的59倍。
12、人体中含量最高的金属元素钙:钙是人体中含量最高的金属元素,约占人体质量的1.4%。
13、排位最靠前的过渡金属钪:钪的原子序数只有21,是排位最靠前的过渡金属。
14、最贵的金属锎(kāi):1975年世界提供的锎仅约1克,1克的价格在10亿美元左右。
15、最易应用的超导元素铌:把它冷却到一263.9℃的超低温时,会变质成几乎没有电阻的超导体。
16、最重的金属锇:每立方厘米的锇重达22.59克,它的密度约为铅的2倍、铁的3倍。
17、硬度最小的金属钠:其莫氏硬度为0.4,室温下可用小刀切割。
18、硬度最高的金属铬:有“硬骨头”之称的铬(Cr)是一种银白色金属,质极硬而脆。
莫氏硬度为9,仅次于钻石。
19、最早使用的金属铜:据考证,我国最早的铜器距今已有4000余年的历史。
难熔金属熔点

难熔金属熔点
【最新版】
目录
一、难熔金属的定义与特点
二、难熔金属的分类
三、难熔金属的熔点
四、影响难熔金属熔点的因素
五、难熔金属的高熔点应用
正文
一、难熔金属的定义与特点
难熔金属,又称为高熔点金属,是指熔点在 1000 摄氏度以上的金属材料。
这类金属具有较高的熔点、良好的热稳定性、高的抗腐蚀性和耐磨性等特性,因此在工业领域具有广泛的应用。
二、难熔金属的分类
难熔金属可以分为以下几类:
1.钨、钽、镍、钴等常见难熔金属;
2.锆、铪、铌、钽等稀土难熔金属;
3.钨、钼、钽等高熔点合金。
三、难熔金属的熔点
难熔金属的熔点受多种因素影响,如晶格结构、化学键、杂质等。
不同类型的难熔金属熔点也有所不同,以下是一些常见难熔金属的熔点:
1.钨:3422 摄氏度
2.钽:3010 摄氏度
3.镍:1455 摄氏度
4.钴:1150 摄氏度
5.锆:1940 摄氏度
6.铪:1390 摄氏度
7.铌:1400 摄氏度
四、影响难熔金属熔点的因素
1.晶格结构:不同晶格结构对熔点有显著影响。
例如,钨的晶格结构为密排六方结构,其熔点较高;而钽的晶格结构为简单立方结构,其熔点相对较低。
2.化学键:金属键的强度影响熔点。
一般来说,化学键越强,熔点越高。
3.杂质:杂质的存在会影响金属的晶格结构和化学键,从而影响熔点。
五、难熔金属的高熔点应用
由于难熔金属的高熔点和优良性能,使其在航空航天、核工业、电子器件等领域具有重要应用。
难熔金属熔点

难熔金属熔点难熔金属是指具有极高的熔点以及良好的耐高温性能的金属材料。
这些金属通常在高温下具有出色的耐腐蚀性、高强度、硬度和稳定的化学性质。
下面将介绍几种常见的难熔金属及其熔点。
1. 钨(W):钨是一种具有最高熔点的金属,其熔点为3422摄氏度。
同时,钨还具有良好的耐腐蚀性、高密度、高强度和低热膨胀系数,因此广泛应用于高温环境和耐腐蚀材料的制造。
2. 铼(Re):铼是一种具有非常高熔点的金属,其熔点约为3186摄氏度。
铼具有极高的密度、高熔点和良好的耐化学性能,因此广泛应用于高温合金、光学镜片和电子元件等领域。
3. 铂(Pt):铂是一种具有较高熔点的金属,其熔点约为1768摄氏度。
铂具有极好的耐腐蚀性、高温稳定性和优秀的导电性能,被广泛应用于珠宝制造、化学催化剂、电子器件和汽车尾气处理器等领域。
4. 铱(Ir):铱是一种具有非常高熔点的金属,其熔点约为2410摄氏度。
铱具有良好的耐腐蚀性、高强度和良好的导电性能,被广泛用于高温合金、电阻材料和电触头等领域。
5. 铂钽合金(Pt-Ta alloy):铂钽合金是一种具有极高熔点的金属合金,由铂和钽两种金属组成。
铂钽合金的熔点可以达到约2600摄氏度,具有良好的耐高温性、耐腐蚀性和机械性能,广泛应用于航天、电子等高温环境中。
6. 铂锆合金(Pt-Zr alloy):铂锆合金是一种具有较高熔点的金属合金,由铂和锆两种金属组成。
其熔点约为2035摄氏度,具有高温稳定性、良好的耐蚀性和机械性能,被广泛用于高温环境下的电阻材料和电极等领域。
除了上述几种难熔金属之外,还有一些其他金属材料也具有较高的熔点,如钼(Mo,熔点2620摄氏度)、铌(Nb,熔点2468摄氏度)等。
总之,难熔金属具有熔点较高、耐高温性能好以及良好的耐腐蚀性、高强度等特点,被广泛应用于高温环境、航空航天、化学工业等领域。
这些材料的独特性能为各个领域的发展和应用提供了可靠的支持。
难熔金属元素分析

难熔金属元素分析难熔金属元素是指在常温下无法被熔化的金属元素。
这些元素通常具有高熔点、高硬度和较高的电导率。
常见的难熔金属元素包括铂、铱、钯、钌、铑等。
难熔金属元素的分析主要是通过化学分析方法来实现的。
这些分析方法包括原子吸收光谱分析、火焰光谱分析、电感耦合等离子体质谱分析等。
原子吸收光谱分析是利用难熔金属元素在特定波长的光谱线上的吸收特征来测定其含量的方法。
火焰光谱分析是利用难熔金属元素在火焰中的发光特征来测定其含量的方法。
电感耦合等离子体质谱分析是利用难熔金属元素在等离子体中的电离特征来测定其含量的方法。
还有一种常用的分析方法是电感耦合等离子体质谱分析。
这种分析方法通过在等离子体中进行电离,使难熔金属元素的原子离子化,然后利用质谱仪测定其含量。
在进行难熔金属元素分析时,需要注意样品的准备工作,包括样品的纯化、分离、浓缩等。
此外,还要注意样品的储存和保存,以及对样品的污染控制。
在分析过程中,要注意样品的分析条件,包括光谱测量的波长范围、火焰的种类和温度、等离子体的工作压力和电流等。
难熔金属元素的分析一般都是在实验室进行的,要注意安全防护措施,包括防止火灾、防止化学品泄漏和防止辐射等。
总的来说,难熔金属元素的分析是一个比较复杂的过程,需要较高的技术水平和较为精密的设备。
但是,随着科学技术的发展,难熔金属元素的分析技术也在不断提升,分析精度和效率也在不断提高。
在化学工业、冶金工业、石油工业等领域,难熔金属元素的分析具有重要的实际意义。
难熔金属元素通常具有较高的价值,分析其含量可以指导生产和加工,提高生产效率和质量。
例如,在石油工业中,难熔金属元素的分析可以帮助确定原油的品质和分析其中的添加剂;在冶金工业中,难熔金属元素的分析可以帮助判断冶炼过程中的原料质量,提高冶炼质量和效率;在化学工业中,难熔金属元素的分析可以帮助判断化工产品的质量和分析其中的原料成分。
难熔金属元素的分析也在科学研究和教育领域中得到广泛应用。
钒简介

钒为本词条添加义项名钒钒钒5基本构成四氯化钒等卤化钒类。
钒6.1应用范围应用领域占总量比例(%)主要用途使用产品钒钒6.2钒电池6.3应用优点一、电堆作为发生反应的场所与存放电解液的储罐分开,从根本上克服了传统电池的自放电现象。
功率只取决于电堆大小,容量只取决于电解液储量和浓度,设计非常灵活;当功率一定时,要增加储能容量,只需要增大电解液储罐容积或提高电解液体积或浓度即可,而不需改变电堆大小;可通过更换或添加充电状态的电解液实现“瞬间充电”的目的。
可用于建造千瓦级到百兆瓦级储能电站,适应性很强。
二、充、放电性能好,可以进行大功率的充电和放电,也可以允许浮充和深度放电。
对铅酸蓄电池来说,放电电流越大,电池的寿命越短;放电深度越深,电池的寿命也越短。
而钒电池放电深度即使达到10 0%,也不会对电池造成影响。
而且钒电池不易发生短路,这就避免了因短路而引起的爆炸等安全问题。
三、可充放电次数极大,理论上寿命是无数次。
充放电时间比为1:1,而铅酸电池是4:1。
而且钒电池充、放切换响应速度快,小于20毫秒,非常有利于均衡供电。
四、能量效率高,直流对直流能量效率可以达到80%以上,而铅酸电池只有60%左右。
钒电池组中的各个单位电池状态基本一致,维护简单方便。
五、选址自由度大,占地少,系统可全自动封闭运行,不会产生酸雾,没有酸腐蚀。
电解液可反复利用,无排放,维护简单,操作成本低。
是一种绿色环保储能技术。
因此对于可再生能源发电,钒电池是铅酸电池理想的替代品。
6.4钒电池优点与其它化学电源相比,钒电池具有明显的优越性,主要优点如下:1.功率大:通过增加单片电池的数量和电极面积,即可增加钒电池的功率,目前美国商业化示范运行的钒电池的功率已达6兆瓦。
2.容量大:通过任意增加电解液的体积,即可任意增加钒电池的电量,可达吉瓦时以上;通过提高电解液的浓度,即可成倍增加钒电池的电量。
3.效率高:由于钒电池的电极催化活性高,且正、负极活性物质分别存储在正、负极电解液储槽中,避免了正、负极活性物质的自放电消耗,钒电池的充放电能量转换效率高达7 5%以上,远高于铅酸电池的45%。
稀有金属_锂_铍_铌_钽

锂 、铍 矿 选 矿 方 法 , 有 手 选 法 、浮 选 法 、化 学 或 化学- 浮 选联合法、热 裂选 法 、放 射 性 选 法 、粒 浮 选 矿法等, 其中前 3 种方法较为常用。
手 选 法 在 五 六 十 年 代 是 国 内 外 锂 、铍 精 矿 生 产 中 的 主 要 选 矿 方 法 之 一 。 但 手 选 劳 动 强 度 大 、生 产 效率低、资源浪费大、选别指标低, 因而正在逐渐地 为机械选矿方法所代替。然而在劳动力便宜的发展 中国家里, 手选仍是生产锂铍精矿的主要方法。
的划分, 根据生产实践经验, 若矿体中锂辉石粒径> 3 cm, 矿石品位在 2%~3%以上; 绿柱石的粒径>0.5 cm,矿石品位在 0.1%~0.2%以上 , 就适于手选 , 划分 为手选矿石, 并进行手选矿物储量计算。铌钽铁矿 粒径>0.3 cm, 在开采过程中, 可附带手选。手选矿石 的尾矿具有机选价值的和不适于手选矿石的, 均属 机选矿石。 3.2 选矿
锂、铍、铌、钽制取主要有以下方法: ( 1) 锂冶金包括化合物制取和金属制取 锂 化合物的 制取, 将锂辉 石精矿(含 Li2O 6%~6.5%)和 锂 云 母 精 矿(含 Li2O 4%~5%)用 硫 酸 法 或 石 灰 法 工 艺流程处理。硫酸法可适用于锂辉石矿物原料, 石 灰法适用于锂云母矿物原料。此外, 从矿石提取锂 化 合 物 的 方 法 还 有 硫 酸 钾 法 、氯 化 焙 烧 法 和 碱 压 煮 法等。工业生 产金属锂则 采用 LiCl- KCl 熔盐电 解 法。 ( 2) 铍的制取 工业上金属铍的生产一般分 为两步: 第一步是从绿柱石中提取氧化铍, 第二步 是由氧化铍制取金属铍。氧化铍的提取有硫酸盐法 和氟化物法。金属铍的生产, 因氧化铍极难直接还 原成金属,故生产中先将氧化铍转化为卤化物, 然后 再还原成金属。有两种工艺, 即氟化铍镁还原法和 氯化铍熔盐电解法。 ( 3) 铌 的 冶 炼 包 括 分 解 精 矿 、分 离 钽 铌 、制 取 化 合 物 和 金 属 、精 炼 等 过 程 。 金 属 铌 的 工 业 生 产 方法有碳热还原法、钠热还原法和铝热还原法。 ( 4) 钽的冶炼 主要步骤是分解精矿, 净化和 分离钽、铌 , 以 制 取 钽 、铌 的 纯 化 合 物 , 最 后 制 取 金 属 。 矿 石 分 解 采 用 氢 氟 酸 分 解 法 、氢 氧 化 钠 熔 融 法 和氯化法等。钽铌分离可采用溶剂萃取法(常用的萃 取 剂 为 甲 基 异 丁 基 酮(MIBK)、磷 酸 三 丁 酯(TBP、仲 辛 醇和乙酰胺等)、分步结晶法和离子交换法。
稀有金属

主要的稀有难熔金属:包括钛、锆、铪、钒、铌、钽、钼、钨。
熔点较高,与碳、氮、硅、硼等生成的化合物熔点也较高。
一、钛钛是一种化学元素,化学符号Ti,原子序数22,是一种银白色的过渡金属,其特征为重量轻、强度高、具金属光泽,亦有良好的抗腐蚀能力(包括海水、王水及氯气)。
由于其稳定的化学性质,良好的耐高温、耐低温、抗强酸、抗强碱,以及高强度、低密度,被美誉为“太空金属”。
用途:1、钛板:A、β钛板:0.5-4.0mmB、眼镜板(纯钛):0.8-8.0mmC、标板(纯钛):1 x 2m 厚度:0.5-20mmD、电镀及其它行业用板(纯钛):0.1-50mm 用途:电子、化工、钟表、眼镜、首饰、体育用品、机械设备、电镀设备、环保设备、高尔夫球及精密加工等行业。
2、钛管:钛管规格:φ6-φ120mm 壁厚:0.3-3.0mm 钛管用途:环保设备、冷却管、钛发热管、电镀设备、戒指及各种精密电器用管等行业。
3、钛丝:A、β钛丝规格:φ0.8-φ6.0mmB、眼镜钛丝规格:φ1.0-φ6.0mm专用钛丝C、钛丝规格:φ0.2-φ8.0mm 挂具专用钛丝用途:军工、医用、体育用品、眼镜、耳环、头饰、电镀挂具、焊丝等行业。
4、钛棒:A、方棒规格:方条:8-12mmB、磨光圆棒:φ4-φ60mmC、毛棒、黑皮棒:φ6-φ120mm 钛棒用途:主要用于机械设备、电镀设备、医用、各种精密机件等行业。
二、锆锆是一种银白色的高熔点金属之一,呈浅灰色。
熔点1852±2℃,沸点4377℃。
锆的表面易形成一层氧化膜,具有光泽,故外观与钢相似。
有耐腐蚀性。
锆是一种稀有金属,具有惊人的抗腐蚀性能、极高的熔点、超高的硬度和强度等特性,被广泛用在航空航天、军工、核反应、原子能领域。
锆丝用途:等离子切割、焊接焊丝三、钒钒:元素符号 V,银白色金属。
钒的熔点很高,常与铌、钽、钨、钼并称为难熔金属。
有延展性,质坚硬,无磁性。
具有耐盐酸和硫酸的本领,并且在耐气-盐-水腐蚀的性能要比大多数不锈钢好。
钽的性质和用途

钽的性质和用途钽的性质和用途(一)钽的性质钽的熔点为2980℃,是仅次于钨、铼的第三个最难熔的金属。
纯钽略带蓝色色泽,塑性极佳,在冷状态下无需中间退火就可轧成很薄(小于0.01毫米)的板。
钽的熔点、沸点虽高,但电子逸出功比钨、钼等难熔金属为低,由于发射电子的能力弱,已在电真空技术中应用。
钽的抗蚀能力与玻璃相同,在中温(约150℃)只有氟、氢氟酸、三氧化硫(包括发烟硫酸)、强碱和某些熔盐对钽有影响。
金属钽在常温的空气中稳定,加热到高于500℃则加速氧化生成Ta205。
(二)钽的用途钽的主要冶金产品为钽粉及钽合金。
1.电容器钽粉及应用钽电解电容器是一种以钽为金属阳极通过阳极氧化在钽表面直接生成介电(在电场方向上绝缘,反向施加电压则导电)氧化膜的电子器件。
钽电容器与其他类型电容器间的最重要差别在于氧化钽介电膜的质量,氧化钽膜具有高的介电常数和击穿电压。
钽粉的纯度越高,钽电容器阳极膜的击穿电压越高。
钽粉的比表面积很高,即便在压制和烧结之后由于它特殊的孔隙结构仍然保持很高的比表面积,于是造成电容器的高比(电)容。
在低于25伏的工作电压下适用的电容器钽粉因其比电容较高,一般称作高比容钽粉,供工作电压25伏以上电容器用的钽粉有中压(35~40伏)和高压(50~63伏)钽粉。
高比容钽粉主要用钠热还原氟钽酸钾制备;高压钽粉对纯度和粉末物理性能要求较高,如对C、O和粒度的控制,必须用电子束熔炼成锭,再经氢化爆裂重新制成钽粉。
目前电容器钽粉正朝着高比容、高纯度的方向发展,国外钽粉的比容已达到40000~50000微法·伏/克;70000微法·伏/克钽粉已开始试用,个别厂家已向试制100000微法·伏/克的方向奋进。
除钽粉外,钽箔还用于箔型电容器,钽丝用作电容器阳极引线。
2000年钽电容器年产量达到250亿个,年需钽粉800吨、钽丝近150吨。
钽电容器由于它在-55~125℃的宽温度范围内电容保持稳定,而为陶瓷电容器所不及。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最难熔的金属
在各类金属中,钨是最难以熔化、最不容易挥发的金属,所以称为“高熔点金属”,它的熔点高达3380 度,沸点是5927 度。
钨的拉丁文意思是“狼嘴里的白沫”,钨怎么会同食肉动物联系在一起呢?原来,在很早以前,人们用矿石炼锡时发现,每当矿石中含有一种褐色的重石时,锡产量就会急剧下降。
原来这种重石就像狼吞食羊一样的会吞食锡。
因此,钨就被叫做“狼嘴里的白沫”。
钨在地壳中约占十万分之一。
自然界中有黑色钨锰铁矿(又叫黑钨矿)和黄灰色的钨酸钙矿(又叫白钨矿),我国钨矿储量占世界第一位。
我国的南岭,是世界上钨矿最丰富的地带,特别是江西南部,被称为“金属乡”。
江西大余和湖南柿竹园有世界最大的钨矿。
早在18世纪,人类就发现了钨,但是直到1850年才由维勒制得纯净的金属钨。
不过从此它得到了广泛的应用。
它除用于灯丝外,还用做高性能切削工具。
1864年,英国人马谢特第一次在钢中添加5%的钨,炼成一种能保持高硬度不变的合金钢。
用这种钢来做刀具,可使金属的切削速度从原来每分钟5米,增加到每分钟7.5米。
由于不断研制出含钨量不同的高速钢,使切削速度逐步提高。
经过40多年,钨钢刀把金属切削速度增加到每分钟35米,使切削能力提高了6倍。
1907年,一种以钨、铬和钴为基础的合金——“斯特利”硬质合金的研制成功,更为达到更高的切削速度创造了条件。
现代的超硬质合金,是由碳化钨和一些其他元素的碳化物,用烧结方法生产的。
它是把难熔金属(钨、钽、钛、钼等)的碳化物的硬质颗粒,跟一种或几种铁族元素(钴、镍或铁)的粉末混合后压制成型,再经烧结制成。
硬质合金是目前世界上强度最高的合金。
现在广泛使用的硬质合金主要有两大类:第一类是以钴做粘结剂的碳化钨基合金;第二类是以工具钢做粘结剂的碳化钛基合金。
用硬质合金来做刀具,它的硬度即使在1000度的高温下也不会降低。
因此,可以进行高速切削加工,切削速度每分钟达到2000米以上,比普通碳素钢刀具高出100 多倍,比钨钢刀具也高15倍。
用它制成的模具,可以冲压300多万次,比普通合金钢模具耐用60倍。