变分法

合集下载

变分法原理

变分法原理

变分法原理变分法是一种用于求解泛函和微分方程问题的数学方法。

它通过对一个函数进行微小的变化,并计算出在这个微小变化下泛函的变化量,从而得到泛函的极值。

变分法在物理学和工程学等领域有广泛的应用,如优化问题、经典力学中的作用量原理以及量子力学中的路径积分等。

要理解变分法的原理,首先需要了解泛函的概念。

泛函是一种将函数映射到实数集上的函数,例如能量泛函、作用泛函等。

对于一个给定的泛函,我们希望找到使其取得最大或最小值的函数。

而变分法就是一种通过对函数进行微小变化,从而使得泛函的变化量趋于零的方法。

以最简单的泛函问题为例,考虑一个函数y(某)在区间[a,b]上的泛函J,即J[y(某)],例如J[y]=∫(a到b)F(某,y,y')d某,其中F是已知的函数,y'表示导数。

我们的目标是找到函数y(某),使得泛函J[y(某)]取得极值。

为了寻找这样的函数,我们引入一个变分函数δy(某),它表示函数y(某)关于自变量某的微小变化量。

于是,我们可以将函数y(某)写成y(某)+εδy(某),其中ε是一个小的实数。

然后,将变分函数代入泛函中得到J[y(某)+εδy(某)]。

将J[y(某)+εδy(某)]展开成泛函J[y(某)]关于ε的幂级数,取一阶项,得到J[y(某)+εδy(某)]≈J[y(某)]+ε∫(a到b)(∂F/∂y)δyd某+ε∫(a到b)(∂F/∂y')δy'd某。

由于δy(某)是任意的,我们要使得泛函J[y(某)+εδy(某)]的变化量趋于零,只需使得∂F/∂y- d/d某(∂F/∂y')=0,即Euler-Lagrange方程。

根据Euler-Lagrange方程解出δy(某),再令δy(某)的边界条件为零,即δy(a)=δy(b)=0。

这样,我们就可以得到函数y(某)的特解。

总结起来,变分法的原理是将函数表示为原函数与微小变化的函数之和,将其代入泛函中展开,并取一阶项,最后通过求解Euler-Lagrange 方程得到特解。

数学中的变分法

数学中的变分法

数学中的变分法变分法是一种数学方法,它在许多物理学原理的证明和应用中被广泛使用。

变分法的基本思想是将一个对象视为其可能的所有函数中一种函数。

例如,如果我们考虑曲线上的能量问题,我们将尝试确定曲线的最小能量。

在这种情况下,我们将使用变分法来确定能量的最小值,同时识别导致最小值的曲线。

变分法被广泛运用于许多科学和工程领域中的分析问题。

其中一些领域包括最优控制理论、力学、统计学、经济学和化学等。

变分法是这些领域的基础,并广泛应用于生物力学、流体力学、材料科学以及其他科学和工程领域的问题。

变分法的核心思想是通过应用变分运算符来寻找函数的极值。

对于一个实变函数f,它的变分是指通过对f进行微小调整来找到f的变化方向,例如δf。

对于函数f(x),它的变分可以表示为如下形式:δf(x)=f(x+εv)-f(x)其中,v是任意的可微向量函数,而ε是一小的正实数。

变量v 被称为变分方向或测试函数。

此时,我们可以考虑将上式变化为以下形式:δf(x;v)=lim(ε -> 0)[f(x+εv)-f(x)] / ε当ε趋近于0时, δf(x;v)的极限被称为f在v方向的变分。

当δf(x;v)等于0时,我们可以说f在v方向上不变。

因此,我们可以通过使用变分法来确定f的最小值或最大值。

例如,如果我们要找到一条曲线,其起点和终点都已知,同时满足总长度最小的条件。

在这个问题中,我们需要确定曲线的形状来最小化熵函数。

最小化长度问题的变分形式可以表示为:L[y]=∫[a,b]L(y,y')dx其中y是曲线的方程,L(y,y')是曲线的弧长元素。

此时,我们需要找到这条曲线,其满足以下条件:∫L(y,y')dx≤∫L(y0,y'0)dx其中y0和y'0是固定的曲线。

我们可以取v为x的变化方向,而L(y,y')可以视为动能或势能。

因此,我们可以将上式改写为:∂L[y]/∂y- d/dx∂L[y]/∂y'=0这里的d/dx是导数。

变分法

变分法


x1
x0
F ( x) ( x)dx 0
(1.18)
则在 [x0,x1] 上就有F(x)≡0. 证明用反证法
1.3.2 欧拉方程

x1
[ y] F ( x, y, y )dx
x0
x1
x1
x0
F y F ydx y y b a
数ui(i=1,2,3)而变,[u]也是一个泛函。而ui必须满足的体积不
变条件
L、As、Φ都是依赖于可变化的函数。称其为自变函数,随 自变函数而变的量称为泛函。用符号φ、J 表示,记作 φ[y(x)]或φ(y)等。 • 变分法就是研究求泛函极大值和极小值的方法。
1.1.2 泛函自变函数的变分
• 函数y=y(x) ,自变量为x ,增量 △x, 称dx为自变 量x微分。 • 泛函φ[y(x)],自变函数为y(x),当△y(x) 变化无 限小时,称为自变函数的变分,表为δy(x) ,δy • δy是指函数y(x) 和跟它相接近的另一函数y1(x) 的微差。
x0 x0
x1
x1
(dy ) d ( y )
dy d ( y ) , 或 ( y) ( y) dx dx
3.注意:d ( xy) ydx xdy
( xy) x y
1.2.2 泛函极值的条件
泛函极值条件与函数极值条件具有相似的定义。如果
(u v) u v,
(uv) u v v u, (u v) (v u u v) / v 2
2
变分号可由积分号外进入积分号内
x1 x1 x0 x0
F ( x, y, y)dx F ( x, y, y)dx

变分法的应用

变分法的应用

变分法的应用在物理、工程、数学等领域中,变分法是一种非常重要的工具。

变分法可以被用来解决各种数学问题,如微积分、偏微分方程、力学问题和最优化问题等等。

本文将介绍变分法的定义、基本原理、应用以及其在实践中的意义。

一、什么是变分法?变分法是一种数学方法,它通过不断调整函数的形式来寻找一个极值问题的解。

变分法可以用来解决一系列的优化问题,如最优控制问题和最小能量问题等等。

在它最简单的形式中,变分法是一个求解“泛函”的问题:“找到一个函数使得某个固定泛函取得最小值”。

例如,我们想要找到长度为 L 的钢条上的最小弯曲量。

这个问题可以表示成一个泛函:J(y) = ∫[0,L] (y''(x))^2 dx,其中y表示弯曲的函数。

这个泛函是一个带有一个未知函数y的函数J。

我们的任务是找到一个函数y,使得J(y)的值最小。

二、变分法的基本原理变分法的基本原理可以归结为“求解一系列微积分变分问题”。

根据变分法的基本原理,我们可以从微积分和函数分析的角度来理解它。

变分法的原理是基于函数的连续性和光滑性的,即给定一个函数的任意两个点之间的连续性和可微性。

在求解变分问题时,我们首先需要找到一个函数,这个函数满足一些预定的条件。

然后,我们可以对这个函数进行微小的变化,来看看这个函数如何改变。

最后,我们可以通过对这个函数进行积分来得到一个新的函数值。

然后我们可以对这个函数进行微小的变化,得到y(x) → y(x) + εφ(x) (其中,ε很小,φ是一个任意函数)。

在这个情况下,我们可以用函数y(x)的一个小变化y(x) + εφ(x)来重新计算泛函J的值。

这个新的泛函的值可以表示为J(y + εφ) = ∫[0,L] F(x,y,y',y'') φ(x)dx,其中F(x,y,y',y'')为J(y)的一类一阶偏导数,我们需要将其解释为x和y的函数。

然后,通过对泛函J(y+εφ)中的项进行扩展,我们得到:J(y+εφ) = J(y) + ε∫[0,L] (F_yφ + F_{y'}φ' + F_{y''}φ'') dx。

变分法基本原理

变分法基本原理

变分法基本原理【1】变分法(Variational method)是一种数学方法,用于解决泛函的极值问题。

泛函是把函数映射到实数的映射,而泛函的极值问题是要找到使得泛函取得极值的函数。

变分法广泛应用于物理学、工程学、应用数学等领域中的最优化问题。

【2】变分法的基本原理可以概括为以下几个步骤:步骤一:定义泛函首先,要明确定义所研究的泛函。

泛函可以是一个函数的积分、一个函数的级数或者其他数学表达式。

要根据具体问题的特点来选择合适的泛函。

步骤二:提出变分函数接下来,通过引入一个假设的函数(称为变分函数)作为泛函的自变量,使泛函成为这个变分函数的函数。

变分函数通常具有一定的约束条件,如满足特定边界条件或其他限制条件。

步骤三:计算变分利用变分函数的小扰动,即在该函数上加上一个小的修正项,计算泛函的变分。

变分是泛函在变分函数上的一阶近似变化率。

步骤四:应用欧拉-拉格朗日方程将变分代入到泛函中,得到泛函的表达式。

然后,通过应用欧拉-拉格朗日方程,将泛函转化为一个微分方程。

这个微分方程是通过对变分函数求导,然后令导数为零得到的。

步骤五:求解微分方程解决微分方程,得到最优解的表达式。

这个最优解是使得泛函取得极值的函数。

【3】变分法的基本原理是通过引入一个变分函数,将泛函的极值问题转化为求解一个微分方程的问题。

这种方法的优势在于可以将复杂的极值问题转化为求解微分方程的问题,简化了求解的过程。

【4】变分法在物理学中的应用非常广泛。

例如,它可以用于求解经典力学中的最小作用量原理,即通过将作用量泛函取极值来得到物体的运动方程。

此外,变分法还可以应用于量子力学中的路径积分方法、场论中的泛函积分等问题的求解。

【5】总之,变分法是一种数学方法,用于求解泛函的极值问题。

它的基本原理是通过引入一个变分函数,将泛函的极值问题转化为求解一个微分方程的问题。

变分法广泛应用于物理学、工程学、应用数学等领域,并具有很好的应用前景。

变分法

变分法

§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。

它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。

这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。

约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。

后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。

有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题(The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。

在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。

伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。

数学的变分法

数学的变分法

数学的变分法数学的变分方法是一种研究函数变化的数学工具,被广泛应用于数学分析、物理学等领域。

它通过寻找函数的变化率最小值或最大值,揭示了许多自然界和社会现象的规律。

本文将介绍变分法的基本原理和主要应用,以及一些经典的变分问题。

一、变分法的基本原理在介绍变分法之前,我们需要先了解变分和变分算子的概念。

变分是指通过微小的函数偏移来研究一个函数的性质。

而变分算子是对这种微小的函数偏移进行数学上的描述。

变分法的基本思想是通过对一个函数进行变分,得到它的一阶变分和二阶变分,然后利用边界条件和变分的性质,求解出变分方程的解。

具体步骤如下:1. 假设函数的解是一个特定形式的函数表达式,其中包含一个或多个未知的参数。

2. 对这个函数进行变分,得到函数的一阶变分和二阶变分。

3. 将变分代入原方程,得到一个含有未知参数的函数方程。

4. 利用边界条件,求解出未知参数的值。

5. 将参数代入原方程,得到函数的解。

二、变分法的主要应用变分法具有非常广泛的应用领域,下面将介绍其中的几个重要应用。

1. 物理学中的作用量原理作用量原理是变分法在物理学中的重要应用之一。

它通过对作用量进行变分,得到物理系统的基本方程。

作用量原理在经典力学、电磁学、量子力学等领域均有广泛应用,是研究物理系统的基本工具。

2. 凸优化问题凸优化是变分法在应用数学领域的典型应用之一。

它研究如何寻找一个凸函数的最小值或最大值。

变分法可以帮助我们建立凸函数的变分问题,并通过求解变分问题来解决凸优化问题。

3. 经典的变分问题变分法在数学中的一个重要应用是解决一些经典的变分问题,比如著名的布拉赫罗恩极小曲面问题。

这个问题是在确定一个特定边界条件下,找到曲面的形状使其表面积最小。

三、经典的变分问题经典的变分问题是对变分法应用的经典案例,下面将介绍其中的两个。

1. 薛定谔方程薛定谔方程是量子力学中的一个基本方程,描述了微观粒子的运动行为。

通过对薛定谔方程进行变分,可以得到微观粒子的能量本征值和能量本征态。

变分法的基本思想

变分法的基本思想

变分法的基本思想变分法是一种数学方法,用于研究函数的极值问题。

这一方法的基本思想是将函数的变化量表示成一个函数的积分,然后通过求积分的极值来求解函数的极值。

变分法不仅应用广泛,而且在理论上也有较大的价值。

一、变分法的历史变分法可以追溯到十七世纪,当时著名数学家莱布尼兹和尤拉分别独立地提出了这一方法。

莱布尼兹用变分法解决了曲线和曲面的最短路径问题,而尤拉则将其应用于力学中的最小作用量原理。

在之后的两个世纪里,变分法被广泛应用于物理学、工程学、经济学等领域。

二、变分法的基本思想变分法的基本思想是将函数的变化量表示成一个函数的积分,然后求解积分的极值。

具体来说,假设有一个函数y(x)满足某些条件,如y(x)在一个区间[a,b]内连续、光滑等等,那么可以构造一个函数J[y(x)],称为泛函,其表达式为:J[y(x)] = ∫[a,b] L(x,y,y’)dx其中L(x,y,y’)称为被积函数,y’表示y对x的导数,∫[a,b]表示在区间[a,b]内积分。

这里的J[y(x)]就是一个关于y(x)的函数,如果能够求出J[y(x)]的极值,那么对应的y(x)就是所要求的函数。

三、最小作用量原理最小作用量原理是变分法应用于力学中的一个重要例子。

假设有一质点从时刻t1到时刻t2经过一条路径,路径上有一个势场V(x),则质点的作用量可以表示为:S = ∫[t1,t2] L(x,v)dt其中L(x,v) = T(v) – V(x),T(v)表示质点的动能,V(x)表示势能。

根据最小作用量原理,实际上质点遵循的是作用量取极小值的路径。

换句话说,如果从t1到t2有多条路径,那么实际上质点所走的是其中作用量最小的路径。

四、应用举例变分法可以用于求解很多问题。

以下是一些应用举例:1、最短路径问题:这是莱布尼兹最早提出的应用之一。

假设有一条曲线y(x),要使得从点A到点B的路径长度最短,即曲线y(x)在[a,b]内的弧长最小,可以通过应用变分法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L[ y ( x) y ( x)] [ y ( x), y ( x)] max y ( x)
L[ y( x ), y( x )]
是泛函增量的 线性主部
l拉格朗日定义
[ y(x) y(x)] [ y(x)] [ y(x)] L[ y(x),y(x)]
B (x1, y1)
L 随函数y =y(x) 的选取而变,它是一个泛
函。用间接法确定使L最短的函数曲线即泛函有极 值的自变函数曲线为
y =c1x+c2 ,1阶导数2个待定常数
其中常数 c1 、c2可由边界点A、B的坐标(即边 界条件)确定。
图1.1 两点间的最短弧线
x
引例2:求通过两点A (x0, y0)、B (x1,, y1)且长度l 为一定值的函数曲线 y=y(x),使图中曲边梯形ABCD的面积AS达到最大。
y y1=y1(x) y2=y2(x)
y
y2=y2(x) y1=y1(x)
o ( a)
x
0 ( b)
x
图1.3
曲线的接近度
dy和δy的区别
dy : δy:
是在x不变时,针对两条接近 的函数曲线 的微差 y 。 y 是x 的函数。 y 在边界点一定为零。
o x
是针对一条曲线 y =y(x) ,当△x= dx 时 函数值增量的线 性主部是 dy 。 dy一般不等于零。?
其中常数c1,c2, r 可由条件
2
2
2
o
x C D
y0 , y(x1) y1, 及
x1
x0
1 [ y(x)]2 dx l
来确定。
引例3:由最小势能原理,变形全能随所选取的三个位移函 数ui(i=1,2,3)而变,[u]也是一个泛函。而ui必须满足的体积不 变条件
拉氏定义:微分也等于y(x+ε△x)对ε导数在ε=0时的值。
y ( x x ) y ( x x ) x y ( x x ) 0 y ( x ) x dy ( x )
(1.5)
泛函变分定义
l一般定义: [ y ( x) y ( x)] [ y ( x)]

x1
x0
F ( x, y y , y y ) y F ( x, y y , y y ) y dx u1 u 2 0
x1 [ y y ] =0 F ( x, y , y ) y F ( x, y , y ) y dx x 0 y y
1.变分法
1.1 泛函与变分定义
1.1.1 泛函的概念
引例1: 平面两点 A (x0, y0)、B (x1,y1),求连接A、B两点的最短弧线。 解:设A、B 两点间函数为y=y(x) 则由弧长微分公式
x1
» AB = L =
ò
x2
1+ [ y¢ ( x )]2 dx
(1.1)
y y=y(x) A (x0, y0) dL o
y δy y1=y1(x) y =y ( x )
y
y(x) 和 y1(x)
dy
△x=dx
图 1.4 dy和δy的区别
1.1.3 泛函的变分
微分一般定义 :△y=y(x+△x)-y(x) =A(x)△x + (x,△x)△x
dy dy A( x) x y( x) x, x dx; y x A( x) dx
F F y y dx x0 y y
x1
(1.9)
泛函二阶变分及增量为:

2 x1
x0
2 F 2 F 2 F 2 2 y y ( y ) dx 2 ( y ) 2 2 yy y y
A
s


x1 x0
ydx
(1.2)
AS依y的选取而定,它也是一个泛函,约束条件为AB长度
l
x1
x0
1 [ y ( x)]2 dx const (1.3)
y A(x0 , y0)
y
这是带约束条件的泛函极值由间接 变分法,泛函As的极值曲线为
B(x1,y1)
( x c 2 ) ( y c1 ) r
零阶接近度:对任何x值, y1(x) 和y2(x)的差都很小, δy = y2(x) –y1(x)很小 . ………… n阶接近度:
一阶接近度:不仅纵坐标值很接近. δy = y2(x) – y1(x) δy′= y(x)′–y1(x)′也很小
y 0, y 0, y 0 , y ( n ) 0
L、As、Φ都是依赖于可变化的函数。称其为自变函数,随 自变函数而变的量称为泛函。用符号φ、J 表示,记作 φ[y(x)]或φ(y)等。 • 变分法就是研究求泛函极大值和极小值的方法。
1.1.2 泛函自变函数的变分
• 函数y=y(x) ,自变量为x ,增量 △x, 称dx为自变 量x微分。 • 泛函φ[y(x)],自变函数为y(x),当△y(x) 变化无 限小时,称为自变函数的变分,表为δy(x) ,δy • δy是指函数y(x) 和跟它相接近的另一函数y1(x) 的微差。
[ y(x),y(x)] maxy(x)
[ y ( x) y ( x)] L[ y ( x), y ( x)] [ y ( x), y ( x)]max y ( x) { [ y ( x), y ( x)]}max y ( x) 0 L[ y ( x), y ( x)]
即证明了拉格朗日的泛函变分的定义:
[ y ( x ) y ( x )]
0
(1.8)
例:简单泛函 [ y]

x1
x0
F ( x, y, y)dx
一阶变分。
x1 [ y y ] F ( x, y y , y y ) dx x0 u1 u2
相关文档
最新文档