图形的旋转和中心对称
《中心对称图形》旋转中心对称图形

实例一:利用旋转作图求解几何问题
总结词:高效便捷;理解深刻
旋转中心对称作图方法可以解决涉及圆、椭圆、双曲 线等几何问题
将已知图形绕着某个点旋转一定角度后,观察旋转后 的图形能否与原图形重合。
作图的过程中,需要先确定旋转中心,然后确定旋转 角度和旋转方向
实例二:利用旋转对称性设计美丽的图案
总结词:美观实用;富有创意
旋转对称性往往使得图形在旋转特定角度后与原图重合。
旋转角度可变
不同的图形可能具有相同的旋转对称性,但其对应的旋转角度可能不同。
旋转对称性与平移对称性不同
旋转对称性是围绕着旋转中心进行旋转,而平移对称性则是沿着一定方向平移。
旋转对称性的应用
几何作图
利用旋转对称性可以方便地作 出一些几何图形,如正多边形
《中心对称图形》旋转中心 对称图形
xx年xx月xx日
目录
• 中心对称图形概述 • 中心对称图形的旋转 • 中心对称图形的旋转中心 • 中心对称图形的旋转对称性 • 中心对称图形的旋转作图 • 中心对称图形的实例分析 • 中心对称图形的思考与探究
01
中心对称图形概述
中心对称图形的定义
• 定义:把一个图形绕着某一点旋转180度,如果旋转后的图 形能够与原来的图形重合,那么这个图形就被称为中心对称 图形。
方法三
找到一个图形上的一条对称轴,该 轴线与图形的交点即为旋转中心。
04
中心对称图形的旋转对称性
旋转对称性的定义
定义
若一个图形沿着中心旋转 一定角度后,仍能与自身 重合,则称该图形具有旋 转对称性。
旋转中心
图形旋转过程中,不动的 点称为旋转中心。
旋转方向
顺时针或逆时针。
旋转对称性的特点
三、中心对称图形

第三章中心对称图形(一)§3.1图形的旋转知识点:1、旋转基本内涵。
将一个图形绕一个定点沿某一个方向转动一定的角度,这样的图形运动称为旋转。
这个定点称为旋转中心,转动的角度称为旋转角。
2、旋转与平移的区别和共同点:变换要素性质共性平移平移的方向和距离对应点的连线段的长度等于平移的距离,对应点的连线段平行(或在同一条直线上);对应线段平行(或同一条直线上)且相等变换前后的两个图形的形状与大小不变(全等)轴对称对称轴对称点的连线被对称轴垂直平分旋转旋转的中心、方向和旋转角对应点与旋转中心的距离相等,对应点与旋转中心所连线段的夹角都等于旋转角考点:主要围绕旋转的定义、性质来作图以及解决一些简单数学问题和实际应用问题。
典型例题:例1、(2008 盐城)如图,△ABC是等腰三角形,BC是斜边,P为△ABC内一点,且PA=3,将△ABP绕点A逆时针旋转后与△ACP’重合,那么线段PP’的长等于---------。
例2、画出△ABC绕点A逆时针90°后的图形。
例3、(2008 南京)如图,菱形ABCD与菱形EFGH的形状、大小完全相同,请从下列序号中选择正确选项的序号填在横线上。
①点E、F、G、H;②点G、F、E、H;③点E、H、G、F;④点G、H、E、F。
D HA C E GB F图1 图2(1)如果图1 经过一次旋转后得到图2,那么点A、B、C、D对应点分别是___。
P’AB CPAB C(2)如果图1经过一次轴对称后得到图2 ,那么点A ,B ,C ,D 对应点分别是___。
(3)如果图1经过一次平移后得到图2 ,那么点A ,B ,C ,D 对应点分别是___。
§3.2中心对称与中心对称图形 知识点:1、中心对称与中心对称图形联系和区别:中心对称是指两个图形之间的关系:一个图形绕着一点旋转180°,与另一个图形完全重合,那么着这两个图形叫做中心对称;中心对称图形是一个图形而言,一个图形绕着一点旋转180°,它与自身重合,那么这个图形叫中心对称图形。
核心考点01图形的旋转与中心对称 (解析版)

核心考点01图形的旋转与中心对称目录考点一:生活中的旋转现象考点二:旋转的性质考点三:旋转对称图形考点四:中心对称考点五:中心对称图形考点六:作图-旋转变换一.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O 旋转一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角,如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向. ③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点. .二.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.三.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.考点考向四.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.五.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.六.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.一.生活中的旋转现象(共1小题)1.(2022春•泰州月考)下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )A .B .C .D .【分析】因为45°×8=360°,整个图形应由8个基本图形组成.【解答】解:根据旋转的性质可知,可以由一个“基本图案”连续旋转45°,考点精讲即经过8次旋转得到的是B.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.二.旋转的性质(共11小题)2.(2022春•姑苏区校级月考)如图,在正方形网格中,△EFG绕某一点旋转某一角度得到△RPQ.则旋转中心可能是( )A.点A B.点B C.点C D.点D【分析】连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,交点为旋转中心.【解答】解:如图,∵△EFG绕某一点旋转某一角度得到△RPQ,∴连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,∴三条线段的垂直平分线正好都过C,即旋转中心是C.故选:C.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.3.(2022春•梁溪区校级期中)如图,将△AOB绕点O按逆时针方向旋转50°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是 35° .【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=15°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转50°后得到△A′OB′,∴∠BOB′=50°.∵∠AOB=15°,∴∠AOB′=∠BOB′﹣∠AOB=50°﹣15°=35°.故答案为:35°.【点评】本题考查旋转的性质,解题的关键明确旋转角是什么,对应边旋转前后的夹角是旋转角.4.(2022春•邗江区校级月考)如图,△ABC绕着顶点A逆时针旋转到△ADE,∠B=40°,∠E=60°,AB∥DE,求∠DAC的度数.【分析】根据旋转的性质得∠C=∠E=60°,∠D=∠B=40°,再根据平行线的性质的∠BAD=∠D=40°,从而得出答案.【解答】解:∵△ABC绕着顶点A逆时针旋转到△ADE,∴△ABC≌△ADE,∴∠C=∠E=60°,∠D=∠B=40°,∵∠B=40°,∴∠BAC=180°﹣40°﹣60°=80°,∵AB∥DE,∴∠BAD=∠D=40°,∴∠DAC=∠BAC﹣∠BAD=80°﹣40°=40°,∴∠DAC的度数为40°.【点评】本题主要考查了旋转的性质,平行线的性质,三角形内角和定理等知识,熟练掌握旋转的性质是解题的关键.5.(2022春•沭阳县月考)如图,在四边形ABCD中,AB∥CD,BC⊥CD,垂足为点C,E是AD的中点,连接BE并延长交CD的延长线于点F.(1)图中△EFD可以由△ EBA 绕着点 E 旋转 180 度后得到;(2)写出图中的一对全等三角形 △EBA≌△EFD ;(3)若AB=4,BC=5,CD=6.求△BCF的面积.【分析】(1)由已知条件可证明△EBA≌△EFD,所以△EFD可以由△EBA绕点E旋转180°后得到;(2)由(1)可得出答案;(3)由(1)可知△EBA≌△EFD,所以求△BCF的面积可转化为求梯形ABCD的面积,根据梯形的面积公式计算即可.【解答】解:(1)∵AB∥CD,∴∠ABE=∠F,∠A=∠FDE,∵E是AD的中点,∴AE=CE,在△EBA和△EFD中,,∴△EBA≌△EFD(AAS),∴△EFD可以由△EBA绕点E旋转180°后得到,故答案为:EBA,E,180°;(2)由(1)可知△EBA ≌△EFD ,故答案为:△EBA ≌△EFD ;(3)∵△EBA ≌△EFD ,∴S △BCF =S 梯形ABCD ==25.【点评】本题考查了全等三角形的判定、梯形的面积公式,旋转的性质,熟练掌握旋转的性质是解题的关键.6.(2022春•沭阳县月考)如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将△BOC 绕点C 按顺时针旋转得到△ADC ,连接OD ,OA .(Ⅰ)求∠ODC 的度数;(Ⅱ)若OB =2,OC =3,求AO 的长.【分析】(Ⅰ)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(Ⅱ)在Rt △AOD 中,由勾股定理可求得AO 的长,再在直角△AOD 中利用三角函数的定义即可求解.【解答】解:(Ⅰ)由旋转的性质得,CD =CO ,∠ACD =∠BCO ,∵∠ACB =60°,∴∠DCO =60°,∴△OCD 为等边三角形,∴∠ODC =60°;(Ⅱ)由旋转的性质得,AD =OB =2,∵△OCD 为等边三角形,∴OD =OC =3,∵∠BOC =150°,∠ODC =60°,∴∠ADO =90°,在Rt △AOD 中,由勾股定理得:AO ==.【点评】本题主要考查了旋转的性质以及三角函数的定义,正确求得AO的长是解题的关键.7.(2022春•铜山区校级月考)如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求:(1)∠BAD的度数;(2)AD的长.【分析】(1)由旋转的性质可得AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,可证△ADE是等边三角形,可得∠DAE=60°,AD=AE,即可求解;(2)由等边三角形的性质可求AD=AE的长.【解答】解:(1)∵把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,∵∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠DCE=180°,∴点A,点C,点E三点共线,又∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAD=60°;(2)∵AB=5=CE,AC=3,∴AE=AC+CE=8,∴AD=AE=8.【点评】本题考查了旋转的性质,全等三角形的性质,等边三角形的判定和性质,证明点A,点C,点E三点共线是解题的关键.8.(2022春•东海县期末)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过操作观察可知,线段EB由AB旋转得到,所以EB=AB.同理可得FC=CD,EF= AD ;(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求此时四边形BCFE的面积.【分析】(1)由推动矩形框时,矩形ABCD的各边的长度没有改变,可求解;(2)通过证明四边形BEFC是平行四边形,可得结论;(3)由勾股定理可求BH的长,由面积法可求CG的长,即可求解.【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,∴矩形ABCD的各边的长度没有改变,∴AB=BE,EF=AD,CF=CD,故答案为:AD;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,AD=BC,∵AB=BE,EF=AD,CF=CD,∴BE=CF,EF=BC,∴四边形BEFC是平行四边形,∴EF∥BC,∴EF∥AD;(3)解:如图,过点C作CG⊥BE于G,∵DC=AB=BE=80cm,点H是CD的中点,∴CH=DH=40cm,在Rt△BHC中,BH===50(cm),=×BC×CH=×BH×CG,∵S△BCH∴30×40=50×CG,∴CG=24,∴四边形BCFE的面积=BE×CG=80×24=1920(cm2).【点评】本题考查了旋转的性质,矩形的性质,平行四边形的判定和性质,勾股定理,相似三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.9.(2022•溧阳市模拟)已知:如图,将△ABC绕点C旋转一定角度得到△EDC,若∠ACE=2∠ACB.(1)求证:△ADC≌△ABC;(2)若AB=BC=5,AC=6,求四边形ABCD的面积.【分析】(1)根据旋转的性质得到∠ACB=∠DCE,BC=CD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AB=AD,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,设AC,BD交于O,根据勾股定理得到BO===4,求得BD=8,根据菱形的面积公式即可得到结论.【解答】(1)证明:∵将△ABC绕点C旋转一定角度得到△EDC,∴∠ACB=∠DCE,BC=CD,∵∠ACE=2∠ACB,∴∠ACE=2∠DCE,∴∠ACD=∠DCE=∠ACB,在△ADC与△ABC中,,∴△ADC≌△ABC(SAS);(2)解:由(1)知,△ADC≌△ABC,∴AB=AD,∵AB=BC,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AC⊥BD,设AC,BD交于O,∴AO=AC=3,∴BO===4,∴BD=8,∴四边形ABCD的面积=AC•BD=6×8=24.【点评】本题考查了旋转的性质全等三角形的判定和性质,菱形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.10.(2022春•滨海县月考)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;(2)将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,可知∠ADC=∠BOC=150°,即得∠ADO=∠ADC﹣∠ODC=90°,故AD⊥OD;(3)在Rt△AOD中,由勾股定理即可求得AO的长.【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.【点评】本题考查等边三角形中的旋转变换,涉及直角三角形判定、勾股定理等知识,解题的关键是掌握旋转的性质,旋转不改变图形的大小和形状.11.(2022春•相城区校级期末)如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.【分析】先依据平行的性质可求得∠ABB1的度数,然后再由旋转的性质得到△AB1B为等腰三角形,∠B1AC1=50°,再求得∠BAB1的度数,最后依据∠BAC1=∠BAB1﹣∠C1AB1求解即可.【解答】解:∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB1=∠AB1B=50°.∴∠BAB1=80°∴∠BAC1=∠BAB1﹣∠C1AB1=80°﹣50°=30°.【点评】本题主要考查的是旋转的性质、平行线的判断,求得∠BAB1的度数是解题的关键.12.(2022春•南京期中)已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A、C、E三点共线,若AB=3,AC=2,求∠BAD的度数与AD的长.【分析】由旋转的性质可得出∠ADE=60°、DA=DE,进而可得出△ADE为等边三角形以及∠DAE=60°,由点A、C、E在一条直线上可得出∠BAD=∠BAC﹣∠DAE=60°;由点A、C、E在一条直线上可得出AE=AC+CE,根据旋转的性质可得出CE=AB,结合AB=3、AC=2可得出AE的长度,再根据等边三角形的性质即可得出AD的长度.【解答】解:∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°.∵点A、C、E在一条直线上,∴∠BAD=∠BAC﹣∠DAE=120°﹣60°=60°.∵点A、C、E在一条直线上,∴AE=AC+CE.∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5.∵△ADE为等边三角形,∴AD=AE=5.【点评】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE为等边三角形是解题的关键.三.旋转对称图形(共3小题)13.(2022春•东台市月考)正方形至少旋转 90 度才能与自身重合.【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.故答案为:90.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.14.(2022春•常州期末)如图,用六个全等的等边三角形可以拼成一个六边形,三角形的公共顶点为O,则该六边形绕点O至少旋转 60 °后能与原来的图形重合.【分析】根据旋转角及旋转对称图形的定义作答.【解答】解:∵360°÷6=60°,∴该六边形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.【点评】本题考查了旋转角的定义及求法,对应点与旋转中心所连线段的夹角叫做旋转角.15.(2022春•洪泽区校级月考)等边三角形绕一点至少旋转 120 °与自身完全重合.【分析】等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.【解答】解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.四.中心对称(共5小题)16.(2022春•张家港市校级月考)如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△BOC,则点A与点B'之间的距离为( )A.6B.8C.10D.12【分析】根据菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AO′=6,OB′=8,再根据勾股定理即可求出点A与点B′之间的距离.【解答】解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=O′B′=BD=8,在Rt△AO′B′中,根据勾股定理,得:AB′===10.则点A与点B′之间的距离为10.故选:C.【点评】本题考查了中心对称、旋转的性质,菱形的性质,勾股定理等知识,解决本题的关键是掌握旋转的性质.17.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是( )A.3B.4C.D.【分析】根据菱形的性质、旋转的性质,得到OA=OC=O'C=1、OB⊥OC、O'B'⊥O'C、BC=B′C,根据AB′=5,利用勾股定理计算O'B',再次利用勾股定理计算B'C即可.【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC=2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.【点评】本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本性质并灵活运用勾股定理是解题的关键.18.(2022春•涟水县校级月考)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为( )A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【分析】根据点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,得出△ABC与△A′B′C′关于点(﹣1,0)成中心对称.【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【点评】本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.19.(2022春•江阴市校级月考)平面直角坐标系中,点P(3,﹣2)关于点Q(1,0)成中心对称的点的坐标是 (﹣1,2) .【分析】连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.利用AAS证明△QP′N≌△QPM,得出QN=QM,P′N=PM,即1﹣x=3﹣1,y=2,求出x=﹣1,y=2,进而得到P′的坐标.【解答】解:如图,连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.在△QP′N与△QPM中,,∴△QP′N≌△QPM(AAS),∴QN=QM,P′N=PM,∴1﹣x=3﹣1,y=2,∴x=﹣1,y=2,∴P′(﹣1,2).故答案为(﹣1,2).【点评】本题考查了坐标与图形变化﹣旋转,全等三角形的判定与性质,准确作出点P(3,﹣2)关于点(1,0)对称的点P′是解题的关键.20.(2022春•铜山区校级月考)如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是 2 cm2.【分析】由弧OA与弧OC关于点O中心对称,根据中心对称的定义,如果连接AC,则点O为AC的中点,则题中所求面积等于△BAC的面积.【解答】解:连接AC.∵与关于点O中心对称,∴点O为AC的中点,∴AB、BC、弧CO、弧OA所围成的面积=△BAC的面积==2cm2.故答案为:2.【点评】根据中心对称的性质,把所求的不规则图形转化为规则图形即△BAC的面积,是解决本题的关键.五.中心对称图形(共2小题)21.(2022春•南京期末)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.22.(2022春•泰兴市期末)江苏省第二十届运动会将于今年8月28日在泰州举行,运动会会徽依据“江苏•泰州”首字母为原型进行设计.下列字母中,是中心对称图形的有( )个.A.1B.2C.3D.4【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:“J”、“T”都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,“S”、“Z”能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.六.作图-旋转变换(共6小题)23.(2022春•通州区期末)如图,在平面直角坐标系中,A(4,3),B(1,4),C(1,1),将△ABC绕点O逆时针旋转90°,得到△A'B'C'.(1)请在图中画出△A'B'C',并求出△A'B'C'的面积;(2)若△ABC内一点M(a,b),则在△A'B'C'内与M相对应的点M'的坐标是 (﹣b,a) .【分析】(1)根据旋转的性质找出对应点即可求解;再由面积公式求得△A'B'C'的面积;(2)由旋转的性质可得答案.【解答】解:(1)如图所示,△A'B'C'即为所求;∴△A'B'C'的面积=;(2)在△A'B'C'内与M相对应的点M'的坐标是(﹣b,a),故答案为:(﹣b,a).【点评】本题主要考查了作图﹣旋转变换,三角形的面积等知识,熟练掌握旋转的性质是解题的关键.24.(2022春•涟水县校级月考)按下列要求分别画出与四边形ABCD成中心对称的四边形:(1)以顶点A为对称中心的四边形AB1C1D1(2)以BC的中点O为对称中心的四边形A2B2C2D2【分析】(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可;(2)方法同(1),连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可.【解答】解:(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形;如图,四边形AB1C1D1即为所求.(2)连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点.);同理作出其它各点的对称点,连接成四边形,如图所示,四边形A2B2C2D2即为所求,【点评】本题考查了画中心对称图形,掌握中心对称的性质是解题的关键.25.(2022春•天宁区校级期中)正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出△ABC绕点B逆时旋转90°的△A1BC1.(2)画出△ABC关于点O的中心对称图形△A2B2C2.(3)△A1BC1可由△A2B2C2绕点M旋转得到,请写出点M的坐标.【分析】(1)将点A、C分别绕点B逆时针旋转90°得到其对应点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点的对称点,再首尾顺次连接即可;(3)作C1C2、BB1中垂线,交点即为所求.【解答】解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,点M即为所求,其坐标为(0,﹣1).【点评】本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的定义与性质.26.(2022春•阜宁县期中)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标 (﹣4,1) .【分析】(1)根据题意所述的旋转三要素,依此找到各点旋转后的对应点,顺次连接可得出△A1B1C;(2)根据中心对称点平分对应点连线,可找到各点的对应点,顺次连接可得△A2B2C2,结合直角坐标系可得出点C2的坐标.【解答】解:根据旋转中心为点C,旋转方向为顺时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(﹣4,1).【点评】此题考查了旋转作图的知识,解答本题关键是仔细审题,找到旋转的三要素,另外要求我们掌握中心对称点平分对应点连线,难度一般.27.(2022春•锡山区期末)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,在10×10的网格中,有一格点三角形ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).将△ABC绕点C旋转180°,得到△A′B′C,请直接画出旋转后的△A′B′C.(2)在图1中,作出AC边上的高BF,则BF的长为 .(3)如图2,已知四边形ABCD是平行四边形,E为BC上任意一点,请只用直尺(不带刻度)在边AD上找点F,使DF=BE.【分析】(1)利用旋转变换的性质分别作出A,B的对应点A′,B′;(2)利用面积法求出BF,可得结论,(3)连接AC,BD交于点O,连接EO,延长EO交AD于点F,点F即为所求.【解答】解:(1)如图,△A′B′C即为所求;=3×3﹣×2×3﹣×1×3﹣×1×1=4,(2)∵AC==,S△ABC∴×AC×BF=4,∴BF=.故答案为:.(3)如图2,点F即为所求.【点评】本题考查作图﹣旋转变换,平行四边形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.28.(2022春•鼓楼区校级期中)(1)如图1,已知△ABC的顶点A、B、C在格点上,画出将△ABC绕点O 顺时针方向旋转90°后得到的△A1B1C1.(2)如图2,在平面直角坐标系中,将线段AB绕平面内一点P旋转得到线段A′B′,使得A′与点B重合,B′落在x轴负半轴上.请利用无刻度直尺与圆规作出旋转中心P.(不写作法,但要保留作图痕迹)【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)作出线段AB,A′B′的垂直平分线的交点P即可.【解答】解:(1)如图1中,△A1B1C1即为所求;(2)如图2,点P即为旋转中心.【点评】本题考查作图﹣旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.一、单选题1.(2022春·江苏·八年级专题练习)如图所示的五个四边形全等,不能由四边形ABCD 经过平移或旋转得到的是( )A .B .C .D .【答案】A【分析】根据平移或者旋转的性质逐一分析即可.【详解】A.经过平移和旋转可得,符合题意;巩固提升B.经过旋转可得,不符合题意;C.经过平移可得,不符合题意;D.经过旋转可得,不符合题意;故选A.【点睛】本题考查了图形的平移和旋转,掌握平移和旋转的性质是解题的关键.2.(2022秋·江苏盐城·八年级校考期中)下列运动属于旋转的是()A.篮球的运动B.气球升空的运动C.钟表钟摆的摆动D.一个图形沿某直线对折的过程【答案】C【分析】根据旋转的定义进行判断即可.【详解】解:A.篮球的运动不一定是旋转,故A不符合题意;B.气球升空的运动属于平移,不属于旋转,故B不符合题意;C.钟表钟摆的摆动属于旋转,故C符合题意;D.一个图形沿某直线对折的过程是轴对称,不属于旋转,故D不符合题意.故选:C.【点睛】本题主要考查了旋转的定义,解题的关键是熟练掌握旋转的定义.3.(2023春·江苏·八年级专题练习)如图,△ABC绕点C旋转,点B转到点E的位置,则下列说法正确的是( )A.点B与点D是对应点B.∠BCD等于旋转角C.点A与点E是对应点D.△ABC≌△DEC【答案】D【分析】利用旋转的性质即可求解【详解】解:∵△ABC绕点C旋转,点B转到点E的位置,∴△ABC≌△DEC,点B与点E是对应点,点A与点D是对应点,∠ACD与∠BCE是旋转角,。
旋转对称图形与中心对称图形

初二数学讲义第三讲 旋转对称图形与中心对称图形一、主要知识点1.把—个图形绕旋转中心旋转一定(小于周角)角度后,所得图形能够与自身重合,这种图形称为旋转对称图形。
2.中心对称图形是绕某一中心点旋转180°后能与自身重合的旋转对称图形,这个中心点叫做对称中心;3.中心对称图形是旋转对称图形的特例。
4.中心对称的特征:如果两个图形成中心对称,那么对称中心在对应点的连线上且平分这条线段.两个图形的对应角相等,对应线段平行且相等,两个图形的形状和大小都一样。
5.中心对称与中心对称图形:中心对称与中心对称图形是两个不同的概念,它们既有区别又有联系。
区别:(1)中心对称是指两个图形的关系,中心对称图形是指一个具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称,若把中心对称的两个图形看成—个整体,则成为中心对称图形。
6.常见的中心对称图形有:①线段;②相交直线;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦圆。
既是轴对称图形,又是中心对称图形的有:①线段;②相交直线;④矩形;⑤菱形;⑥正方形;⑦圆。
二、例题与练习例1.下列旋转对称图形中绕哪一个点旋转多少度与自身重合?答:例2.如图所示,该图按顺时针绕旋转中心旋转,可与自身重合的度数是 ( ) (A )60°; (B )180°; (C )120°; (D )320°。
答:(1)(3) (4) (5)例3.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACE 的位置。
(1)旋转中心是点 ;(2)旋转角度是 ;(3)△ADE 是 三角形。
例4、如图,已知△ABC 和点O ,画出△A ’B ’C ’,使△A ’B ’C ’和△ABC 关于点O 成中心对称。
解:(1)连结 并延长 到 ,使 = ,于是得到点 的对称点 ;(2)同样画出点 和点 的对称点 和 ; (3)顺次连结 、 、 。
中心对称与旋转的联系和区别

中心对称与旋转的联系和区别
中心对称和旋转都是几何变换中常见的概念,它们之间有一些联系和区别。
联系:
1. 中心对称和旋转都是二维平面上的变换操作,可以改变图形的位置、形状和方向。
2. 中心对称和旋转都是保持图形不变的操作,即变换后的图形与变换前的图形相似。
3. 在一些特定情况下,中心对称和旋转可以相互转化。
例如,一个图形绕着某个点旋转180度后,可以与它的中心对称图形重合。
区别:
1. 中心对称是将图形关于某个中心点进行对称,保持图形形状不变,但可能改变图形的位置和方向。
旋转是将图形绕着某个点旋转一定角度,保持图形位置不变,但可能改变图形的形状和方向。
2. 中心对称的对称轴是直线,而旋转的旋转轴是一个点。
3. 中心对称的变换方式只有一种,即图形关于中心点的对称。
旋转的变换方式有多种,可以是顺时针或逆时针旋转,可以是任意角度的旋转。
4. 中心对称可以是任意次数的对称,而旋转可以是任意角度的旋转。
综上所述,中心对称和旋转虽然有一些联系,但在变换方式、变换效果和变换特点上都存在一些区别。
中心对称与旋转对称

中心对称与旋转对称中心对称和旋转对称是几何学中常见的概念,它们在我们日常生活和各个领域中的应用非常广泛。
本文将从定义、特点以及实际应用等方面对中心对称和旋转对称进行探讨。
一、中心对称中心对称是指平面上的一个图形围绕一个点进行旋转180度后,仍能够与原来的图形完全重合。
中心对称具有如下特点:1. 对称中心:对于一个中心对称的图形,存在一个称为对称中心的点,该点与图形的每一个点都保持相等的距离。
图形中的任意一对对称点均位于对称中心的同一个直径上。
2. 对称轴:对称轴是通过对称中心和图形中任意一对对称点的直线。
对称轴上的任意一点到对称中心的距离与这个点的对称点到对称中心的距离相等。
3. 对称图形:中心对称图形是指具有中心对称性的图形,在进行180度旋转后能够与原来的图形完全重合。
中心对称在我们的日常生活中随处可见。
例如,花朵、雪花、蝴蝶等自然界中的许多图案都具有中心对称性。
此外,在建筑设计、艺术创作等领域中,中心对称也被广泛运用,以达到美观和平衡的效果。
二、旋转对称旋转对称是指平面上的一个图形按照某个点进行旋转一定角度后,可以与原来的图形完全重合。
旋转对称具有如下特点:1. 旋转中心:旋转对称图形的旋转中心是图形中心的一个点,通过该点进行旋转,使图形能够与原来的图形完全重合。
2. 旋转角度:旋转角度是指图形按照旋转中心进行旋转的角度,通常是90度、180度、270度等整数倍的角度。
3. 对称图形:具有旋转对称性的图形,在经过一次或多次旋转后,能够与原来的图形完全重合。
旋转对称在许多领域中都有广泛的应用。
例如,在几何学中,正多边形具有旋转对称性,同时也是中心对称的。
在艺术创作、标志设计等领域,旋转对称常被用于打造简洁而富有美感的图案。
总结:中心对称和旋转对称是几何学中非常重要的概念。
通过中心对称,我们可以实现图形的对称分布和平衡美感;通过旋转对称,我们可以创造出简洁而富有艺术感的图案。
在实际生活和各个领域中,中心对称和旋转对称都有着广泛的应用,丰富了我们的视觉体验。
图形的旋转、中心对称-重难点题型

专题9.1 图形的旋转、中心对称-重难点题型【苏科版】【知识点1 旋转的定义】在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O 叫做旋转中心,转动的角叫做旋转角。
我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。
【知识点2 旋转的性质】旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。
(3)图形的大小与形状都没有发生改变,只改变了图形的位置。
【考点1 旋转对称图形】【例1】(2021秋•丰润区期末)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°【分析】根据五角星的五个顶点等分圆周,所以出现正五边形,进而可得结论.【解答】解:因为五角星的五个顶点等分圆周,所以360°÷5=72°,所以这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为72°.故选:B .【变式1-1】(2021•南关区四模)如图所示的正六边形花环绕中必至少旋转α度能与自身重合,则α为( )A .30B .60C .120D .180【分析】观察可得图形有6部分组成,从而可得旋转角度.【解答】解:该图形围绕自己的旋转中心,至少针旋转360°6=60°后,能与其自身重合.故选:B .【变式1-2】(2021秋•海淀区校级月考)如图是一个旋转对称图形,若将它绕自身中心旋转一定角度之后能与原图重合,则这个角度可能为( )A .30°B .45°C .60°D .90°【分析】如图,观察图形可知:∠AOB =∠EOF =60°,推出旋转角是60°的倍数时,旋转后可以与原来图形重合,由此即可判断.【解答】解:如图,观察图形可知:∠AOB =∠EOF =60°∴旋转角是60°的倍数时,旋转后可以与原来图形重合,故选:C .【变式1-3】(2021春•高平市期末)下列图形中,是旋转对称图形的有( )A.1个B.2个C.3个D.4个【分析】根据旋转对称图形的定义对四个图形进行分析即可.【解答】解:旋转对称图形是从左起第(1),(2),(3);不是旋转对称图形的是(4).故选:C.【考点2 由旋转的性质求角的度数】【例2】(2021秋•川汇区期末)如图,在△ABC中,∠C=90°,∠ABC=40°.将△ABC 绕顶点A逆时针旋转一定的角度得到△AB′C′,并使点C的对应点C′恰好落在边AB 上,则∠BB'C'的度数是()A.20°B.25°C.30°D.35°【分析】根据旋转可得∠BAB′=∠ABAC=50°,A′B=AB,∠C=∠AC'B'=90°,得∠ABB′=∠AB'B=65°,进而可得∠BB'C'的度数.【解答】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°.∵将△ABC绕点A逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠BAB′=∠ABAC=50°,A′B=AB,∠C=∠AC'B'=90°,∴∠ABB′=∠AB'B=12×(180°﹣50°)=65°,∴∠BB'C'=90°﹣∠ABB'=90°﹣65°=25°,故选:B.【变式2-1】(2021秋•沙坪坝区校级期末)如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,若AF=AD,则旋转角α的度数为()A.50°B.40°C.30°D.20°【分析】根据旋转的性质得∠DCA=α,CD=CA,则∠CDA=∠CAD=12(180°﹣α)=90°−12α,利用三角形外角的性质得∠DF A=30°+α,AF=AD,利用等腰三角形的性质得30°+α=90°−12α,即可得到α的值.【解答】解:∵△ABC绕C点按逆时针方向旋转α角(0°<α<90°)得到△DEC,∴∠DCA=α,CD=CA,∴∠CDA=∠CAD=12(180°﹣α)=90°−12α,∵AF=AD,∴∠ADF=∠AFD,∵∠DF A=30°+α,∴90°−12α=30°+α,解得α=40°;故选:B.【变式2-2】(2021秋•泰山区期末)小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A.15°或45°B.15°或45°或90°C.45°或90°或135°D.15°或45°或90°或135°【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解.【解答】解:设旋转的度数为α,若DE∥AB,则∠E=∠ABE=90°,∴α=90°﹣30°﹣45°=15°,若BE∥AC,则∠ABE=180°﹣∠A=120°,∴α=120°﹣30°﹣45°=45°,若BD∥AC,则∠ACB=∠CBD=90°,∴α=90°,当点C,点B,点E共线时,∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°﹣45°=135°,故选:D.【变式2-3】(2021秋•南召县期末)一副直角三角尺按如图①所示叠放,现将含45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针旋转.如图②,当∠CAE =15°时,此时BC∥DE.继续旋转三角尺ABC,使两块三角尺至少有一组边互相平行,则∠CAE(0°<∠CAE<180°)其他所有可能符合条件的度数为.【分析】分四种情况进行讨论,分别依据平行线的性质进行计算即可得到∠CAE的度数,再找到关于A点中心对称的情况即可求解.【解答】解:如图②,当BC∥DE时,∠CAE=45°﹣30°=15°;如图,当AE∥BC时,∠CAE=90°﹣30°=60°;如图,当DE∥AB(或AD∥BC)时,∠CAE=45°+60°=105°;如图,当DE∥AC时,∠CAE=45°+90°=135°.综上所述,旋转后两块三角板至少有一组边平行,则∠CAE(0°<∠CAE<180°)其它所有可能符合条件的度数为60°或105°或135°,故答案为:60°或105°或135°.【考点3 由旋转的性质求线段的长度】【例3】(2021秋•怀化期末)如图,△ABC是等边三角形,点P在△ABC内,P A=6,将△P AB绕点A逆时针旋转得到△QAC,则PQ的长等于()A.6B.√6C.3D.2【分析】根据等边三角形的性质推出AC=AB,∠CAB=60°,根据旋转的性质得出△CQA≌△BP A,推出AQ=AP,∠CAQ=∠BAP,求出∠P AQ=60°,得出△APQ是等边三角形,即可求出答案.【解答】解:∵△ABC是等边三角形,∴AC=AB,∠CAB=60°,∵将△P AB绕点A逆时针旋转得到△QAC,∴△CQA≌△BP A,∴AQ=AP,∠CAQ=∠BAP,∴∠CAB=∠CAP+∠BAP=∠CAP+∠CAQ=60°,即∠P AQ=60°,∴△APQ是等边三角形,∴QP=P A=6,故选:A.【变式3-1】(2021秋•甘井子区期末)如图,Rt△ABC中,∠ABC=90°,∠BAC=60°,AB=1,将△ABC绕点B顺时针旋转得到△A'BC',若直线A'C'经过点A,则CC'的长为()A.1B.2C.√3D.4【分析】根据旋转的性质可证明△BCC'、△ABA'是等边三角形,再利用含30°角的直角三角形的性质可得AC=2AB=2,由勾股定理得BC=√3,从而解决问题.【解答】解:∵将△ABC绕点B顺时针旋转得到△A'BC',∴BA=BA',BC=BC',∠BAC=∠BA'C',∵∠BAC=60°,∴∠A'=60°,∴△ABA'是等边三角形,∴∠ABA'=60°,∴∠CBC'=∠ABA'=60°,∴△BCC'是等边三角形,∴CC'=BC,∵∠ABC=90°,∠BAC=60°,∴∠ACB=30°,∴AC=2AB=2,∴BC=√3,∴CC'=BC=√3,故选:C.【变式3-2】(2021春•覃塘区期末)如图,在三角形ABC中,∠ACB=90°,AB=10,AC =8,BC=6,将三角形ABC绕顶点C逆时针旋转得到三角形A'B'C,A'B'与AC相交于点P,则线段PC长度的最小值为()A.6B.5.2C.4.8D.4【分析】当CP与A'B'垂直时,CP有最小值,即为直角三角形斜边上的高,由勾股定理求出CP长即可【解答】解:当CP与A'B'垂直时,CP有最小值,如图,由旋转的性质知B'C=BC=6,A'C=AC=8,AB=A'B'=10,∵S△A'B'C=12×B'C×A'C=12×A'B'×CP,∴CP=6×810=4.8.故选:C.【变式3-3】(2021秋•江油市期末)把一副三角板如图1放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,CD=8把三角板DCE绕点C顺时针旋转15°得到三角形D1CE(如图2),此时AB与CD1交于点H,则线段AD1的长度为√34.【分析】由直角三角形的性质可得AC=BC=3√2,∠DCE=60°,∠ABC=∠BAC=45°,由旋转的性质可求∠D1CB=45°,由直角三角形的性质可求AH=CH=3,由勾股定理可求解.【解答】解:如图,AB于CD1交于点H,∵∠ACB=∠DEC=90°,∠BAC=45°,∠CDE=30°,斜边AB=6,CD=8,∴AC=BC=3√2,∠DCE=60°,∠ABC=∠BAC=45°,∵将三角板DCE绕点C顺时针旋转15°得到三角形D1CE,∴∠D1CB=45°,CD1=CD=8,∴AB⊥CD1,∴AH=CH=3,∴D1H=5,∴AD1=√AH2+D1H2=√25+9=√34,故答案为:√34.要作出一个图形关于某一点的成中心对称的图形,【考点4 中心对称图形】【例4】(2021秋•招远市期末)围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.一棋谱中四部分的截图由黑白棋子摆成的图案是中心对称的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项B、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:A.【变式4-1】(2021秋•通榆县期末)如图,在下面的扑克牌中,牌面是中心对称图形的有()A.2张B.3张C.4张D.5张【分析】根据中心对称图形的概念和扑克牌的花色求解.【解答】解:由于黑桃9与梅花3、黑桃8中间的图形旋转180°后无法与原来重合,故不是中心对称图形;只有红桃2,方片J是中心对称图形,共2张.故选:A.【变式4-2】(2021秋•海阳市期末)我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是()A.①③B.①④C.②③D.②④【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:①不是中心对称图形,故本选项不合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不合题意;④是中心对称图形,故本选项符合题意;故选:D.【变式4-3】(2021秋•市南区期末)万花筒写轮眼是漫画《火影忍者》及其衍生作品中的一种瞳术,下列图标中,是中心对称图形的有()个.A.2B.3C.4D.5【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:从左往右第二、四、五这3个图形不能找到这样的一个点,使图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,所以不是中心对称图形,第一、三这两个图形能找到这样的一个点,使图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,所以是中心对称图形,故选:A.【考点5 设计中心对称图形】【例5】(2021秋•迁安市期末)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形是中心对称图形的位置是()A.①②B.③④C.②④D.②③【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:将图1的正方形放在图2中的③④位置,所组成的图形是中心对称图形.故选:B.【变式5-1】(2021春•汝阳县期末)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故答案为:③.【变式5-2】(2021秋•辛集市期末)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.【分析】(1)平行四边形是中心对称图形但不是轴对称图形;(2)等腰梯形是轴对称图形但不是中心对称图形;(3)正方形既是轴对称图形又是中心对称图形.【解答】解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.【变式5-3】(2021•宁波模拟)图1,图2,图3均是由边长为1的正三角形构成的网格,每个网格图中有5个正三角形已涂上阴影.请在余下空白正三角形中,按下列要求涂上阴影:(1)在图1中涂上一个阴影正三角形,使得阴影部分图形是中心对称图形,但不是轴对称图形;(2)在图2中涂上两个阴影正三角形,使得阴影部分图形是轴对称图形,但不是中心对称图形;(3)在图3中涂上三个阴影正三角形,使得阴影部分图形既是中心对称图形,又是轴对称图形.【分析】(1)根据题意涂阴影;(2)根据题意涂阴影;(3)根据题意涂阴影;【解答】解:(1)如图1;(2)如图2,答案不唯一;(3)如图3,答案不唯一.【考点6 旋转变换作图】【例6】(2021秋•广饶县期末)如图,在平面直角坐标系中,△ABC的三个顶点分别是A (1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形,判断△A1B1C1与△A2B2C2是否成中心对称?如果是,直接写出对称中心的坐标.【分析】(1)利用点平移的坐标变换规律得到A1、B1、C1的坐标,然后描点即可;(2)根据关于原点对称的点的坐标特征得到A2、B2、C2的坐标,然后描点即可;(3)连接A1A2、B1B2、C1C2,它们相交一点,则两个三角形关于这个点中心对称.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)由图可得,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.【变式6-1】(2021秋•普陀区期末)如图,已知四边形ABCD和直线MN.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2的位置关系是.【分析】(1)根据轴对称的性质即可画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)根据中心对称性质即可画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD 关于点O成中心对称;(3)结合以上画图即可得四边形A1B1C1D1与四边形A2B2C2D2的位置关系是.【解答】解:(1)如图,A1B1C1D1即为所求;(2)如图,A2B2C2D2即为所求;(3)关于直线CO成轴对称.故答案为:CO.【变式6-2】(2021秋•顺城区月考)在如图所示平面直角坐标系中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上.(1)将△ABC以O为旋转中心逆时针旋转90°,画出旋转后的△A1B1C1,并直接写出坐标A1(﹣4,2),B1(﹣2,1),C1(﹣1,5);(2)画出△A1B1C1关于原点对称的△A2B2C2,并直接写出坐标A2(4,﹣2),B2(2,﹣1),C2(1,﹣5);(3)若△ABC内有一点P(a,b),经过上面两次变换后点P在△A2B2C2中的对应点为P2,请直接写出点P2的坐标.(用含a,b的代数式表示)【分析】(1)分别作出三个顶点绕点O逆时针旋转90°所得对应点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点对称的对应点,再首尾顺次连接即可;(3)结合以上对应点的坐标变化规律可得答案.【解答】解:(1)如图,△A1B1C1即为所作,A1(﹣4,2),B1(﹣2,1),C1(﹣1,5),故答案为:(﹣4,2),(﹣2,1),(﹣1,5),(2)如图,△A2B2C2即为所作,A2(4,﹣2),B2(2,﹣1),C2(1,﹣5),故答案为:(4,﹣2),(2,﹣1),(1,﹣5),(3)根据题意知P2(b,﹣a).【变式6-3】(2021秋•孝义市期中)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(5,4),B(1,3),C(3,1),点P(a,b)是△ABC内的一点.(1)以点O为中心,把△ABC顺时针旋转90°,画出旋转后的△A1B1C1,并写出A1,B1,C1的坐标:A1(4,﹣5),B1(3,﹣1),C1(1,﹣3).注:点A 与A1,B与B1,C与C1分别是对应点;(2)点P的对应点P1的坐标是(b,﹣a);(3)若以点O为中心,把△ABC逆时针旋转90°,则点P的对应点P2的坐标是(﹣b,a),点P1与点P2关于原点对称.(填写“x轴”、“y轴”或“原点”)【分析】(1)利用网格特点和旋转的性质画出A、B、C的对应点A1,B1,C1,然后写出A1,B1,C1的坐标;(2)利用A1,B1,C1的坐标特征写出点P的对应点P1的坐标;(3)先写出点P的对应点P2的坐标,再利用P1和P2的坐标特征可判断点P1与点P2关于原点对称.【解答】解:(1)如图,△A1B1C1即为所求;A1(4,﹣5),B1(3,﹣1),C1(1,﹣3);故答案为(4,﹣5),(3,﹣1),(1,﹣3);(2)点P的对应点P1的坐标是(b,﹣a);故答案为(b,﹣a);(3)点P的对应点P2的坐标是(b,﹣a),点P1与点P2关于原点对称.。
《中心对称图形》旋转中心对称图形

特点
中心对称图形有一个特点,就是 围绕一个点旋转180度后,能够与 原来的图形重合。这个点通常被 称为“对称中心”。
实例
常见的中心对称图形有圆形、矩形 、菱形等。
中心对称图形的性质
旋转性质
对于中心对称图形,如果我们 将其围绕对称中心旋转180度, 那么它所对应的点也会旋转180
度。
对称性质
中心对称图形的两个部分是关 于对称中心对称的,也就是说 ,如果我们将图形的两部分沿 着对称中心对折,它们会重合
04
中心对称图形和旋转中心对 称图形的实例
中心对称图形的实例
圆
圆是一种典型的中心对称图形,圆的直径是它的对称轴,圆心是 它的对称中心。
蝴蝶
蝴蝶的身体结构呈现出中心对称的特性,当它停在花朵上时,翅 膀上的花纹左右对称,给人以美的享受。
雪花
雪花是一种美丽的晶体,其结构呈现出中心对称的特性,即从中 心向各个方向扩展的形状都是相同的。
中心对称图形与旋转中心对称图形的区别
中心对称图形是对称中心两侧的图形 关于对称中心进行对称,而旋转中心 对称图形是图形围绕某一点旋转180
度后与原图形重合。
中心对称图形是一种静态的对称形式 ,而旋转中心对称图形是一种动态的
对称形式。
中心对称图形强调的是两侧图形的对 称性,而旋转中心对称图形强调的是
THANK YOU.
图形的旋转和重合。
中心对称图形与旋转中心对称图形的转化
旋转中心对称图形可以通过将中心对称图形绕其对称中心旋转180度得 到。
中心对称图形可以通过平移和翻转得到旋转中心对称图形。
在某些情况下,可以将中心对称图形转化为旋转中心对称图形,例如将 一个平行四边形绕其对角线的交点旋转180度后可以得到一个菱形,这 个菱形就是一个旋转中心对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合进行图案设计. ② 按要求作出简单平面图形变换后的图形.
三、基本练习 填空题
45
1. 正八边形绕其中心至少要旋转_______度才能
与原来图形重合。
线段、正方形和圆
2. 在线段、锐角、等边三角形、正方形和圆中,
是中心对称图形的有 ___________________________ 。 A 和 60°
结束
; /Data/map/sitemap.html ;
唧,唧唧!" 小白却毫不在乎,转头朝白重炙叫了两声,还伸出舌头tian了白重炙一下,便钻出白重炙の手,继续扑向包裹,又找出一枚黄色魔晶张嘴吃下. "这……" 白重炙摇了摇头,转而想到,自己这只战智本来就跟别の战智不同.一般の战智能在一出生就有那么恐怖の速度那么僵硬の牙齿?一般 の战智能在每度过虚弱期の情况下,战斗力能秒杀二级魔智?而且现在,小白沉睡の时间也越来越短,想必也快度过虚弱期了.想想也就释然了不在去管它. 一枚,二枚……五枚,六枚. 小白根本就不去吞食一般の魔晶,今天竟然只吃四级魔晶.很快包裹里の六枚魔晶全部都给它吃完了.而他竟然好 像还不满足般,竟然抓起一枚绿色の鸡蛋般の魔晶.看了两眼,丢进了嘴巴里,嘎嘎吃了起来. "停…别吃!你二爷の,这可是唯一一枚五级魔晶啊!" 白重炙一阵肉疼,这可是价值数万晶币の五级魔晶啊.昨天击杀の猎人全身最值钱の东西,就是这枚五级魔晶了,没想到一口就给小白吃了. 望着小 白心满意足のtian着嘴皮,偶尔还打个饱嗝什么の,白重炙气不打一处来,就要伸手一把抓过小白过来一阵好打. 可是就在他伸出手の时候,异变突显,他の手陡然间停到了空中,眼中露出不可思议の神情. "唧唧…" 小白四脚着地,昂头大叫一声,眼神顿时变得凌厉起来,全身焕发出一道金色の光 芒.金光中の小白,神情威严,霸气十足,似乎变成了一只从远古踏云而来の狂狮. 紧接着,小白浑身颤抖起来,皮肉一阵鼓动,一阵收缩,竟然缓慢の开始变大.巴掌大の小白一下变成了婴儿般大小,而且还在持续の长大中. "这,这……" 白重炙看得目瞪口呆,这是什么情况?小白是孙悟空?会七十二 种变化? 额?还在长,竟然长成风狼般大小了. 最终,小白长到了一只牛犊般大小时候,就不在长大了.望着眼前身长一米七八,一米高の小白,白重炙傻了,这事情毕竟超出了他所知の范围了. 牛犊般大小の小白却若无其事の扭了扭屁股,满意の走了几圈,才转到傻傻の白重炙面前,两颗黑幽幽の眼 珠子闪过一丝笑意,张口露出两排森森の白牙. 而就在白重炙傻乎乎の看着,变大の小白时.发生了一件更让他吓の半死の事情,他の脑海里直接突兀の响起一个声音: "你好,老大!" 当前 第叁0章 零26章 噬魂智 "谁?是谁?" 任谁在一个安静阴森の山洞里凭空听到一个声音,都会被吓の跳 起来,此时の白重炙也不例外,他手慌脚乱の跳起来,眼神警惕の四处乱扫着,脸上一副惊慌见鬼の表情.看书 "别激动?老大,我是小白啊!" 就在白重炙四处乱看,还准备出去瞄瞄之时,声音又凭空响起. 小白?哪个小白? 白重炙心里疑惑の想着,突然他转过身望着牛犊般大小の战智,惊愕の张开 嘴巴,伸出手指,结巴の问道:"小…小白,是你在说话?" "是の,老大!我是小白,我能通过灵魂和你直接传音." 看着小白那颗硕大の狗头,还肯定の点着头,白重炙伸出双手揉了揉眼睛,然后伸出一根手指,放在嘴里狠狠咬下. "啊…" 紧接着,山洞里传来一声痛苦绝伦の惨叫… …… 十分钟之后, 白重炙终于清楚了几件事情. 自己不是在做梦,自己の战智不是成妖怪了,而是得到了它们の族群の部分传承,懂得了一些秘法,而自己又是和它缔结了灵魂契约,所以小白能直接和他灵魂传音. "小白,依你这么说,你是得到你们族群の部分秘法传承,那你知道你属于是品种の魔智?是几品の?" 白 重炙盘坐在地上,对着小白の狗头,平静の问道.心里却紧张万分,小白既然连"说话"这么高难度の东西都会,那么他の品阶肯定不低吧,哇!不会真是圣智吧? "我这种魔智,在传承记忆里,叫噬魂智,至于什么品阶,我…也不知道,传承记忆里没有,但是我想绝对不会比那条你所说の大蛇差."小白眨 了眨眼皮,直接传音. "噬魂智,名字听起来很牛啊…不比大蛇差,什么大蛇?你不会说の是那条青龙吧?"白重炙猛然睁大眼,看到小白又是骄傲の点了点头,心中狂喜无比.果然!直接の猜测是对の,圣智啊!圣智!想想自己竟然拥有了白家第二只传说中の圣智,他心中就澎湃无比. 接着他突然想 起什么,搓了搓手问道:"那?作为圣智,你有什么特别牛逼の技能没有?比如会飞啊,喷火啊,秒杀敌人什么の?" "目前没有,只会变身,就是你看到の这种,变身后速度提高很多."小白摇了摇狗头道. "很多?很多是多少?" "比以前快了一倍左右!" "我靠…" 一倍,以前小白の速度能等同将军境一 重の练家子了,现在快了一倍?那不是基本上能和元帅境练家子比肩了吗?变态啊,变态. "提高了那么多,那么你の意思,你现在度过了虚弱期,迈入成长期了?"白重炙沉思片刻,说道,如果进入成长期了,那不是意味着可以回家了?一想到家中那个柔弱の身影,正依靠在自家小院门口,苦苦の等着自 己回来,他の心里有了一丝急迫想回家の冲动. "额!还没,大概…还需要五枚枚刚才那种绿色の魔晶,就可以了." "我靠,你以为那是红薯?那可是五级魔晶,好不容易杀了一个猎人才偶然得到一枚,以我现在の实力去猎杀五级魔智等于是送死!"白重炙心中仿佛被冷水当头泼下,愤愤の说道. 小 白不以为然,扭了扭脖子,传音道:"我…可以,我变身后,速度等同六级魔智,猎杀五级魔智,简单." "额?"白重炙眉头一挑,呼呼站了起来,大手一挥,冲出山洞:"那还等什么?猎五级魔智去…" …… 丛林深处,枝叶茂密,杂草遍地. 此时,一个小山谷里,正上演着一幕惊心动魄の战斗. 战斗の双方, 分别是一只牛犊般大小の狮鼻犬和一只大象般大小の独角犀牛. 独角犀牛,五级魔智,长约四米,高约两米,全身皮粗肉厚,额头顶上一根锋利の独角可刺穿钢板.独角犀牛个xing温和,只要不进入它の领地,都不会激怒它,可是眼前这只可恶の狮鼻犬居然大摇大摆の直接走到他の面前,还露出轻蔑 の眼神,实在让它恼火之至,所以他决定狠狠の教训它.于是它粗壮の后腿在地面狠狠の摩擦了几下,摇晃着它那颗硕大の头颅,如同倒塌一堵墙般直接朝狮鼻犬压去. 看着傻乎乎の狮鼻犬一动不动の站在原地,独角犀牛眼中泛出一阵红光,它决定不动用它那锋利の独角,直接用它硕大の身躯压扁 这只冒犯它の小犬. 小白看着带着滚滚烟尘,对着他横冲直撞而来の独角犀牛,眼中闪过一丝不屑,四脚一压,全身化作一道残影,在独角犀牛冲过来前几秒,恰好闪到了它の侧面.张开嘴巴,露出一口雪白の利齿,狠狠の在犀牛侧背上咬下. 哧… 犹如布匹被撕裂の声音响起,空中洒起一片血雾,坚 硬の犀牛皮竟然如图块腐朽の碎步般,轻易被小白撕裂下一片. "嗷,嗷!" 独角犀牛陡然间被撕下一块皮肉,却并未胆怯,而是更加愤怒の转过身子,更加快速の朝小白撞来,这次,它摇晃の头颅低低の朝下,锋利の独角幻起一道道残影,残暴凶蛮之气笼罩着整个山谷. 小白眼神中没有丝毫变色,依 旧在最紧要の关头,躲避开来,张嘴又是一口,又是带起一片血雾和一块皮肉. "啧啧!这速度,这反应,不愧为圣智啊.看来,这头五级魔智,撑不了多久了.可惜,小白还没度过虚弱期,一天只能变身一次.加上这头独角犀牛の魔晶,一共才三枚五级魔晶,还有两天才能让它成功度过虚弱期,还有两天 才能…回家!" 山谷の一颗大树上,白重炙猫在茂密の枝叶间,紧张の望着小白和独角犀牛の战斗,心里却是感叹着. 根据小白の说法,它还没完全度过虚弱期,所以每天只能变身一次,而且每次变身时间只有几个小时.于是一人一智每天清晨出发,从原来の那个山洞里,往里面深入了几十公里,进 入内围区域,内围区域,五级魔智还是比较容易找到の.然后开始小心翼翼の寻找落单或者独居の五级魔智.找到以后,白重炙就躲起来,小白变身猎杀五级魔智,猎杀完后迅速往回走,离开内围区域,回到原来居住の小山洞. 而今天已经是第四天了,前三天"两人"分别猎杀了一只五级影狐和一只落 单地肉食四角羊以及一只五级狂狮.加上这独角犀牛一共四枚五级魔晶了,再猎杀一头五级魔智,小白就可以迈入成长期了. "老大,搞定了!" 就在白重炙思索之际,小白突然传音,他惊愕の抬起头,不远处独角犀牛已经轰然倒地,正张大嘴巴淌着鲜血,四只粗壮の大腿不停の抖动着,看来是活不成 了. 咻… 白重炙对着树干一蹬,凭空跃下,着地时双腿一缩,就地一滚,很自然の站起来飞快跑去. 来到独角犀牛头前,它伸出匕首,开始采集魔晶和材料.绿色魔晶掏出来,直接丢给小白,独角犀牛全身材料都很贵,但是白重炙却拿不动,只能把它额头顶上の那根细长の独角挖出来,这东西去雾霭城 卖可是能值几千晶币啊. 好东西啊!好东西!晶莹剔透,象牙一般. 白重炙捧着独角仔细观看着,打开后背包裹,放好.就在他考虑是否割点犀牛皮,一起打包带回去の时候,旁边吃完魔晶の小白,突然站立起来,眼睛惊恐の望着右边,头部像狮毛一样の毛发根根竖立,似乎遇到了什么让它特别惊恐 の事. 额?怎么了? 白重炙感觉到小白の异状,疑惑の朝那边望去,可是什么也没发现,这时小白突然传音:"老大快上我背上,我感觉到一只恐怖の魔智正朝这里赶来,最少是六级." "六级?" 白重炙一听浑身汗毛竖起,连忙一骨碌滑上小白の背上,抱紧它の头部.小白双腿一划,猛然提速,飞快朝山 外跑去. "吼!" 后方响起一声巨大の吼声,声音震天动地,久久在森林里回响. 匆忙之中白重炙回头一憋,透过稀疏の古树,一只巨大の魔智正愤怒の大吼着,急速朝自己这边赶来,冰冷泛光の青色鳞甲,和雪白反光の牙齿相互映衬,巨大粗壮の尾巴胡乱扫着,扫到一颗颗千年古树,后背中央一排黑 幽幽巨刺从头长到尾,狰狞恐怖至极… "六级魔智——巨刺龙,快跑小白,给它追到,我们都得死!" 当前 第叁壹章 零27章 生死一刻(上) 无需置疑,龙这种生物在炽火大陆来是一种很强大の存在.而能和龙有点联系,或者说有点裙带关系の魔智,那也是很强大の. 巨刺龙作为龙の远房亲戚, 它到底是龙和什么生物杂交而出,这点已经无从考究,但是巨刺龙の强大却是无需置疑地.做为六级巅峰接近七级の魔智,巨刺龙战力等同于将军境巅峰の存在,而由于其背后の十二根剧毒巨刺,就是元帅境の强者也不想招惹他. 白重炙目前停留在统领境一重,离二重还有一段差距.而小白虽然是 圣智般の存在,可是还在处在虚弱期,差不多也就是人类の婴儿期.你能指望一个婴儿去杀死一个两米高の大