中考数学-圆知识点考点回顾与思考
中考圆形知识点总结数学

中考圆形知识点总结数学数学是中考中最重要的科目之一,而在数学中,圆形知识点是一个重要的部分。
本文将为大家总结中考数学中的圆形知识点,并介绍一些解题的步骤和思路。
一、圆的基本概念圆是由平面内到定点的距离恒定的所有点的集合。
其中,定点称为圆心,距离称为半径。
- 圆心:圆心通常用大写字母O表示。
- 半径:半径通常用小写字母r表示。
二、圆的性质 1. 同圆弧对应的圆心角相等。
2. 同弦对应的圆心角相等。
3. 圆内接角等于其对应的圆弧的一半。
三、圆的计算 1. 圆的周长圆的周长是指圆的边界的长度,可以通过公式C=2πr来计算,其中C表示周长,r表示半径。
2.圆的面积圆的面积是指圆的内部区域的大小,可以通过公式S=πr²来计算,其中S表示面积,r表示半径。
四、圆与三角形的关系 1. 圆与直角三角形 - 在直角三角形中,斜边的一半恰好可以作为圆的半径,而直角边可以作为圆心与圆的切点。
- 根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方,即a²+b²=c²。
其中a、b表示直角边,c表示斜边。
2.圆与等腰三角形•在等腰三角形中,等腰边恰好可以作为圆的半径,并且通过等腰边的中垂线可以找到圆心。
•根据勾股定理,等腰三角形的底边的一半为半径,底边的一半和高可以构成直角三角形。
五、圆的相关题型解题步骤 1. 计算周长和面积 - 根据给定的半径或直径,使用相应的公式计算圆的周长和面积。
- 注意单位的换算,保留合适的精度。
2.圆与三角形的关系•根据题目中给出的条件,结合圆的性质和三角形的性质,找到合适的角度和边长关系。
•如果涉及到勾股定理,可以根据已知条件计算未知边长或角度。
3.运用解题方法•对于复杂问题,可以运用解题方法,如相似三角形、平行线性质、面积比较等,来简化解题过程。
•注意思考解题的合理性和步骤的连贯性,避免漏解或多解的情况。
六、小结圆形知识点在中考数学中占据重要的地位,掌握圆的基本概念和性质,能够运用相关公式计算圆的周长和面积,理解圆与三角形的关系,在解题过程中合理运用解题方法,都是取得好成绩的关键。
中考圆的知识点总结(一)

中考圆的知识点总结(一)中考圆的知识点总结前言在中考数学中,圆是一个重要的知识点,掌握圆的性质和相关计算方法对于提高数学成绩至关重要。
本文将对中考圆相关的知识进行总结和归纳,以帮助同学们更好地掌握和应用。
正文1. 圆的定义和性质•圆的定义:圆是平面上到一个定点距离相等的所有点的集合。
•圆的性质:–圆心:圆上所有点到圆心的距离相等。
–半径:圆心到圆上任意一点的距离为半径。
–直径:通过圆心的两个点组成的线段,长度等于半径的两倍。
–弧:在圆上两个点之间的部分。
–相交:两个圆的交点即为相交的部分。
–切线:与圆只有一个交点的直线。
2. 圆的计算公式•圆的周长:C = 2πr,其中r为半径。
•圆的面积:S = πr²。
3. 圆的相关定理•弧长定理:弧长 = 弧度× 半径长度。
•弧度与度的关系:一周对应的弧度为2π弧度,180°对应π弧度,360°对应2π弧度。
•圆心角定理:圆心角的弧度等于对应的弧的弧度。
•切线定理:切线与半径垂直。
4. 圆的应用•判断点是否在圆的内部、外部或边界上。
•利用圆的性质解决几何问题,如求两个圆的位置关系、求切线等。
•应用圆的计算公式计算周长和面积。
结尾通过对中考圆的知识进行总结和归纳,我们可以更好地掌握和运用圆的相关性质和计算方法。
希望同学们在备考中能够深入理解这些知识,灵活运用,取得优异的成绩!5. 圆与三角形的关系•内切圆:三角形内部与三条边都相切的圆。
•外接圆:三角形三个顶点在圆上的圆。
•正切圆:三角形的一个顶点在圆上,另外两边分别与圆相切的圆。
6. 圆与直线的关系•弧的度数:弧所对圆心角的度数,通常表示为θ。
•弦:圆上两个点之间的线段。
•弦长定理:弦长等于过弧中点的直径的两倍乘以sin(θ/2)。
•弦切角定理:切线与弦的交点所对的圆心角等于弦上所对的弧的圆心角的一半。
7. 圆与平行线的关系•切割线定理:若两条平行线分别与一个圆相交,那么它们所切割出的弦、切线和割线都是相等的。
中考圆形知识点总结

中考圆形知识点总结一、圆的定义圆是由平面上任意一点到圆心的距离都相等的一组点的集合,这个相等的距离就是圆的半径,用R或r表示。
如果把圆心用O表示,圆上一点用A表示,那么圆的表示就是O为圆心,R为半径的圆,通常写作O(R)。
二、圆的性质1. 圆的周长和面积圆的周长,即圆周长,也称为圆的周长。
由于圆是一个闭合曲线,所以圆的周长是指圆的周围的长度。
圆的周长L可以用公式L=2πr来表示,其中π取约等于3.14。
圆的面积A也和圆的半径r有关,圆的面积A=πr^2。
2. 圆的直径圆的直径是圆上任意两点之间经过圆心的线段的长度,它恰好是圆的半径的两倍,即d=2r。
3. 圆心角的度数圆心角是指以圆心为顶点的角,圆心角的度数可以用角度或弧度来表示。
圆心角的度数等于所对圆弧的中心角。
例如,一个圆的圆周角是360°,因此圆周角所对的圆弧的中心角也等于360°。
4. 圆锥相似圆锥相似是指对于两个圆,如果它们的半径之比相等,则这两个圆是相似的。
5. 圆内接四边形在一个圆中,如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
在圆内接四边形中,相对的角相等,两对相对边之积相等。
6. 圆对称圆对称是指图形绕圆心旋转180°后,图形不变。
圆对称的图形具有很高的美感,例如很多具有圆对称的图案都可以被人们所接受和欣赏。
三、相关定理1. 圆心角定理圆心角定理是指圆心角的度数等于所对圆弧的中心角,即一个圆心角的度数等于它所对的圆弧的度数。
2. 弦长定理弦长定理是指一个圆上任意一条弦所对的两个弧的长度之和,等于这条弦的长度的平方。
3. 垂径定理垂径定理是指一个圆上的直径垂直于与之相交的弦,且中点与圆心和交点共线。
4. 弧长、扇形面积圆的弧长可以用弧度来表示,即弧长s=θr,其中r为半径,θ为圆心角的弧度。
圆的扇形面积也可以用弧度来表示,扇形的面积等于所对圆心角的弧度的一半乘以半径的平方。
四、计算题1. 计算圆的周长和面积计算圆的周长和面积是圆形题目中最基本的计算题,需要根据给定的半径或直径进行计算。
九年级圆知识点归纳总结

九年级圆知识点归纳总结圆是数学中的一个基本几何概念,在九年级的几何学学习中占据重要的地位。
了解和掌握圆的相关知识点对于解决与圆相关的问题至关重要。
本文将对九年级圆的知识点进行归纳总结,帮助学生们更好地理解和应用这些知识。
一、圆的定义与性质1. 圆的定义:圆是一个平面上所有到圆心的距离都相等的点的轨迹。
2. 圆的要素:圆心、半径。
3. 圆的性质:- 圆上的任意一点到圆心的距离都相等。
- 圆的直径是通过圆心的一条线段,它的长度等于圆的半径的两倍。
- 圆的周长是圆周上的任意一点至邻近点的距离之和,也可以通过公式C=2πr计算(其中C表示圆的周长,r表示半径)。
- 圆的面积是圆内所有点构成的区域,可以通过公式A=πr²计算(其中A表示圆的面积)。
二、圆与直线的关系1. 切线:切线是与圆相切于一点的直线,且与半径垂直。
2. 弦:弦是圆上任意两点所确定的线段。
3. 弧:弧是圆周上两点之间的一段弧线。
4. 弧度与弧长的关系:弧度是角度的一种衡量单位,可以用弧长与半径之比来表示。
弧度制中一周对应的弧长等于圆的周长,即2πr。
三、圆的角关系1. 圆心角:由半径的两条边所夹的角称为圆心角。
2. 圆周角:由两条弧线所夹的角称为圆周角。
3. 圆心角与弧度的关系:圆心角的度数等于它所对应的弧度的长度。
四、圆的相交关系1. 相离:两个圆没有任何交点。
2. 外切:两个圆相切于一点,且其中一个圆位于另一个圆的外部。
3. 内切:两个圆相切于一点,且其中一个圆位于另一个圆的内部。
4. 相交:两个圆有两个交点。
五、圆的应用1. 利用圆求解问题:通过已知条件和圆的性质,可以解决与圆相关的实际问题,如求解圆的面积、周长等。
2. 圆的建模:在数学建模中,圆的概念具有广泛应用,可用于描述自然界中的许多现象和实际问题,如行星运动、电子轨道等。
六、圆的常见误区与解决方法1. 误区一:将弦与半径混淆。
解决方法:理解弦是由圆上的两点所确定的线段,半径是由圆心到圆上一点的线段。
中考压轴圆知识点总结

中考压轴圆知识点总结中考数学是学生们的一大难题,而数学中颇具难度的数学圆知识点更是让许多学生头疼。
在中考中,圆的知识点占据了重要的地位,学生们需要认真复习和掌握这些知识点才能顺利通过考试。
下面我们就来总结一下中考数学圆的知识点,希望对大家有所帮助。
一、圆的基本概念1. 圆的定义:在平面上所有到圆心的距离都相等的点的集合称为圆。
圆用字母 O 表示。
2. 圆的元素:圆的圆心、半径和弧。
3. 直径、半径、弧长与圆的关系:直径是通过圆心的线段,它的长度等于两倍的半径;半径是从圆心到圆上任意一点的距离;弧长是指圆的一部分弧所对的圆周的长度。
4. 弧度制:一周角的度数为 360°,而一周角对应的弧长为圆周的长度,如果圆的周长为 L,那么一周角所对应的弧长的度数衡量单位是圆周的长度的一个弧长。
这就是弧的弧度制,以弧长等于半径的角叫做1弧度的那个角。
5. 圆内接与外接:内接四边形是指四边形的四个顶点都在圆上,外接四边形是指四边形的四个顶点都在圆的外切,在圆上。
6. 一个绕圆一周转的圆心角是360°(或2 π 弧度)。
这被称为一周角。
二、圆的相关定理1. 圆内切四边形定理:一个四边形是积形,当且仅当它的内部与外部不相交,并且内部的一个角是直角。
2. 圆的面积和周长计算公式:圆的面积公式A=πr^2 ;圆的周长公式C=2πr3. 圆周角的性质:一个绕圆一周转的圆心角是360°,我们也称这个角叫一周角。
4. 圆的切线定理:在过圆外一点做圆的切线,这条圆的切线和这个点到圆心的连线垂直。
5. 弧长与扇形面积关系:圆心角相等的两个弧所对的圆周相等,圆心角相等的两个扇形的面积与依次对应的弧长成正比。
6. 圆内角、弦长与弧长的关系:在一个圆上的两个弦所确定的两个弧,弦分数相等,它们所对应的圆心角相等。
7. 圆的内切关系和切线定理:8. 圆的位置关系定理:每一对不同圆,在共有的外部和内部至少有一个定位的情态。
中考圆形知识点总结归纳

中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。
2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。
3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。
4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。
二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。
2. 面积:圆的面积等于半径的平方乘以π。
三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。
2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。
3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。
4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。
四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。
2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。
五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。
2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。
综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。
希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。
中考圆形知识点总结归纳

中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。
本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。
一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。
其中,距离相等的这个固定值称为圆的半径,用字母r表示。
圆心是圆上任意两点的连线的垂直平分线的交点。
二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。
2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。
3. 相等弧所对的圆心角是相等的。
4. 圆的内切正多边形的中心与圆心重合。
三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。
圆周角的度数等于它所对的弧的度数。
2. 弦:圆内部连接两点的线段称为弦。
弦分割出的两条弧叫做弦所对的弧。
3. 弧长:指圆上的一段弧所对应的圆周长度。
弧长等于圆心角的弧度值乘以圆的半径。
四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。
2. 切线的性质:切线与半径的垂直分割线。
切线于半径的交点处所对应的圆心角为直角。
五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。
2. 圆的周长公式:C = 2πr,其中C为圆的周长。
六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。
2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。
总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。
对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。
只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。
初三数学圆知识点总结

初三数学圆知识点总结圆是初中数学中非常重要的一个概念,几乎涵盖了整个数学知识体系中的各个方面。
圆的性质和应用广泛,不仅在数学中有着重要的地位,而且在生活和实际应用中也有着广泛的应用。
本文将对初三数学圆的知识进行总结和归纳。
一、基本概念和性质1. 圆的定义:圆是由平面上离定点(圆心)的距离相等于定长(半径)的所有点的轨迹构成。
圆的边界称为圆周,圆周上的任意两点与圆心的线段称为弦,通过圆心的连线称为直径。
2. 圆的要素:圆心、半径、直径、圆周等是圆的基本要素。
圆心用字母O表示,半径用字母r表示,直径用字母d表示,圆周用字母C表示。
3. 圆的性质:圆周上的任意一点到圆心的距离相等;圆的直径是圆周的一种特殊的弦,它的长度等于半径的两倍;圆的任意弦都可以作为其两点连线的中垂线。
二、圆的要素之间的关系1. 圆心角和弧度:圆心角是指以圆心为顶点,两条弦为腰的角。
它的大小是圆周上这两个点所对的弧所夹的角度。
弧度是用来度量圆心角大小的单位,1弧度等于圆心角所对的弧长与半径的比值。
2. 弧长和扇形面积:弧长是指圆周上的一段弧的长度,它等于圆心角的大小乘以半径的长度。
扇形是以圆心角为顶角,圆的一部分为底边的图形。
扇形的面积等于圆心角所对的弧长与圆周长的比值乘以圆的面积。
3. 弦长和正弦定理:弦长是指圆上任意两点所确定的线段的长度。
正弦定理是指在一个圆内,三角形的三个边与其对角的正弦值之间的关系。
三、圆的重要定理和公式1. 切线定理和割线定理:切线定理是指从同一外点向圆引切线,切线上的切点到引线点距离的平方等于切点到圆心距离的平方。
割线定理是指从同一外点向圆引割线,割线上的切点到引线点的两部分距离的乘积等于引线点到圆心距离的平方减去割线长的平方。
2. 求圆内切多边形的边长和面积:对于正多边形,可以利用正多边形内接圆与外接圆之间的关系来求解多边形的边长和面积。
3. 余弦定理和正弦定理:余弦定理是它描述了一个三角形的边与角之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学圆知识点考点回顾与思考教学目标(一)教学知识点1.掌握本章的知识结构图.2.探索圆及其相关结论.3.掌握并理解垂径定理.4.认识圆心角、弧、弦之间相等关系的定理.5.掌握圆心角和圆周角的关系定理.(二)能力训练要求1.通过探索圆及其相关结论的过程,发展学生的数学思考能力.2.用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力.3.用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力.4.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.(三)情感与价值观要求通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系.对这些内容不仅仅是知道结论,要注重它们的推导过程和运用.教学难点上面这些内容的推导及应用.教学方法教师引导学生自己归纳总结法.教具准备投影片三张:第一张:(记作A)第二张:(记作D第三张:(记作C)教学过程I •回顾本章内容[师]本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?[生]首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的 特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等 关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和 圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积.[师]很好,大家对所学知识掌握得不错•本章的内容可归纳为三大部分,第一部分由圆引出了圆的概 念、对称性,圆周角与圆心角的关系,弧长、扇形面积,圆锥的侧面积,在对称性方面又学习了垂径定理, 圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线 的作图;第三部分是圆和圆的位置关系•这三部分构成了全章内容,结构如下:n.具体内容巩固[师]上面我们大致梳理了一下本章内容,现在我们具体地进行回顾.一、圆的有关概念及性质[生]圆是平面上到定点的距离等于定长的所有点组成的图形•定点为圆心,定长为半径.圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具 有旋转不变性.[师]圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当 它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径•把车厢装在过轮子中心的车轴 上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳•如果车轮不是圆形,坐在车上的人会切變的性质(投影片A )觉得非常颠.二、垂径定理及其逆定理[生]垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.[师]这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分•每个定理都是一个命题,每个命题都有条件和结论•在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等)•在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等)•从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理.下面我们就用一些具体例子来区别它们.(投影片B)1如图(1),在O 0中,AB AC为互相垂直的两条相等的弦,ODLAB OEL AC, D E为垂足,则四边形ADO是正方形吗?请说明理由.2. 如图(2),在O 0中,半径为50mm有长50mm的弦AB C为AB的中点,贝U 0C垂直于AB吗?0C的长度是多少?[师]在上面的两个题中,大家能分析一下应该用垂径定理呢,还是用逆定理呢?[生]在第1题中,OD 0E都是过圆心的,又OD L AB OEL AC所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,C是弦AB的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理.[师]很好,在家能用这两个定理完成这两个题吗?[生]1.解:T OD L AB OEL AC, AE L AC•••四边形ADO是矩形.•/ AC= AB, • AE= AD•四边形ADO是正方形.2.解:t C 为AB 的中点,•••OCL AB1在 Rt △ OAC 中, AC= — AB= 25mm OA= 50mm2•由勾股定理得 OO . OA 2—AC 2 502—252 25 3(mm).三、圆心角、弧、弦之间关系定理[师]大家先回忆一下本部分内容.[生]在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所 对应的其余各组量都分别相等.[师]下面我们进行有关练习 (投影片C)11.如图在O O 中,弦AB 所对的劣弧为圆的 ,圆的半径为2cm,求AB的长.•••/ AOB= 120°作OC X AB 垂足为C 则 / AOO 60°, AO BC 在 Rt △ ABC 中,AC= O£in60 ° = 2X sin60•- AB= 2AC = 2 3 (cm).四、圆心角与圆周角的关系[生]一条弧所对的圆周角等于它所对的圆心角的一半.在同圆或等圆中,同弧或等弧所对的圆周角相等.[生]解:由题意可知A B 的度数为直径所对的圆周角是直角,90°的圆周角所对的弦是直径.五、弧长,扇形面积,圆锥的侧面积和全面积[师]我们经过探索,归纳出弧长、扇形面积、圆锥的侧面积公式,大家不仅要牢记公式,而且要把它的由来表述清楚,由于时间关系,我们在这里不推导公式的由来,只是让学生掌握公式并能运用.[生]弧长公式l — n R , n 是圆心角,R 为半径.180 扇形面积公式S = n R 或S- 1 lR . n 为圆心角,R 为扇形的半径,1为扇形弧长.3602圆锥的侧面积 S 侧一n rl ,其中1为圆锥的母线长,r 为底面圆的半径.2S 全=S 侧 + S 底=n rl + n r .川.课时小结本节课我们复习巩固了圆的概念及对称性;垂径定理及其逆定理;圆心角、弧、弦、弦心距之间的关 系;圆心角和圆周角的关系;弧长、扇形面积、圆锥的侧面积和全面积.W.课后作业复习题A 组V.活动与深究弓形面积如图,把扇形 OAm 啲面积以及△ OAB 的面积计算出来,就可以得到弓形AmB 勺面积.如图 ⑴ 中,弓形AmB 勺面积小于半圆的面积, 这时S 弓形=S 扇形一S ^OAE ;图⑵ 中,弓形AmB 勺面积大于半圆的面积,这时S1弓形= S 扇形+ S ^OA ;图(3)中,弓形 AmB 勺面积等于半圆的面积,这时S 弓形 = S 圆.2o.6m 其中水面高是o.3m 求截面上有水的弓形的面积(精确到o. oim ).解:如图,在O O 中,连接OA OB 作弦AB 的垂直平分线,垂足为 D,交A B 于点C.例题:水平放着的圆柱形排水管的截面半径是m min(1) ⑵ ㈤T 0A= 0. 6, DC= 0. 3,•••0D= 0.6—0.3 = 0.3,/ AO圧60°, AD= 0.3,3 .S 弓形ACB= S 扇形OAC— S OAE,.c 120 2 2…S扇形OACB= •3601 1OA—AB • OD= - x 0. 6 J3 x 0. 3—0. 09 J3 (m2)2 2•I S 弓形ACE= 0. 12n —0.09 3 疋 0. 22(m).板书设计回顾与思考一、1•圆的有关概念及性质; 2 •垂径定理及其逆定理;3•圆心角、弧、弦之间关系定理;4•圆心角与圆周角的关系;5•弧长、扇形面积、圆锥的侧面积和全面积•二、课时小结三、课后作业回顾与思考(2)教学目标(一)教学知识点1. 了解点与圆,直线与圆以及圆和圆的位置关系.2. 了解切线的概念,切线的性质及判定.3. 会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点探索各种位置关系及切线的性质.教学方法学生自己交流总结法.教具准备投影片五张:第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)第五张:(记作E)教学过程I•回顾本章内容[ 师] 上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.n.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定•我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有 什么特点•下面请大家自己总结.[生]经过一个点可以作无数个圆•因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径 就可以作一个圆•由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为 A B,经过 A B 两点的圆,其圆心到 A B 两点的距离一定相等,所以圆心应在线段 AB的垂直平分线上,在 AB 的垂直平分线上任意取一点为圆心,这一点到 A 或B 的距离为半径都可以作一个经过A 、B 两点的圆•因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆•要作一个圆经过A 、BC 三点,就要确定一个点作为圆心,使它到三点 A B C 的距离相等,到 A B 两点距离相等的点在线段 AB 的垂直平分线上,到 B C 两点距离 相等的点应在线段B C 的垂直平分线上,那么同时满足到 A B C 三点距离相等的点应既在 AB 的垂直平分线上,又在 BC 的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心•这个交点到 A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A B 、C D 能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于 半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆 上.例题讲解(投影片A )矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么? [师]请大家互相交流.•••四边形ABCD^矩形,•••0A= 0C= 0B= OD[生]解:如图,矩形 ABCD 勺对角线 AC 和BD 相交于点0.••• A 、B C D 四点到定点 O 的距离都等于矩形对角线的一半. ••• A B C D 四点在以 0为圆心,0A 为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关 系.下面我们逐一来回顾.1. 点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内•判断一个点是在圆的什么部位, 就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距 离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子. (投影片B)1.0 0的半径r = 5cm,圆心0到直线I 的距离d = 0D= 3 m .在直线I 上有P 、Q R 三点,且有 =4cm, QD> 4cm, RD k 4cm, P 、Q R 三点对于O 0的位置各是怎样的?2. 菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在 Rt △ 0P [中,•/ 0D= 3, PD= 4,•••0P - .0D 2 PD 2 .于 42 = 5= r .所以点P 在圆上.同理可知 0R= -0D 2 DR 2 v 5, 0Q= 0D 2 DQ 2 >5. 所以点R 在圆内,点Q 在圆外.2. 如图(2),菱形ABCC 中,对角线 AC 和BD 相交于点0, E 、F 、G H 分别是各边的中点.因为菱形的对角线互相垂直,所以△ A0B △ B0C A C0D A D0A 都是直角三角形,又由于 E 、F 、G H 分别是各直角三PD (I)⑵1 1角形斜边上的中点,所以OE OF OG OH分别是各直角三角形斜边上的中线,因此有OG — AB 0& — BC2 21 1OG= _ CD OH= _AD而AB= BC= CD= DA 所以OE= OF= OG= OH即各中点E、F、G H到对角线的交点2 2O的距离相等,所以菱形各边的中点在同一个圆上.2 •直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小.当d v r时,直线和圆相交;当d= r时,直线和圆相切;当d> r时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(一4, 3),以点A为圆心,4为半径作圆,则O A与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断O A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,O A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.[生]解:••• A点的坐标是(一4, 3),••• A点到x轴、y轴的距离分别是3和4.又因为O A的半径为4,••• A 点到x 轴的距离小于半径,到 y 轴的距离等于半径.•'•O A 与x 轴、y 轴的位置关系分别为相交、相切.由勾股定理可求出 0A 的距离等于5,因为OA 4,所以点0在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究, 即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D )1.如图(1),在 Rt A ABC 中,/ C = 90°, AC= 12, BC= 9, D 是 AB 上一点,以 BD 为直径的O O 切 AC 于点E ,求AD 的长.(1) (2)2.如图(2) , AB 是O O 的直径,C 是O O 上的一点,/ CAE=Z B,你认为 AE 与O 0相切吗?为什么?分析: 1.由O 0与 AC 相切可知 0EL AC 又Z C = 90°,所以△ A0E^A ABC 则对应边成比例,2.根据切线的判定,要求 AE 与O 0相切,需求/ BAE= 90°,由AB 为O 0的直径得/ ACB= 90°,则/ BAO Z B = 90°,所以/ CAEb Z BAC= 90°,即/ BAE= 90°[师]请大家按照我们刚才的分析写出步骤.[生]1 .解:•••/C = 90°, AC= 12, BC= 9,•由勾股定理得AB= 15.•••O 0切AC 于点E,连接0E• 0EL AC•••0E/ BC 0AE BAC.0A 0E 卄 AB 0E 0E … ,即 AB BC AB BC.15 0E 0E 45 0E= 15 9 8••• AD= AB -2OD= AB- 2OE= 15- 45 X 2= 兰.8 40A BA 0EBC 求出半径和 0A 后,由0A- 0D= AD 就求出了 AD2.解:•/ AB是O O的直径,•••/ ACB= 90°..・./ CABF Z B= 90CAE=/ B,•••/ CABF Z CAE= 90°,即BA! AE I BA为O O的直径,• AE与O O相切.3•圆和圆的位置关系[师]还是请大家先总结内容,再进行练习.[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.[师]那么应根据什么条件来判断它们之间的关系呢?[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.当两个圆没有公共点时有两种情况,即外离和内含两种位置关系•当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切.两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.[师]只有这一种判定方法吗?[生]还有用圆心距d和两圆的半径R、r之间的关系能判断外切和内切两种位置关系,当d= R+ r时是外切,当d= R- r(R> r)时是内切.[师]下面我们还可以用d与R, r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系•探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.当d>R+ r时,两圆外离;当R- r v d v R+ r时,两圆相交;当d v R- r( R> r)时,两圆内含.(投影片E)设O O和O Q的半径分别为R r,圆心距为d,在下列情况下,0 O和。