木糖葡萄球菌与金黄色葡萄球菌、表面葡萄球菌的基因组比较(阐述毒力、侵染性,样本是健康人的鼻腔)副本

合集下载

病原微生物第三章 常见病原性细菌的整理笔记

病原微生物第三章 常见病原性细菌的整理笔记

病原微生物第三章常见病原性细菌的整理笔记球菌:球菌是细菌中的一大类,根据革兰染色可分为G+和G-两类,对人致病的球菌主要有葡萄球菌、链球菌及淋球菌,此类球菌能引起化脓性炎症,所以又称为化脓性球菌。

葡萄球菌:生物学性状:1、形态与染色:典型的葡萄球菌呈球形,直径0、4-1、2Hm,通过染色,在显微镜下可看到葡萄串样的排列。

革兰染色阳性,无鞭毛和芽孢。

2、培养特性:营养要求不高,在普通培养基上生长良好,需氧或兼性厌氧,最适生长温度37摄氏度,最适ph为7、4左右。

3、分类:金黄色葡萄球菌(产金黄色色素,致病性较强);表皮葡萄球菌(产生白色或柠檬色色素)。

4、抵抗力:葡萄球菌的抵抗力較强;致病性:金黄色葡萄球菌可通过伤口、裂口以及消化道而感染,其产生的毒素和酶主要有血浆凝固酶、溶血毒素、肠毒素和杀白细胞等,所致疾病有:化脓性感染;食物中毒;假膜性肠炎防治原则:加强卫生宣传教育:注意个人卫生:及时处理伤口,避免感染。

链球菌:化脓性球菌中的另一大类细菌,此类细菌种类多,型别复杂,广布于自然界和人与动物的咽腔、胃肠道等部位。

生物学性状:1、形态与染色:显微镜下观察到呈球型或卵圆形,链状排列;革兰染色阳性。

菌体无芽孢和鞭毛,有的可以形成由透明质酸组成的荚膜;2、培养特性:营养要求较高,需要在含有血清、血液的培养基上生长。

生长温度37摄氏度,最适ph为7、4左右3、分类(根据溶血能力和溶象)分为三类:甲型溶血性链球菌:乙型溶血性链球菌;丙型链球菌:4、抵抗力:抵抗力不强,60 摄氏度30min可杀死,对消毒剂敏感。

致病性:致病性链球菌课通过直接接触、飞沫吸入或皮肤、黏膜等伤口侵入机体,产生多种毒素和侵袭性酶,所致疾病有:化脓性感染:猩红热;链球菌性变态反应疾病。

防治原则:注意环境卫生,对病人和带菌者及早治疗,减少传染源。

淋病奈瑟球菌:简称淋球菌,是我国目前发病人数最多的性传播性疾病(STD, 性病) 淋病的病原体。

葡萄球菌分类依据

葡萄球菌分类依据

葡萄球菌分类依据
葡萄球菌是一类常见的细菌,其分类依据主要基于形态特征、生理特性以及分子生物学特征。

以下是葡萄球菌分类的依据:
1. 形态特征:葡萄球菌是革兰氏阳性菌,具有球形细胞形态。

它们通常以团簇形式聚集在一起,形成象葡萄一样的结构。

此外,葡萄球菌通常没有生殖孢子。

2. 生理特性:葡萄球菌是好氧菌,能在氧气存在下进行呼吸作用。

它们能够发酵葡萄糖产生乳酸,使培养基酸化。

此外,葡萄球菌产生酶可以分解胆固醇。

3. 分子生物学特征:葡萄球菌的分子生物学特征广泛研究,常用的分类依据是16S rRNA基因序列分析。

该基因可以提供葡萄球菌的遗传信息,不同葡萄球菌株之间的16S rRNA序列差异可用于分类和进化研究。

根据以上依据,葡萄球菌被分为多个物种,其中最常见的是金黄色葡萄球菌(Staphylococcus aureus)。

金黄色葡萄球菌具有黄色色素的产生能力,生产毒素可以导致各种感染。

此外,还有表皮葡萄球菌(Staphylococcus epidermidis)等其他物种。

这种细菌被广泛存在于人体皮肤和黏膜表面,有时会引起感染。

葡萄球菌的分类依据对于病原性判断、防控等方面具有重要意义。

医学微生物学课件葡萄球菌

医学微生物学课件葡萄球菌

严格执行手卫生制度,勤洗手、戴手套,避 免接触感染源。
防护措施
疫苗接种
在实验操作、医疗护理等过程中,采取严格 的防护措施,如穿戴隔离衣、戴口罩等。
针对高发人群接种相关疫苗,提高免疫保护 水平。
控制策略
监测与报告
建立有效的监测和报告机制,及时发现并 上报疑似病例。
环境消毒
对相关场所进行彻底消毒,消除传染源。
人工选择
抗生素滥用和过度使用会加速细菌耐药性的产 生,医院和医生需合理使用抗生素,避免过度 使用。
交叉耐药
一种细菌对一种抗生素产生耐药性后,可能会 对同一类的其他抗生素也产生耐药性。
抗菌治疗原则
早期治疗
01
在感染症状初现时,应尽早开始抗菌治疗,以提高疗效并减少
耐药性的产生。
足量足疗程
02
抗菌治疗需要使用足够的抗生素剂量,并持续足够的治疗时间
万古霉素、替考拉宁等糖肽类抗生素,可用 于治疗耐甲氧西林金黄色葡萄球菌感染。
04
检测与诊断
检测方法
直接涂片检查
通过显微镜直接观察微生物,简单易行,但阳性 检出率低。
分离培养
将样本接种于葡萄球菌特异性的培养基上,通过 培养观察微生物的生长情况,阳性检出率高。
血清学检测
检测血清中的特异性抗体,用于诊断和流行病学 调查。
生物学特性
为需氧或兼性厌氧革兰氏阳性球菌。
大多数菌株在血平板上生长迅速,可形成圆形凸起、 湿润、光滑的菌落。
无芽胞、无鞭毛、不产生色素。
根据凝固酶产生与否,可将葡萄球菌分为凝固酶阳性 和凝固酶阴性两大类。
分类和鉴别
01
根据生化反应和产生凝固酶的能力,可将葡萄球菌分为凝固酶阳性和凝固酶阴 性两大类。

金黄色葡萄球菌

金黄色葡萄球菌

Part 2
致病性
致病性
1
金黄色葡萄球菌是一种常见的病原体, 可以引起多种人类和动物疾病
其中,食物中毒是最常见的疾病之一, 通常是由于摄入被金黄色葡萄球菌污
染的食物引起的
2
3
此外,金黄色葡萄球菌还可以引起皮 肤感染、呼吸道感染、泌尿道感染、
败血症等疾病
Part 3
传播途径
传播途径
金黄色葡萄球菌可以 通过多种途径传播, 包括空气传播、直接 接触传播、食物传播
x
然而,由于金黄色葡萄球菌 具有抗药性,一些抗生素可 能无法有效治疗该细菌
同时,对于严重感染的患者, 可能需要采用综合治疗措施, 包括手术治疗、支持治疗等
Part 6
预防措施
预防措施
为了预防金黄色葡萄球菌感 染,可以采取以下措施
加强个人卫生 勤洗手、洗脸、刷牙 等个人卫生习惯可以
减少细菌的传播

Part 1
生物学特性
生物学特性
它可以在各种环境条件下生长, 包括高温、低温、高盐度、低 pH值等
金黄色葡萄球菌是一种需氧型 细菌,具有高度的适应性和生 存能力 金黄色葡萄球菌具有多种毒力 因子,如溶血素、肠毒素、细 胞毒素等,这些毒力因子可以 破坏细胞、诱导炎症反应和免 疫应答,从而引起各种疾病
思到最后定稿的各个环节给予细心指引与教导,使我得以最终完成毕业论文设计! 最后,我要向百忙之中抽时间对本文进行审阅,评议和参与本人论文答辩的各位
老师表示感谢!
恳请各位老师批评指正!
避免接触污染源 避免接触被金黄色 葡萄球菌污染的水
源、食物等
生 加强对食品的卫生管理,
避免食品被污染
增强免疫力 加强锻炼、保持健康的 生活方式可以提高免疫 力,减少感染的风险

木糖葡萄球菌课件

木糖葡萄球菌课件

三、微生物特征
直径小于2μm的革兰阳性球菌,呈链状排 列,无芽胞和动力,形成荚膜。肺炎链球菌 呈矛尖状,宽端相对尖端向外。
兼性厌氧菌,肺炎链球菌和草绿色链球菌 某些菌种需要CO2:促进其生长。营养要求 高,须在培养基中加入血液、血清。最适生 长温度35~37℃,pH7.4~7.6,血平板上形 成灰白色,透明表面光滑的小菌落,环绕菌 落形成α、β、γ三种特征性溶血现象,液 体培养形成絮状和颗粒沉淀。
三、微生物特性
直径0.5~1.5μm、革兰阳性球菌, 排列呈葡萄串样,无鞭毛和芽胞。 能形成荚膜。
兼性厌氧菌,营养要求不高,最适生长温 度35℃~37℃,最适 pH7.4~7.6。普通培 养基上形成2~3mm呈金黄色、白色、柠檬 色等不透明圆形凸起菌落,血琼脂平板上 有透明溶血环。能在10%~15%NaCl琼脂 中生长,接种于高盐琼脂平板上,有利于 菌种检出。
C组(对A组耐受、过敏或无反应者) 用环丙沙星、庆大霉素、氯霉素; U组(尿道中分离细菌)用诺氟沙星、 呋喃妥因。
耐甲氧西林葡萄球菌
通过药敏试验可筛选出耐甲氧西林葡萄球菌 (methecillin resistant Staphylococcus, MRS),它是携带mec A基因、编码低亲和力 青霉素结合蛋白导致耐甲氧西林、所有头孢 菌素、碳青霉烯类、青霉素类+青霉素酶抑 制剂抗生素的葡萄球菌,该菌是医院内感染 的重要病原菌,感染多发生于免疫缺陷患者、 老弱患者及手术、烧伤后的患者、极易导致 感染暴发流行,治疗困难、病死率高。
链球菌属鉴定方法
1. β-溶血链球菌鉴定 (1) Lancefield群特异性抗原鉴定:B群 为无乳链球菌,F群为米勒链球菌。 (2) PYR试验:化脓性链球菌产生的吡 咯烷酮芳基酰胺酶水解吡咯烷酮B萘基酰胺,加入 N、N-二甲氧基肉 桂醛试剂后产生桃红色。

葡萄球菌(医学)

葡萄球菌(医学)

葡萄球菌耐药性的传播与流行
传播方式
葡萄球菌耐药性的传播主要通过基因突变和质粒传递实现。基因突变可导致葡萄球菌固有耐药性的产生,而质 粒传递则可导致获得性耐药性的传播。
流行趋势
在全球范围内,葡萄球菌的耐药性问题日益严重,耐甲氧西林金黄色葡萄球菌(MRSA)等高度耐药菌株的流 行给临床抗感染治疗带来了巨大挑战。
04
葡萄球菌的检测与鉴定
葡萄球菌的分离与培养
样品采集
采集疑似感染病人的体液、分 泌物、组织等样本。
分离培养基
使用选择性培养基,如脑心浸液 血琼脂平板,将葡萄球菌从其他 杂菌中分离出来。
培养条件
在35℃~37℃的环境下培养24~48 小时,观察菌落的形态、颜色、大 小等特征。
葡萄球菌的生化鉴定
氧化酶试验触葡萄球菌感染者或疑 似感染者,特别是在疫情期间要做 好个人防护。
接种疫苗
对于易感人群,如儿童、老年人或 慢性病患者,可以考虑接种疫苗以 预防葡萄球菌感染。
感谢您的观看
THANKS
葡萄球菌(医学)
2023-10-28
目 录
• 葡萄球菌简介 • 葡萄球菌感染与疾病 • 葡萄球菌的耐药性 • 葡萄球菌的检测与鉴定 • 葡萄球菌的治疗与防控
01
葡萄球菌简介
葡萄球菌的分类与分布
分类
葡萄球菌属主要包括金黄色葡萄球菌、表皮葡萄球菌和腐生葡萄球菌等。
分布
葡萄球菌广泛分布于自然环境及人类皮肤、黏膜,是常见的病原菌之一。
02
葡萄球菌感染与疾病
葡萄球菌感染的症状与体征
皮肤感染
皮肤感染部位可出现红肿、疼痛、瘙痒及 脓疱等。
胃肠道感染
可导致呕吐、腹痛、腹泻等。
呼吸道感染

微生物之葡萄球菌

微生物之葡萄球菌

文献中金葡菌常用鉴定靶基因
基因名
coa[2,4,9,11,29,37,38] √ Nuc[3,5-9,15,19,20,22,2531,34,105] √ 23S[9,10,21,29,33,36] √ Sa442[11,12,13,14,18]
生理功能
凝固酶 耐热核酸酶 核糖体 RNA亚基 unknow
100% 100%
100% 100% 100%
104 cfu/mL[16] N*104 cfu/mL[17]
unknow 103 cfu/mL unknow
表格中划“√”的表明已做,“?”表明在NCBI上找不到序列,没
其他葡萄球菌鉴定基因
靶微生物
S. xylosus S. xylosus
基因名
Hsp60[39] xylB[39]?
499 1318
Staur4[4] Staur6
ACGGAGTTACAAAGGACGAC AGCTCAGCCTTAACGAGTAC
1306
金葡femA序列比对
选取57条金葡femA序列进行比对
femA进化树
文献中femA引物
Primer name
Sequence(5→3)
Targeting microbe
生理功能
热休克蛋白 木酮糖激酶
特异性
假阳性 100%
敏感性
Unknow unknow
S.saprophyticus
S.saprophyticus S. lugdunensis S. epidermidis S. hominis S. haemolyticus S. Haemolyticus S. Epidermidis S。hominis

医学微生物学课件葡萄球菌

医学微生物学课件葡萄球菌

2
营养要求不高,耐高盐,可在各种环境生存繁 殖。
3
肽聚糖为细胞壁的骨架,细胞膜富含磷脂,含 脂酶。
分类与命名
分类
根据生化反应和产生毒素的特点分为3种:凝固酶阴性葡萄球 菌、凝固酶阳性葡萄球菌、甘露醇阴性葡萄球菌。
命名
根据产生凝固酶的有无分为:产酶和不产酶两类;根据产生 毒素的特点分为:凝固酶阳性葡萄球菌和凝固酶阴性葡萄球 菌两个亚群。
预防措施
加强食品卫生监管,对食品生产 过程中的各个环节进行严格把关 ,以减少葡萄球菌引起的食物中 毒事件的发生。
生物恐怖主义
潜在的生物恐怖主义威胁
葡萄球菌作为一种常见的病原菌,也被一些恐怖分子视为潜在的生物恐怖主义武器,对其 进行研究和防范具有重要意义。
生物安全措施
针对葡萄球菌等病原菌的研究和实验,应采取严格的生物安全措施,确保这些病菌不被恶 意使用。
β-内酰胺类抗生素的耐药性
产生β-内酰胺酶
葡萄球菌通过产生β-内酰胺酶,能够分解β-内酰胺类抗生素, 使其失去抗菌活性。
靶位改变
葡萄球菌通过改变抗生素作用的靶位,使其无法与抗生素结合 ,从而逃避抗菌作用。
细胞膜渗透性降低
葡萄球菌通过改变细胞膜的通透性,减少抗生素进入细胞内的 机会,降低抗菌效果。
氨基糖苷类抗生素的耐药性
致病物质
感染表现
腐生葡萄球菌的致病物质主要包括凝固酶、 透明质酸酶等。
腐生葡萄球菌引起的感染可表现为尿路感染 等。
THANKS
谢谢您的观看
疫苗与防治措施
目前尚无针对葡萄球菌的特异性疫苗,因此,加强预防和控制措施的研究与开发,是防范 葡萄球菌等病原菌被用于生物恐怖主义的关键。
03
葡萄球菌的检测与鉴定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LETTER TO THE EDITORGenome of Staphylococcus xylosus and Comparison with S.aureusand S.epidermidisStaphylococci are Gram-positive,AT-rich cocci,and often stick together in grape-like clusters.The genus can be classi-fied into two groups based on their ability to produce coagu-lase,an enzyme that causes clotting of blood plasma (Otto,2004).Coagulase-positive Staphylococci include Staphylo-coccus aureus ,a common pathogen of community-acquired and nosocomial infections (Smith et al.,2009).Their inva-siveness is associated with the ability to adhere to host sur-faces (Vuong et al.,2003).Among coagulase-negative Staphylococci (CNS),S.epidermidis is the most frequently found pathogen in humans,and is also a common cause of nosocomial infections (Nostro et al.,2007;Wang et al.,2009).S.epidermidis is believed to account for most of the infections caused by CNS and is highly resistant to many antibiotics including penicillins and cephalosporins (Al-Shuneigat et al.,2005).S.xylosus is also a CNS.It is naturally present in raw meat and milk and is commonly used in starter culture for fermentation (Planchon et al.,2006,2007).This species is normally regarded as non-pathogenic,but a few strains are related to human opportunistic infections (Akhaddar et al.,2010).In addition,some S.xylosus strains have the ability to form biofilm (Planchon et al.,2006).Bacterial virulence genes can be regulated by diffusible signal molecules termed autoinducers (AIs).Because the control of gene expression by AIs is cell-density dependent,this phenomenon has been called quorum sensing (Brelles-Marino and Bedmar,2001;Antunes et al.,2010).In Staphy-lococci,there are two quorum sensing systems,P2and P3.Their regulatory mechanism was described earlier by Liu et al.(2012).Other regulatory genes and virulence factors shared by S.epidermidis and S.aureus have also been reported (Frebourg et al.,2000;Gelosia et al.,2001).However,it is still not clear whether these virulence related genes are also present in non-pathogenic S.xylosus genome.In this study,we isolated S.xylosus NJ from a nasal sample of a healthy person at Jiangsu People’s Hospital in China and determined its genome sequence using whole-genome shotgun sequencing strategy with a Hiseq2000(Illumina,CA,USA)sequencer.The project generated a total of w 2739Mbsequences and w 927folds coverage of the genome.The draft genome data were assembled using the Velvet assembly pro-gram.The assembly generated 45contigs with a size of >200bp,22of which were longer than 500bp with the N 50length of 396,400bp.These 45contigs were deposited in GenBank and annotated using Rapid Annotation using Sub-system Technology (RAST)server.In addition,96tandem repeat sequences were found in these contigs.The draft genome contained a chromosome of 2,940,053bp with a 32.40%G þC content.The general features are listed in Table 1.There are 6predicted rRNA genes and 22tRNA genes,and 83.64%nucleotides are predicted to encode proteins.By a combination of coding potential prediction and homology search,2783coding DNA sequences (CDSs)with an average length of 884bp were identified on the draft genome (Table 1).The 2199CDSs annotated by specific Clusters of Orthologous Groups (COG)function groups can be classified into 21COG categories,and 2456CDSs can be annotated into 1221KEGG orthology by KAAS (Moriya et al.,2007).The organization of the genome of S.xylosus NJ was shown in a circular map in Fig.1A.In addition,phylogenetic dendrogram based on a comparison of 16S rRNA sequences for S.xylosus NJ with members of the Staphylococcus was shown in Fig.S1.There is another S.xylosus draft genome,S.xylosus DMB3-Bh1,in GenBank.Therefore,we compared S.xylosus NJ with S.xylosus DMB3-Bh1using BLAST (version 2.2.26).The result showed that there are 2319CDSs in S.xylosus DMB3-Bh1(89.30%)similar to S.xylosus NJ (Fig.S2).The metabolic network of S.xylosus NJ was constructed using the RAST server with the 411subsystems identified in the genome.There are many carbohydrate subsystem features,including genes involved in organic acids,fermentation,sugar alcohols,di-and oligo-saccharides,central carbohydrates,monosaccharides,and one-carbon metabolisms.Many protein metabolism features are also present,including protein biosynthesis machinery such as the small subunit (SSU)and large subunit (LSU)of the bacterial ribosome.Moreover,we prepared the comparative analysis of this genome with other staphylococcal genomes (S.aureus subsp.aureus N315(S.Available online at ScienceDirectJournal of Genetics and Genomics 41(2014)413e 416JGG1673-8527/$-see front matter Copyright Ó2014,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,and Genetics Society of China.Published by Elsevier Limited and Science Press.All rights reserved./10.1016/j.jgg.2014.03.007aureus N315)and S.epidermidis ATCC12228).The results showed that there are 404subsystems for S.aureus N315genome and 381subsystems for S.epidermidis ATCC12228genome.A comparative metabolic network analysis showed that D-galacturonate and D-glucuronate utilization subsystem is only present in S.xylosus NJ genome.However,serine-glyoxylate cycle subsystem is absent in S.aureus N315genome.A more detailed comparative analysis of this genome with these two staphylococcal genomes is summarized in Table S1.The genomic organization of S.xylosus NJ was compared with those of S.aureus N315and S.epidermidis ATCC12228(Table 1).There are 1502CDSs (55.20%)in S.xylosus NJ similar to those in S.aureus N315and 1446CDSs (53.14%)similar to those in S.epidermidis ATCC12228.The number of shared genes among S.xylosus NJ,S.aureus N315,and S.epidermidis ATCC12228was shown in Fig.1B.Over 92%of homologous genes were assigned to COG function groups (Fig.S3).In addition,the larger amount of unique proteins is present for S.xylosus NJ with 1145proteins.Meanwhile,unique genes of three strains were assigned to COG function group.The result showed that the numbers of genes related to energy production and conversion,carbohydrate transport and metabolism,and general function in S.xylosus NJ genome are considerably more than other strains (Fig.S4).Compared to S.aureus N315and S.epidermidis ATCC12228genomes,S.xylosus NJ genome possesses some significant differences,such as virulence and defense ability,cell wall and capsule constitution,phages,prophages,trans-posable elements and plasmids,and cell regulation and signaling.In virulence and defense category,adhesins have previously been reported as virulence factors by promoting the accumu-lation phase of biofilm (Corrigan et al.,2007;Kim et al.,2010).In consistent with the non-pathogenic property,no adhesin was detected in S.xylosus NJ.In contrast,six adhesins were present in S.epidermidi s ATCC12228and 22in S.aureus N315(Table S2).Another important gene family,staphylococcal enterotoxins (SEs)encodes powerfulsuperantigens that stimulate non-specific T-cell proliferation (Balaban and Rasooly,2000).However,there was no gene associated with SEs in S.xylosus NJ genome.S.aureus pro-duce a -hemolysin,g -hemolysin,and leukocidin toxins,which function as two component toxins in the disruption and lysis of erythrocytes and leukocytes (Gouaux et al.,1997).Compared with S.aureus N315,there was no gene in the subcategory of toxins and superantigens in S.xylosus NJ.However,S.xylosusTable 1Chromosome features of S.xylosus NJ,S.aureus N315,and S.epidermidis ATCC12228S.xylosus S.aureus S.epidermidisFig.1.The genomic organization of S.xylosus NJ and the comparison with other Staphylococcus .A:Circular representation of the S.xylosus NJ chromosome.GC-skew:sliding window size of 10kb and calculating (G ÀC)/(G þC)in 500bp steps.Circles from outside to inside:1,contigs were arrange in clockwise direction from large to small;2,CDS on forward strand;3,CDS on reverse strand;4,tRNA genes;5,rRNA genes;6,GC-skew (window size of 10kb);and 7,purple indicates C content and yellow indicates G content (step size 500bp).B:Venn diagram for the deduced proteins in S.xylosus NJ,S.aureus N315and S.epidermidis ATCC12228.The total number of all deduced proteins for these three species is 7781.The number of proteins per each chromosome is given.Values were identified by BLASTCLUST (version 2.2.26)using an identity of >60%,an alignment coverage of >70%and an e -value of 1e-6as cut-off.The number of clusters represents the non-redundant protein coding genes for intersection.The overlapping sections indicate shared numbers of proteins.414Letter to the Editor /Journal of Genetics and Genomics 41(2014)413e 416NJ carried fewer antibiotic-resistance genes.For instance, teicoplanin andfluoroquinolones resistance genes were pre-sent in S.xylosus NJ.Meanwhile,multidrug-resistance efflux pumps were also present in S.xylosus NJ,which supports a previous observation made by Piddock(2006)that multidrug-resistance efflux pumps have roles not only for resistance to antibiotics,but also in bacterial pathogenicity.However, methicillin resistance genes were not found in S.xylosus NJ.In cell wall and capsule category,sialic acid is a bioavail-able carbon and nitrogen source that is abundant on mucosal surfaces and in secretions in the commensal environment (Olson et al.,2013).It has been shown by Almagro-Moreno and Boyd(2009)that several pathogens,including S.aureus N315,could utilize sialic acid as a carbon source,which in turn establish a competitive advantage in heavily sialylated environments such as the human gut.Our data indicate that S. xylosus NJ,but not S.epidermidis ATCC12228,contains genes associated with sialic acid metabolism(Table S3).Most Staphylococci produce types5and8microcapsules,which account for75%of human infections(Lowy,1998).Types5 and8cap genes were not found in S.xylosus NJ(Table S3).In category of phages,prophages,transposable elements and plasmids,Tn552is not detected in the genome of S.xylosus NJ. The staphylococcal pathogenicity islands(SaPIs)encoded one or more staphylococcal superantigens.We identified17path-ogenicity islands in S.aureus N315.However,no one was detected in S.xylosus NJ(Table S4).Interestingly,in contrast to S.aureus N315and S.epidermidis ATCC12228,ten copies related to phages and prophages were detected in S.xylosus NJ.In category of cell regulation and signaling,S.xylosus NJ showed significant differences in biofilm formation and staph-ylococcal accessory gene regulator systems compared to S. aureus N315and S.epidermidis ATCC12228.Besides adhesins absence in S.xylosus NJ,entire ica genes involved in biofilm formation were not found.Although a few biofilm-positive strains do not produce detectable polysaccharide intercellular adhesin(PIA),the mechanism was not due to the absence of the ica operon,but was a result of reduced transcription or trans-lation of ica genes(Zhang et al.,2003).In addition,S.epi-dermidis ATCC12228is non-biofilm-forming strain due to lack of ica operon(Zhang et al.,2003).So,we speculated that S. xylosus NJ may not form biofilm.However,staphylococcal accessory regulator A(SarA),biofunctional autolysin Atl,and RNA polymerase sigma factor SigB were present in S.xylosus NJ(Table S5).Therefore,we speculated that the function of these genes may be not for biofilm formation,but for others such as virulence factor production.In staphylococcal acces-sory gene regulator system,there were13genes in S.aureus N315and8in S.epidermidis ATCC12228,but none in S. xylosus NJ(Table S5).This may explain the great difference among these strains in virulence.One of the important factors contributing to staphylococcal toxin is their peptide-based quorum sensing system,encoded by the accessory gene regu-lator(agr)locus(Balaban et al.,2004;Kiran et al.,2008; Antunes et al.,2010).The agr locus(agr ABCD)and related genes were not detected in S.xylosus NJ.The comparative genomic analysis suggests that S.xylosus NJ may be less virulent.In addition,we found that ElaA protein and prophage Clp protease-like protein were only present in S.xylosus NJ.In summary,the comparative genomic analysis of S.xylo-sus NJ with S.aureus N315and S.epidermidis ATCC12228 showed great difference on genome composition within this genus.Particularly,ica operon and agr operon were absent in S.xylosus NJ.Here,we described the genome analysis of S. xylosus NJ to provide a new genome for Staphylococcus genome database.In addition,we analyzed genes in S.xylosus NJ different from those in S.aureus N315and S.epidermidis ATCC12228.Their differences mainly exist in genes associ-ated with virulence and pathogenicity,such as adhesins, superantigens,resistance to antibiotics,capsular poly-saccharide synthesis enzymes,pathogenicity islands,quorum sensing and biofilm formation.This study can help reveal how commensal S.xylosus strains evolved into invasive strains. ACKNOWLEDGMENTSThis work was supported by the grants from the National Natural Science Foundation of China(Nos.81301475, 31170131and31070312)and Jiangsu Qinglan Project,and the Shaoxing Major Scientific and Technological Projects(No. 2011A11013).SUPPLEMENTARY DATASupplementary data related to this article can be found at /10.1016/j.jgg.2014.03.007Xiaojuan Tan a,1,Lin Liu b,c,1,Shili Liu d,Dongting Yang a, Yikun Liu c,Shuang Yang c,Aiqun Jia a,*,Nan Qin b,* a School of Environmental and Biological Engineering,Nanjing University ofScience and Technology,Nanjing210094,Chinab State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital,Zhejiang University,Hangzhou310003,Chinac NGS Sequencing Department,Beijing Genomics Institute(BGI),Shenzhen518083,China d Institute of Pathogen Microbiology,School of Medicine,Shandong University,Jinan250012,China*Corresponding authors.Tel/fax:þ86057187236421. E-mail addresses:nqin@(N.Qin);jiaaiqun@(A.Jia)1These authors contributed equally to this work.Received24January2014Revised21March2014Accepted25March2014Available online12April2014 REFERENCESAkhaddar,A.,Elouennass,M.,Naama,O.,Boucetta,M.,2010.Staphylo-coccus xylosus isolated from an otogenic brain abscess in an adolescent.Surg.Infect.(Larchmt)11,559e561.Almagro-Moreno,S.,Boyd,E.F.,2009.Insights into the evolution of sialic acid catabolism among bacteria.BMC Evol.Biol.9,118.415Letter to the Editor/Journal of Genetics and Genomics41(2014)413e416Al-Shuneigat,J.,Cox,S.D.,Markham,J.L.,2005.Effects of a topical essential oil-containing formulation on biofilm-forming coagulase-negative staph-ylococci.Lett.Appl.Microbiol.41,52e55.Antunes,L.C.,Ferreira,R.B.,Buckner,M.M.,Finlay,B.B.,2010.Quorum sensing in bacterial virulence.Microbiology156,2271e2282. Balaban,N.,Gov,Y.,Giacometti, A.,Cirioni,O.,Ghiselli,R., Mocchegiani,F.,Orlando,F.,D’Amato,G.,Saba,V.,Scalise,G.,Saba,V., Scalise,G.,Bernes,S.,Mor,A.,2004.A chimeric peptide composed of a dermaseptin derivative and an RNA III-inhibiting peptide prevents graft-associated infections by antibiotic-resistant staphylococci.Antimicrob.Agents Chemother.48,2544e2550.Balaban,N.,Rasooly,A.,2000.Staphylococcal enterotoxins.Int.J.Food Microbiol.61,1e10.Brelles-Marino,G.,Bedmar,E.J.,2001.Detection,purification and charac-terisation of quorum-sensing signal molecules in plant-associated bacteria.J.Biotechnol.91,197e209.Corrigan,R.M.,Rigby, D.,Handley,P.,Foster,T.J.,2007.The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation.Microbiology153,2435e2446.Frebourg,N.B.,Lefebvre,S.,Baert,S.,Lemeland,J.F.,2000.PCR-Based assay for discrimination between invasive and contaminating Staphylo-coccus epidermidis strains.J.Clin.Microbiol.38,877e880.Gelosia,A.,Baldassarri,L.,Deighton,M.,van Nguyen,T.,2001.Phenotypic and genotypic markers of Staphylococcus epidermidis virulence.Clin.Microbiol.Infect.7,193e199.Gouaux, E.,Hobaugh,M.,Song,L.,1997.alpha-hemolysin,gamma-hemolysin,and leukocidin from Staphylococcus aureus:distant in sequence but similar in structure.Protein Sci.6,2631e2635.Kim,H.K.,Cheng,A.G.,Kim,H.Y.,Missiakas,D.M.,Schneewind,O.,2010.Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice.J.Exp.Med.207,1863e1870.Kiran,M.D.,Adikesavan,N.V.,Cirioni,O.,Giacometti,A.,Silvestri,C., Scalise,G.,Ghiselli,R.,Saba,V.,Orlando,F.,Shoham,M.,Balaban,N., 2008.Discovery of a quorum-sensing inhibitor of drug-resistant staphy-lococcal infections by structure-based virtual screening.Mol.Pharmacol.73,1578e1586.Liu,L.,Tan,X.,Jia,A.,2012.Relationship between bacterial quorum sensing and biofilm formation e a review.Acta Microbiologica Sinica52,271e278 (in Chinese with an English abstract).Lowy,F.D.,1998.Staphylococcus aureus infections.N.Engl.J.Med.339, 520e532.Moriya,Y.,Itoh,M.,Okuda,S.,Yoshizawa,A.C.,Kanehisa,M.,2007.KAAS: an automatic genome annotation and pathway reconstruction server.Nucleic Acids Res.35,182e185.Nostro, A.,Sudano,R.A.,Bisignano,G.,Marino, A.,Cannatelli,M.A., Pizzimenti,F.C.,Cioni,P.L.,Procopio,F.,Blanco,A.R.,2007.Effects of oregano,carvacrol and thymol on Staphylococcus aureus and Staphylo-coccus epidermidis biofilms.J.Med.Microbiol.56,519e523.Olson,M.E.,King,J.M.,Yahr,T.L.,Horswill,A.R.,2013.Sialic acid catab-olism in Staphylococcus aureus.J.Bacteriol.195,1779e1788.Otto,M.,2004.Virulence factors of the coagulase-negative staphylococci.Front.Biosci.9,841e863.Piddock,L.J.,2006.Multidrug-resistance efflux pumps-not just for resis-tance.Nat.Rev.Microbiol.4,629e636.Planchon,S.,Gaillard-Martinie, B.,Dordet-Frisoni, E.,Bellon-Fontaine,M.N.,Leroy,S.,Labadie,J.,He´braud,M.,Talon,R.,2006.Formation of biofilm by Staphylococcus xylosus.Int.J.Food Microbiol.109,88e96.Planchon,S.,Chambon,C.,Desvaux,M.,Chafsey,I.,Leroy,S.,Talon,R., He´braud,M.,2007.Proteomic analysis of cell envelope from Staphylo-coccus xylosus C2a,a coagulase-negative staphylococcus.J.Proteome Res.6,3566e3580.Smith,K.,Perez,A.,Ramage,G.,Gemmell,C.G.,Lang,S.,parison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin,linezolid,tigecycline and vancomycin.Int.J.Antimicrob.Agents33,374e378.Vuong, C.,Gerke, C.,Somerville,G.A.,Fischer, E.R.,Otto,M.,2003.Quorum-sensing control of biofilm factors in Staphylococcus epidermidis.J.Infect.Dis.188,706e718.Wang,X.,Yao,X.,Zhu,Z.,Tang,T.,Dai,K.,Sadovskaya,I.,Flahaut,S., Jabbouri,S.,2009.Effect of berberine on Staphylococcus epidermidis biofilm formation.Int.J.Antimicrob.Agents34,60e66.Zhang,Y.Q.,Ren,S.X.,Li,H.L.,Wang,Y.X.,Fu,G.,Yang,J.,Qin,Z.Q., Miao,Y.G.,Wang,W.Y.,Chen,R.S.,Shen,Y.,Chen,Z.,Yuan,Z.H., Zhao,G.P.,Qu,D.,Danchin,A.,Wen,Y.M.,2003.Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain(ATCC12228).Mol.Microbiol.49,1577e1593.416Letter to the Editor/Journal of Genetics and Genomics41(2014)413e416。

相关文档
最新文档