人教版六年级数学下册鸽巢问题例3课件
合集下载
人教版六年级数学下册《鸽巢问题》ppt课件

5 ÷ 4= 1(只) ······1 (只)
1﹢1= 2(只)
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第一种情况:
第二种情况:
精选ppt课件
35
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有
2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1,
就能精保选证pp有t课两件个球同色。
不管怎么放,总有
一个文具盒里至少
0
0
0 放进2枝铅笔。
0
不管怎么放总有一个文具盒里 至少有2枝铅笔。
请同学们把4分解成三个数,共有 几种情况?
(4,0,0)、(3,1,0) (2,2,0)、(2,1,1) 每一种结果的三个数中, 至少有一个数不小于2。
分解法
可以假设先在每个文具盒中放1枝铅笔, 最多放3枝。剩下的1枝还要放进其中 的一个文具盒。所以至少有2枝铅笔放 进同一个文具盒。也就是先平均分, 然后把剩下的1枝,不管放在哪个盒子 里,一定会出现总有一个文具盒里至 少有2枝铅笔。
例1:把4枝铅笔放进3个文具盒中,不管
怎么放,总有一个文具盒里至少有2枝铅笔。 为什么呢?怎样解释这种现象?
小组合作:拿出4枝铅笔和 3个文具盒,把这4枝笔放 进这3个文具盒中摆一摆, 放一放,看有几种情况?
1﹢1= 2(只)
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第一种情况:
第二种情况:
精选ppt课件
35
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有
2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1,
就能精保选证pp有t课两件个球同色。
不管怎么放,总有
一个文具盒里至少
0
0
0 放进2枝铅笔。
0
不管怎么放总有一个文具盒里 至少有2枝铅笔。
请同学们把4分解成三个数,共有 几种情况?
(4,0,0)、(3,1,0) (2,2,0)、(2,1,1) 每一种结果的三个数中, 至少有一个数不小于2。
分解法
可以假设先在每个文具盒中放1枝铅笔, 最多放3枝。剩下的1枝还要放进其中 的一个文具盒。所以至少有2枝铅笔放 进同一个文具盒。也就是先平均分, 然后把剩下的1枝,不管放在哪个盒子 里,一定会出现总有一个文具盒里至 少有2枝铅笔。
例1:把4枝铅笔放进3个文具盒中,不管
怎么放,总有一个文具盒里至少有2枝铅笔。 为什么呢?怎样解释这种现象?
小组合作:拿出4枝铅笔和 3个文具盒,把这4枝笔放 进这3个文具盒中摆一摆, 放一放,看有几种情况?
六年级下册数学课件-数学广角-鸽巢问题-人教版 (共10页)

•
2.同学们,相信你们大多数同学都有 旅游的 经历, 请大家 交流一 下,到 过哪些 名山大 川,有 什么感 受?大 自然中 的山水 ,不仅 能给我 们带来 美感也 给我们 带来灵 感,今 天让我 们从诸 子大家 对山水 的体悟 中,学 习为人 为事的 道理。
•
3.说起胡同,我们并不陌生,有的甚 至熟视 无睹了 ,不论 是农村 还是城 镇,往 来于胡 同之中 的经验 是有的 。但对 于胡同 中蕴含 的文化 内涵却 不大注 意。
做一做
实验小学共有750名学生,其中六(一)
班有45名学生。
咱们学校学生 至少有几人的 生日是同一天。
六(一)班中 至少有几人是 同一月出生的。
六年级下册数学课件- 数学广角- 鸽巢问题- 人教版 ( 共1 0 页)
六年级下册数学课件- 数学广角- 鸽巢问题- 人教版 ( 共1 0 页)
玩一玩:
从扑克牌中取出两张王牌,在剩下的 52张中任意抽出5张,至少有2张是 同花色的。试一试,并说明理由。
六年级下册数学课件- 数学广角- 鸽巢问题- 人教版 ( 共1 0 页)
六年级下册数学课件- 数学广角- 鸽巢问题- 人教版 ( 共1 0 页)
说一说
7只鸽子飞回5个鸽舍,至少有2只鸽 子要飞进同一个鸽舍里。为什么?
六年级下册数学课件- 数学广角- 鸽巢问题- 人教版 ( 共1 0 页)
六年级下册数学课件- 数学广角- 鸽巢问题- 人教版 ( 共1 0 页)
同学们的这一发现,称为“杯子原理”或抽屉原 理,又称“鸽笼原理”,它是德国数学家狄利克 雷首先明确的提出来的问题,因此也称为狄利克 雷原理。
原理:
把多于n个的物体放到n个抽屉里,则总
有一个抽屉里有2个或2个以上的物体。把 多于kn个物体放在n个抽屉里,则总有一个
六年级下册数学课件-《数学广角—鸽巢问题》l人教新课标(共24张PPT)

3、给一个正方体木块的6个面分别涂上蓝、黄两种颜 色。不论怎么涂至少有3个面涂的颜色相同,为什么?
解:蓝(黄)色涂1个面时,黄(蓝)色涂5个面 ; 蓝(黄)色涂2个面时,黄(蓝)色涂4个面;蓝(黄) 色涂3个面时,黄(蓝)色涂3个面。所以不论怎么涂 至少有3个面涂的颜色相同。
4、任意给出3个不同的自然数,其中一定有2个数 的和是偶数,为什么?
解:(1)一年最多366天。假设367个学生中366个
学生的生日在不同的一天 367÷ 366=1 余1个学生,
所以六年级里至少有2个人的生日在同一天。
(2)一年有12个月。假设49个学生的生日分别在
不同的月份 49÷ 12=4 余1人,所以六(2)班中
至少有5人是同一个月出生的。
把红、黄、蓝、白四种颜色的球各10个放到一个袋 子里。至少取多少个球,可以保证取到两个颜色相同 的球?
你理解上面扑 克魔术的道理
了吗?
解:扑克牌有4种花色,看做4个“鸽巢”,5个人每人
抽一张,抽了5张,看做5只“鸽子”;问题就转化为 “5只鸽子飞入4个鸽巢,总有一个鸽巢飞入了2只鸽 子”。4只鸽子分别飞入4个鸽巢中,剩下的1只飞入 其中一个鸽巢,那么总有一个鸽巢飞入了2只鸽子。
11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入 了3只鸽子,为什么?
解:看作鸽巢问题,5÷ 4=1 余1,至少取5个球,
就能保证取到两个颜色相同的球。
拓展思考
把红、蓝、黄3种颜色的筷子各3根混在一起,如 果让你闭上眼睛,每次最少拿出几根才能保证一定有 2根同色的筷子?如果要保证有2双筷子呢?
把红、黄、 蓝3种颜色看
作3个鸽巢
(1)解:4÷ 3=1 余1,每次至少
拿出4根能保证一定有2根同色的筷子。
六年级数学下册_5数学广角——鸽巢问题人教新课标ppt(荐)ppt(24张)标准课件

下面我们应用这一原理解决问题。
只要物体数量比抽屉数量多1个,总有一个抽屉里 放进2个的物体。
体会数学知识在日常生活中的广泛应用,培养学生的探究意识。
放的铅笔数比笔筒的数量多1,就总有1个笔筒里至少放进2支铅笔。
(3)运用原理,得出“抽屉”中分
把4枝铅笔放进3个笔筒里
最先发现这些规律的人是谁呢?他就是德国数学家“狄里克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫
把m个物体放入n个抽屉里 (m>n),如果m÷ n=k……b,那 么总有一个抽屉里至少放入 (k+1)个的物体。
最先发现这些规律的人是谁呢? 他就是德国数学家“狄里克雷”, 后来人们为了纪念他从这么平凡 的事情中发现的规律,就把这个 规律用他的名字命名,叫“狄里 克雷原理”,又把它叫
做“鸽巢原理”,还把它
5÷4=1(个)……1(个)
5可以分成(5、0、0、 0)、(4、1、0、 0)、(3、2、0、0)、( 3、1、1、0) (2、2、1、0)、(2、1、1、1)
只要物体数量比抽屉数 量多1个,总有一个抽屉里 放进2个的物体。
“ 抽屉原理”又称“鸽笼原理”,最先
是由19世纪的德国数学家狄利克雷提出来的, 所以又称“狄里克雷原理”,这一原理在解 决实际问题中有着广泛的应用。“抽屉原理” 的应用是千变万化的,用它可以解决许多有 趣的问题,并且常常能得到一些令人惊异的 结果。下面我们应用这一原理解决问题。
做“鸽巢原理”,还把它
不管怎么放,至少
有2根小棒要放进同
一个纸杯里.
例1
把4支铅笔放进3个笔筒中,不管怎 么放,总有一个笔筒里至少有2支铅 笔。为什么呢?
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标

随意找13位同学,他们中至少有( 2 )位同学的属相相同。
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
13÷12=1(位)……1(位) 1+1=2(位)
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
把m个物体放入n个抽屉里(m>n), 如果 m÷n=k.......b,那么总有一个抽屉里至少放入 ( k+1 )个的物体。
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
当铅笔数比笔筒数多1,总有一个笔筒中至 少有2支铅笔。(也就是当铅笔数是笔筒数的1 倍多1,总有一个笔筒中至少有2支铅笔。)
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。 为什么?
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
想一想: 把4支铅笔放进3个笔筒中,怎样才能快速地知道这个放
得最多的笔筒里至少有几支铅笔?
假设法
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
还可以这样想:先拿3支,在 每个笔筒中放1支,剩下的1支 就要放进其中的一个笔筒中。 这样有一个笔筒中至少有2支 铅笔。
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
5÷3=1(只)……2(只) 1+1=2(只)
为什么要用1+1, 而不是1+2呢?
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
物体数÷抽屉数(“家”)=商......余数 至少数=商+1
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
六年级数学下册 数学广角—鸽巢问题 精品PPT人教新课标
六年级下册数学鸽巢问题人教新课标ppt(荐)(20张)标准课件

(1)一个小组13人,其中至少有( )人是同一个月出生的。
1、我们要理解什么是总有,什么是至少。
算式的意思是把4支笔平均插到3个笔筒里,每个笔筒 2、经历“鸽巢问题”的探究推理过程。
利用最不利的想法考虑,在最不利的情况下,假设每个笔筒都能插进1支笔,三个笔筒一共插了3支笔,还剩1支笔,肯定要插入其中一个笔筒里,那么就有一个笔筒至少有2支笔,
一定有一个笔筒里最少放了2支铅笔。
同学们,你们用什么方式来表示的呢?
4 400
4 310
4 220
4 211
一定有一个笔筒里最少放了2支铅笔。
同学们,你们用什么方式来表示的呢?
利用最不利的想法考虑,在最不利的情况下,假设每 个笔筒都能插进1支笔,三个笔筒一共插了3支笔,还剩1 支笔,肯定要插入其中一个笔筒里,那么就有一个笔筒至 少有2支笔,所以“总有一个笔筒里至少插进2支笔”是对 的。
所以“总有一个笔筒里至少插进2支笔”是对的。
10÷3=3(支) …… 1(支)
1、我们要理解什么是总有,什么是至少。
【60难÷2点5=】2找(出件借解)决…阅“鸽…巢120问(题本件”的)窍,门。那么至少要几名学生借阅才能保证其中一定有2名学生所
一副牌共有4种花色,利用最不利的想法考虑,在最不利的情况下,假设开始的4个人每人抽的花色各不相同,剩下的1个人不管抽到什么花色,他总和其中的一个人是同花色的。
一副牌共有4种花色,利用最不利的想法考虑,在最不 利的情况下,假设开始的4个人每人抽的花色各不相同,剩 下的1个人不管抽到什么花色,他总和其中的一个人是同花 色的。这样就至少有2张牌是同花色的。
还可以用除法表示:5÷4=1(张)…… 1(张) 1+1=2(张)
人教版六年级数学下册鸽巢问题PPT课件

7本书放进3个抽屉,有一个抽屉 至少放3本书。8本书……
7÷3=2……1 8÷3=2……2 10÷3=3……1
你是这样想的吗?你有什么发现?
第19页/共43页
我发现……
物体数÷抽屉数=商……余数 至少数:商+1
如果物体数除以抽屉数有余数,用所得的商 加1,就会发现“总有一个抽屉里至少有商加1个 物体”。
德国 数学家
原理又称“抽屉原理”;另一个是6只
狄里克雷
鸽子飞进5个鸽巢,总有一个鸽巢至少
(1805.2.13.~1859.5.5.)
飞进2只鸽子,所以也称为“鸽巢原
理”。
第14页/共43页
把6枝铅笔放进5个文具盒里呢? 把7枝铅笔放进6个文具盒里呢?
把8枝铅笔放进7个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
第25页/共43页
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第26页/共43页
4. 5个人坐4把椅子,总有一把椅子上至少坐2人。为什 么?
第一种情况:
第二种情况:
第34页/共43页
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定
有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1, 就能保证有两个球同色。
新课标人教版六年级下册
7÷3=2……1 8÷3=2……2 10÷3=3……1
你是这样想的吗?你有什么发现?
第19页/共43页
我发现……
物体数÷抽屉数=商……余数 至少数:商+1
如果物体数除以抽屉数有余数,用所得的商 加1,就会发现“总有一个抽屉里至少有商加1个 物体”。
德国 数学家
原理又称“抽屉原理”;另一个是6只
狄里克雷
鸽子飞进5个鸽巢,总有一个鸽巢至少
(1805.2.13.~1859.5.5.)
飞进2只鸽子,所以也称为“鸽巢原
理”。
第14页/共43页
把6枝铅笔放进5个文具盒里呢? 把7枝铅笔放进6个文具盒里呢?
把8枝铅笔放进7个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
第25页/共43页
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第26页/共43页
4. 5个人坐4把椅子,总有一把椅子上至少坐2人。为什 么?
第一种情况:
第二种情况:
第34页/共43页
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定
有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1, 就能保证有两个球同色。
新课标人教版六年级下册
5数学广角-鸽巢问题 (例3)(课件)六年级下册数学人教版

4+1=5
假设我们每种颜色的都拿一个,需要拿 4 个, 但是没有同色的,要想有同色的需要再拿1 个 球,不论是哪一种颜色的,都一定有 2 个同 色的。
3. 希望小学篮球兴趣小组的同学中,最大 的12 岁,最小的 6 岁,最少从中挑选几名 学生,就一定能找到两个学生年龄相同。
从6岁到12岁有 几个年龄段?
至少摸出几张牌,才能保证至少有两种同花 色?
至少摸出5张牌,才能保证至 少有两种同花色。
试一试
箱子里有黑、白两种颜色的袜子各 8 只, 至少摸出( 5 )只,保证一定有 2 双袜子。 (颜色相同的为一双)
知识拓展
1. 向东小学六年级共有367名学生,其中六
(2)班有49名学生。
六年级里至少 有两人的生日 是同一天。
六(2)班 中至少有5 人是同一个 月出生的。
他们说得对吗?为什么? 367÷365=1(名)……2(名)1+1=2(名)
49÷12=4(名)……1(名) 4+1=5(名)
2. 把红、黄、蓝、白四种颜色的球各10个 放到一个袋子里。至少取多少个球,可以 保证取到两个颜色相同的球?
我们从最不 利的原则 (最坏的方 法)去考虑:
答:参加体操表演的学生中一定有2 名或2名以上是在同年同月出生的。
5、有红黄蓝白四种不同颜色的小球各10个,放在一个布袋里, (1)至少摸出几个,才能保证一定有2个小球的颜色相同; (2)如果一定有3个小球的颜色相同,那么至少要摸出几个小球? (3)如果一定有4个小球的颜色相同,那么至少要摸出几个小球?
物体颜色个数+1=至少取出物体的个数
2、如果已知取出物体的个数,求取出物体至少有几个同色:
取出物体的个数÷物体颜色个数=商……余数 如果有余数:商+1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从6岁到12岁有几个 年龄段?
中学资 源网htt p://cz. 中学资 源网htt p://cz.
7+1=8
二、知识应用
(二)解决问题
2. 从一副扑克牌(52张,没有大小王)中要抽出几张牌来, 才能保证有一张是红桃?54张呢?
13
13
13
13×3+1=40
2+13×3+1=42
13 最后为什么要加1?
1. 向东小学六年级共有367名学生,其中六(2)班有49名学生。
六年级里至少有两人 的生日是同一天。
六(2)班中至少 有5人是同一个月 出生的。
他们说得对吗?为什么? 367÷365=1……2 49÷12=4……1
1+1=2 4+1=5
二、知识应用
(一)做一做
2. 把红、黄、蓝、白四种颜色的球各10个放到一个袋子 里。至少取多少个球,可以保证取到两个颜色相同的球?
猜测2:摸出5个球,肯定有2个是同色的。
验证:把红、蓝两种颜色看成2 个“鸽巢”,因为5÷2=2……1, 所以摸出5个球时,至少有3个球 是同色的,显然,摸出5个球不 是最少的。
一、探究新知
猜测3:有两种颜色。那摸3个 球就能保证有2个同色的球。
第一种情况:
中学资 源网htt p://cz. 中学资 源网htt p://cz.
4+1=5
我们从最不利的原则 去考虑: 假设我们每种颜色的都拿一个,需要拿4个,但是没有同色的,要想有同 色的需要再拿1个球,不论是哪一种颜色的,都一定有2个同色的。
二、知识应用
(二)解决问题
1. 希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁, 最少从中挑选几名学生,就一定能找到两个学生年龄相同。
猜测1:只摸2个球就能保证是同色的。
第一种情况: 第二种情况: 第三种情况:
验证:球的颜色共有2种,如果只 摸出2个球,会出现三种情况:1 个红球和1个蓝球、2个红球、2个 蓝球。因此,如果摸出的2个球正 好况: 第二种情况: 第三种情况: 第四种情况:
三、知识拓展
抽屉原理是组合数学中的一个重要原理,
它最早由德国数学家狄里克雷(Dirichlet)提
出并运用于解决数论中的问题,所以该原理又
称“狄里克雷原理”。抽屉原理有两个经典案
例,一个是把10个苹果放进9个抽屉里,总有一
个抽屉里至少放了2个苹果,所以这个原理又称
德国 数学家
“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,
第二种情况:
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定
有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2 个同色的,因为……
有两种颜色。那摸3 个球就能保证……
只摸2个球能保证 是同色的吗?
只要摸出的球数比它们的颜色种数 多1,就能保证有两个球同色。
二、知识应用
(一)做一做
狄里克雷(1805.2.13.~ 1859.5.5.)
总有一个鸽巢至少飞进2只鸽子,所以也称为 “鸽巢原理”。
中学资 源网htt p://cz. 中学资 源网htt p://cz.
四、布置作业
作业:第71页练习十三,第4题、 第5题、第6题。
中学资 源网htt p://cz. 中学资 源网htt p://cz.
鸽巢问题
鸽巢问题 例3 中学资 源网htt p://cz.
中学资 源网htt p://cz.
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定 有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2 个同色的,因为……
有两种颜色。那摸3 个球就能保证……
只摸2个球能保证 是同色的吗?
一、探究新知
中学资 源网htt p://cz. 中学资 源网htt p://cz.
7+1=8
二、知识应用
(二)解决问题
2. 从一副扑克牌(52张,没有大小王)中要抽出几张牌来, 才能保证有一张是红桃?54张呢?
13
13
13
13×3+1=40
2+13×3+1=42
13 最后为什么要加1?
1. 向东小学六年级共有367名学生,其中六(2)班有49名学生。
六年级里至少有两人 的生日是同一天。
六(2)班中至少 有5人是同一个月 出生的。
他们说得对吗?为什么? 367÷365=1……2 49÷12=4……1
1+1=2 4+1=5
二、知识应用
(一)做一做
2. 把红、黄、蓝、白四种颜色的球各10个放到一个袋子 里。至少取多少个球,可以保证取到两个颜色相同的球?
猜测2:摸出5个球,肯定有2个是同色的。
验证:把红、蓝两种颜色看成2 个“鸽巢”,因为5÷2=2……1, 所以摸出5个球时,至少有3个球 是同色的,显然,摸出5个球不 是最少的。
一、探究新知
猜测3:有两种颜色。那摸3个 球就能保证有2个同色的球。
第一种情况:
中学资 源网htt p://cz. 中学资 源网htt p://cz.
4+1=5
我们从最不利的原则 去考虑: 假设我们每种颜色的都拿一个,需要拿4个,但是没有同色的,要想有同 色的需要再拿1个球,不论是哪一种颜色的,都一定有2个同色的。
二、知识应用
(二)解决问题
1. 希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁, 最少从中挑选几名学生,就一定能找到两个学生年龄相同。
猜测1:只摸2个球就能保证是同色的。
第一种情况: 第二种情况: 第三种情况:
验证:球的颜色共有2种,如果只 摸出2个球,会出现三种情况:1 个红球和1个蓝球、2个红球、2个 蓝球。因此,如果摸出的2个球正 好况: 第二种情况: 第三种情况: 第四种情况:
三、知识拓展
抽屉原理是组合数学中的一个重要原理,
它最早由德国数学家狄里克雷(Dirichlet)提
出并运用于解决数论中的问题,所以该原理又
称“狄里克雷原理”。抽屉原理有两个经典案
例,一个是把10个苹果放进9个抽屉里,总有一
个抽屉里至少放了2个苹果,所以这个原理又称
德国 数学家
“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,
第二种情况:
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定
有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2 个同色的,因为……
有两种颜色。那摸3 个球就能保证……
只摸2个球能保证 是同色的吗?
只要摸出的球数比它们的颜色种数 多1,就能保证有两个球同色。
二、知识应用
(一)做一做
狄里克雷(1805.2.13.~ 1859.5.5.)
总有一个鸽巢至少飞进2只鸽子,所以也称为 “鸽巢原理”。
中学资 源网htt p://cz. 中学资 源网htt p://cz.
四、布置作业
作业:第71页练习十三,第4题、 第5题、第6题。
中学资 源网htt p://cz. 中学资 源网htt p://cz.
鸽巢问题
鸽巢问题 例3 中学资 源网htt p://cz.
中学资 源网htt p://cz.
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定 有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2 个同色的,因为……
有两种颜色。那摸3 个球就能保证……
只摸2个球能保证 是同色的吗?
一、探究新知