2015北京市门头沟区初三(一模)数学

合集下载

一元二次方程训练(2015最新含学生版和教师答案版可直接打印)

一元二次方程训练(2015最新含学生版和教师答案版可直接打印)

第二十一章一元二次方程训练一、选择题1.将方程3(2x 2-1)=((x+3x+5化成一般形式后二次项系数,一次项系数,常数项分为( ) A .5,3,5 B .5,-3,-5 C .72 D .8,6,12.(2014秋•青海校级月考)方程(m ﹣2)x |m|+3mx+1=0是3.(2015•科左中旗校级一模)用配方法解下列方程时,配方有错误的是( )A x 2﹣2x ﹣99=0化为(x ﹣1)2=100 B x 2+8x+9=0化为(x+4)2=25 C 2t 2﹣7t ﹣4=0化为(t ﹣)2= D 3x 2﹣4x ﹣2=0化为(x ﹣)2=4.观察表格中的数据,可得出当2x 2﹣3x ﹣4=0时,未知数A -2<x <-1, 或-1<x <0B -1<x <0, 或0<x <2C 1 <x <2, 或<x <D -1<x <0, 或2<x <35.若使分式13222--+x x x 的值为零,则x 的取值为( )A .1或-1 B.-3或1 C.-3 D.-3或-1 6.(2013•珠海)已知一元二次方程:①x 2+2x+3=0, ②x 2-2x-3=0.下列说法正确的是( )A .①②都有实数解B .①无实数解,②有实数解C .①有实数解,②无实数解D .①②都无实数解7.(2015•杭州模拟)若关于x 的一元二次方程(k ﹣1)x 2﹣(2k+1)x+k=0有两个不相等的实数根,则k 的取值范围是( ) AB 且 k ≠1 CD k ≥且 k ≠08.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. - 6B. 1C. 2 D . - 6或19.(2015•泗洪县校级模拟)设a ,b 是方程x 2﹣x ﹣2013=0210.(2014秋•新泰市期末)已知a 、b 、c 是△ABC 的三边长,且方程(a+c )x 2+2bx+a ﹣c=0,的两根相等,则△ABC 为( )三角形A 等腰B 等边C 直角D 任意11.(2015•荆州)已知x 1,x 2是方程x 2-x-2013=0的两实数根,则x 13+2014x 2-2013= .A 1B 2013C 2014D 201512.(2015春•兴化市校级期末)对于一元二次方程ax 2+bx+c=0(a ≠0),下列说法:① 当b=a+c 时,则方程ax 2+bx+c=0一定有一根为x=﹣1;② 若ab >0,bc <0,则方程ax 2+bx+c=0一定有两个不相等的实数根;③若c 是方程ax 2+bx+c=0的一个根,则一定有ac+b+1=0;④ 若b=2a+3c ,则方程ax 2+bx+c=0有两个不相等的实数二、填空题13.(2015•丽水)解一元二次方程x 2+2x ﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程 .14.(2015•兰州)若一元二次方程ax 2﹣bx ﹣2015=0有一根为x =﹣1,则a +b = .15.(2015•北京)关于x 的一元二次方程ax 2+bx +=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a = ,b = .16.(2015•呼和浩特)若实数a 、b 满足(4a +4b )(4a +4b ﹣2)﹣8=0,则a +b = .17.(2014•靖江市一模)若(x 2+y 2+2)(x 2+y 2﹣3)=6,则x 2+y 2= .18.(2015•包头)已知关于x 的一元二次方程 x 2+x ﹣1=0有两个不相等的实数根,则k 的取值范围是 .19.(2014•黄冈模拟)关于x 的方程2x 2﹣2x+3m ﹣1=0有两个实数根x 1,x 2,且x 1x 2>x 1+x 2﹣4,则实数m 的取值范围是 .21.(2015•赣县校级模拟)已知实数满足a 2﹣6a+4=0, b 2﹣6b+4=0,且a ≠b ,则ab-a-b 的值是 .21.(2014•济南)如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于三、解答题:1 22..用适当的方法解下列方程(必须按步骤写出完整过程)(1)012022=-+x x(2)()272312=-x(3)06552=--x x(4)04882=--x x(5) ()()22241-=+x x(6) ()()0214122=---x x (7) 223.已知a 、b 、c 均为实数,且0)3(|1|12=++++-c b a ,求方程02=++c bx ax 的根。

北京市门头沟区2015届九年级(上)期末考试数学试题(含答案)

北京市门头沟区2015届九年级(上)期末考试数学试题(含答案)

门头沟区2014—2015学年度第一学期期末测试试卷九 年 级 数 学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.已知325x =,则x 的值是 A .103 B .152C .310D .2152.已知⊙O 的半径是4,OP =3,则点P 与⊙O 的位置关系是 A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定3.如图,在Rt △ABC 中,∠C =90°,AB =5,BC =4,则sin B 的值是A.54 B .53 C .45D .35 4.如果反比例函数1m y x +=在各自象限内,y 随x 的增大而减小,那么m 的取值范围是A .m <0B .m >0C .m <-1D .m >-15.如图,⊙O 是△ABC 的外接圆,如果o 100AOB ∠=,那么 ∠ACB 的度数是 A .40° B .50° C .60°D .80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这 个骰子一次,则掷得面朝上的点数为奇数的概率是 A .14B .16C .12D .137.将抛物线25y x =先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A .25(2)3y x =++B . 25(2)3y x =-+AB CC .25(2)3y x =--D .25(2)3y x =+-8.如图,等边三角形ABC 边长为2,动点P 从点A 出发,以每秒 1个单位长度的速度,沿A →B →C →A 的方向运动,到达点 A 时停止.设运动时间为x 秒,y =PC ,则y 关于x 函数 的图象大致为A B C D二、填空题:(本题共16分,每小题4分)9. 扇形的半径为9,圆心角为120°,则它的弧长为_______. 10.三角尺在灯泡O 的照射下在墙上形成的影子如图所示. 如果OA =20cm ,OA ′=50cm ,那么这个三角尺的周长与它在墙上形成影子的周长的比是 .11. 如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a ≠0)的对称轴是直线13x =, 在下列结论中,唯一正确的是 . (请将正确的序号填在横线上) ① a <0;② c <-1; ③ 2a +3b =0;④ b 2-4ac <0;⑤ 当x =13时,y 的最大值为99c a-.12.如图,在平面直角坐标系xOy 中,正方形ABCD 顶点A (-1,-1)、B (-3,-1). 我们规定“把正方形ABCD 先沿x 轴翻折,再向右平移2个单位”为一次变换. (1)如果正方形ABCD 经过1次这样的变换得到正方形A 1B 1C 1D 1,那么B 1的坐标是 .(2)如果正方形ABCD 经过2014次这样的变换得到正方形A 2014B 2014C 2014D 2014,那么B 2014的坐标是 .影子三角尺灯泡OAA'三、解答题:(本题共30分,每题5分)13.计算:tan30cos60tan45sin30.︒-︒⨯︒+︒14.已知抛物线y=x2-4x+3.(1)用配方法将y=x2-4x+3化成y=a(x-h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长. AB CD16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=AE=2,求⊙O的半径.18.如图,一次函数y =kx +2的图象与x 轴交于点B ,与反比例函数my x的图象的一个交点为A (2,3).(1)分别求反比例函数和一次函数的表达式; (2)过点A 作AC ⊥x 轴,垂足为C ,若点P 在反比例函数图象上,且△PBC 的面积等于18,请直接写 出点P 的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC 中,AB =AC ,BC =10,sin A =35. (1)求tan B 的值; (2)求AB 的长.20.在平面直角坐标系xOy 中,抛物线y =-x 2+bx +c 经过点(-3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线; (3)设抛物线顶点关于y 轴的对称点为A ,记抛物线在第二象限之间的部分为图象G .点B 是抛物线对称轴上一动点,如果直线AB 与图象G 有公共点,请结合函数的图象,直接写出点B 纵坐标t 的取值范围.21.如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,且BF 是⊙O的切线,BF 交AC 的延长线于F .(1)求证:∠CBF =12∠CAB .(2)若AB =5,sin ∠CBF BC 和BF 的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且P A=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).图1 图2请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(1),连接AO.如果点B是x 轴上的一动点,以AB为边作等边三角形ABC. 当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.图1 图2(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数ax ky x b+=+(a 、b 、k 是常数,k ≠ab )叫奇特函数.当a =b =0时,奇特函数ax k y x b +=+就是反比例函数ky x=(k 是常数,k ≠0). (1)如果某一矩形两边长分别是2和3,当它们分别增加x 和y 后,得到新矩形的面积为8.求y 与x 之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 、C 坐标分别为(6,0)、(0,3),点D 是OA 中点,连接OB 、CD 交于E ,若奇特函数4ax ky x +=-的图象经过点B 、E ,求该奇特函数的表达式; (3)把反比例函数2y x=的图象向右平移4个单位,再向上平移 个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE 中点M 的一条直线l 与这个奇特函数图象交于P ,Q两点(P 在Q 右侧),如果以B 、E 、P 、Q 为顶点组成的四边形面积为16,请直接写出点P 的坐标.以 下 为 草 稿 纸门头沟区2014—2015学年度第一学期调研参考答案九 年 级 数 学一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每题5分) 13.解:tan 30cos 60tan 45sin 30︒-︒⨯︒+︒11122⨯+ …………………………………………………………………4分=. …………………………………………………………………5分 14.解:(1)y =x 2-4x +4-4+3 …………………………………………………………1分=(x -2)2-1 ………………………………………………………………2分 (2)对称轴为直线2x =,顶点坐标为(2,-1). …………………………4分 (3)1<x <3. …………………………………………………………………5分 15.(1)证明:∵∠A =∠A ,∠ABC =∠ACD ,…………………………………………1分∴ △ACD ∽△ABC. ……………………………………………………2分(2)解:∵ △ACD ∽△ABC ,∴ .AC ADAB AC=………………………………………………………………3分 ∴3.7AC AC=………………………………………………………………4分∴ AC ………………………………………………………………5分 16.解:在Rt △ABD 中,∠BDA =90°,∠BAD =45°,∴ BD =AD =20.………………………………………………………………2分在Rt △ACD 中,∠ADC =90°,∠CAD =60°,∴ CD =AD =.……………………………………………………4分∴ BC =BD +CD =20+m ).………………………………………………5分答:这栋楼高为(20+m . 17.(1)证明:∵ OC =OB ,∴ ∠BCO =∠B .…………………………………………………………1分 ∵ AC AC =, ∴ ∠B =∠D ,∴ ∠BCO =∠D .…………………………………………………………2分(2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴ CE =1122CD =⨯.……………………………………………3分在Rt △OCE 中,OC 2=CE 2+OE 2,设⊙O 的半径为r ,则OC =r ,OE =OA -AE =r -2,∴(()2222r r =+-,…………………………………………………4分解得:r =3,∴⊙O 的半径为3.………………………………………………………5分18.解:(1)把A (2,3)代入m y x =,∴ 32m=. ∴ m =6.∴6y x=.…………………………………………………………………1分 把A (2,3)代入y =kx +2,∴ 2k +2=3,……………………………………………………………………2分 ∴12k =. ∴122y x =+.………………………………………………………………3分 (2)P 1(1,6)或P 2(-1,-6).…………………………………………5分 四、解答题(本题共20分,每题5分)19.解:(1)如图,过点C 作CD ⊥AB ,垂足为D .………………………………1分∵ 在Rt △ADC 中,∠ADC =90°,∴3sin 5CD A AC ==. 设CD =3k ,则AB =AC =5k .∴AD 4k =,…2分∴BD =AB -AD =5k -4k =k , ∴3tan 3CD kB BD k===. …………………………………………………3分 (2)在Rt △BDC 中,∠BDC =90°,∴BC .∵BC =10,∴10=,…………………………………………………4分∴k =∴AB =5k =.………………………………………………………5分20.解:(1)∵抛物线y =-x 2+bx +c 经过点(-3,0)和(1,0).∴930,10.b c b c --+=⎧⎨-++=⎩………………………………………………………1分解得 2,3.b c =-⎧⎨=⎩……………………………………………………………2分∴抛物线的表达式为y =-x 2-2x +3.……………………………………3分 (2)正确画出图象.…………………………………………………………4分 (3)2<t ≤4.……………………………………………………………………5分 21.(1)证明:连结AE .∵AB 是⊙O 的直径,∴∠AEB=90°, ∴∠1+∠2=90°. ∵BF 是⊙O 的切线, ∴BF ⊥AB , ∴∠CBF +∠2=90°.∴∠CBF =∠1. …………………………………………………………1分 ∵AB=AC ,∠AEB=90°, ∴∠1=21∠CAB . ∴∠CBF =21∠CAB . ……………………………………………………2分 (2)解:过点C 作CG ⊥AB 于点G .∵sin ∠CBF=55,∠1=∠CBF ,∴sin ∠1=55. ∵∠AEB=90°,AB =5. ∴BE=AB ·sin ∠1=5. ∵AB=AC ,∠AEB=90°,∴BC=2BE =52.…………………………………………………………3分 在Rt △ABE 中,由勾股定理得5222=-=BE AB AE . ∴sin ∠2=552,cos ∠2=55.在Rt △CBG 中,可求得GC=4,GB=2.∴AG=3. ……………………………………………………………………4分 ∵GC ∥BF , ∴△AGC ∽△ABF . ∴ABAGBF GC =, ∴320=⋅=AG AB GC BF .…………………………………………………5分 22.解:图1中∠PP ′C 的度数等于90°.………………………………………………1分图1中∠APB 的度数等于150°.………………………………………………3分 如图,在y 轴上截取OD =2,作CF ⊥y 轴于F ,AE ⊥x 轴于E ,连接AD 和CD .∵点A 的坐标为(1),∴tan ∠AOE=, ∴AO =OD =2,∠AOE =30°, ∴∠AOD =60°.∴△AOD 是等边三角形. ………………………………………………………4分 又∵△ABC 是等边三角形, ∴AB =AC ,∠CAB =∠OAD =60°, ∴∠CAD =∠OAB , ∴△ADC ≌△AOB .∴∠ADC =∠AOB =150°,又∵∠ADF =120°,∴∠CDF =30°.∴DF .∵C (x ,y )且点C 在第一象限内,∴y -,∴y =x +2(x >0).………………………………………………………5分 五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)证明:∵m ≠0,∴mx 2+(3m +1)x +3=0是关于x 的一元二次方程.∴△=(3m +1)2-12m ………………………………………………………1分=(3m -1)2. ∵ (3m -1)2≥0,∴方程总有两个实数根. ……………………………………………… 2分(2)解:由求根公式,得x 1=-3,x 2=1m. ……………………………………3分 ∵方程的两个根都是整数,且m 为正整数,∴m =1.……………………………………………………………………4分(3)解:∵m =1时,∴y =x 2+4x +3.∴抛物线y =x 2+4x +3与x 轴的交点为A (-3,0)、B (-1,0).依题意翻折后的图象如图所示.…………………………………………5分 当直线y =x +b 经过A 点时,可得b =3. 当直线y =x +b 经过B 点时,可得b =1. ∴1<b <3. …………………6分当直线y =x +b 与y =-x 2-4x -3 的图象有唯一公共点时, 可得x +b =-x 2-4x -3, ∴x 2+5x +3+b =0, ∴△=52-4(3+b ) =0, ∴b =134.∴b >134.…………………………………………………………………7分 综上所述,b 的取值范围是1<b <3,b >134.24.解:(1)① 如图1,∵四边形ABCD 是矩形,∴∠C =∠D =90°.………………………………………………………1分 ∴∠1+∠3=90°.∵由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠2=∠3.……………………2分 又∵∠D =∠C ,∴△OCP ∽△PDA .……………………………………………………3分 ② 如图1,∵△OCP 与△PDA 的面积比为1:4,∴12OP CP PA DA ==.∴CP =12AD =4.设OP =x ,则CO =8-x . 在Rt △PCO 中,∠C =90°,由勾股定理得 x 2=(8-x )2+42.…………………………………………4分 解得:x =5.∴AB =AP =2OP =10.………………………………………………………5分 ∴边AB 的长为10.(2)作MQ ∥AN ,交PB 于点Q ,如图2.∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM , ∴BN =QM .∵MP =MQ ,ME ⊥PQ , ∴EQ =12PQ . ∵MQ ∥AN ,∴∠QMF =∠BNF . 又∵∠QFM =∠NFB ,∴△MFQ ≌△NFB . ∴QF =12QB . ∴EF =EQ +QF =12PQ +12QB =12PB .……………………………………6分 由(1)中的结论可得:PC =4,BC =8,∠C =90°. ∴PB=EF =12PB=. ∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为.……………………………………………………………7分25.解:(1)由题意得,(2+x )(3+y )=8.∴832y x +=+. ∴832y x =-+322x x -+=+.…………………………………………………1分 根据定义,322x y x -+=+是奇特函数.…………………………………2分 (2)由题意得,B (6,3)、D (3,0),∴点E (2,1).……………………………………………………………3分将点B (6,3)和E (2,1)代入4ax ky x +=-得 63,6421.24a k a k +⎧=⎪⎪-⎨+⎪=⎪⎩- ……………………………………………………………4分 解得2,6.a k =⎧⎨=-⎩∴奇特函数的表达式为264x y x -=-.……………………………………5分 (3)2.………………………………………………………………………6分 (4)P 1(,4)、P 2(8).…………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分,谢谢!。

2015年北京市门头沟区初三数学一模试题及答案

2015年北京市门头沟区初三数学一模试题及答案

门头沟区2014~2015学年度初三一模试卷21.已知关于x的一元二次方程x2+2x+k-2=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数,且该方程的根都是整数时,求k的值.22.列方程或方程组解应用题:北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用时间是自驾车所用时间的37,问李明自驾车上班平均每小时行驶多少千米?24.2014年1月10日,国内成品油价格迎来了首次降低,某调查员就“汽油降价对用车的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:Oyx汽油降价对用车影响的BCDE A24%52%10%4%扇形统计图人数汽油降价对用车影响的条形统计图500(1)结合上述统计图表可得:p = ,m = ; (2)根据以上信息,补全条形统计图;(3)2014年1月末,某市有机动车的私家车车主约200 000人,根据上述信息,请你估计一下持有“影响不大”这种态度的车主约有多少人?五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根; (2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式;(3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m +2)在第一象限之间的部分为图象G ,如果直线 y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.图328.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,DE ⊥BC 于E ,连接CD . (1)如图1,如果∠A =30°,那么DE 与CE 之间的数量关系是 . (2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论.(3)如图3,如果∠A =α(0°<α<90°),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).DBFE DAB E DAB C C CP AE图1 图2 图329.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.AABBMMOxyy=m准蝶形AMB(1)抛物线212y x的碟宽为 ,抛物线y =ax 2(a >0)的碟宽为 . (2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a = .(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.① 求抛物线y 2的表达式;② 请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.门头沟区2014~2015学年度初三一模试卷21.(本小题满分5分)解:(1)∵ 原方程有两个不相等的实数根,∴ △>0,……………………………………………………………………1分 即22-4(k -2)>0,∴ k <3.……………………………………………………………………2分 (2)∵k 为正整数,∴ k =1,k =2.………………………………………………………………3分 当k =1时,△=8,此时原方程的根是无理数,∴ k =1不合题意,舍去;…………………………………………………4分 当k =2时,原方程为x 2+2x =0,解得x 1=0,x 2=-2.∴ k =2.………………………………………………………………………5分22.(本小题满分5分)解:设李明自驾车上班平均每小时行使x 千米. ……………………………………1分 依题意,得xx 18739218⨯=+ ………………………………………………………2分 解得 27=x . ………………………………………………………………3分 经检验,27=x 是原方程的解,且符合题意.………………………………4分 答:李明自驾车上班平均每小时行使27千米.………………………………………5分24.(本小题满分5分) 解:(1)p =24%,m =10%;……………………………………………………2分 (2)补全条形统计图;……………………………………………………………4分 (3)48000人.……………………………………………………………………5分27.(本小题满分7分)(1)证明:∵△= (m+1)2-4×(-1)×(m+2)=(m+3)2. ……………………………………………………………1分∵m>0,∴(m+3)2>0,即△>0,∴原方程有两个不相等的实数根. …………………………………2分(2)解:∵抛物线抛物线y=-x2+(m+1)x+(m+2)经过点(3,0),∴-32+3(m+1)+(m+2)=0,………………………………………………3分∴m=1.∴y=-x2+2x+3. ………………………………………………………4分(3)解:∵y=-x2+2x+3=-(x-1)2+4,∴该抛物线的顶点为(1,4).∴当直线y=k(x+1)+4经过顶点(1,4)时,∴4=k(1+1)+4,∴k=0,∴y=4.∴此时直线y=k(x+1)+4与y轴交点的纵坐标为4. ………………………5分∵y=-x2+2x+3,∴当x=0时,y=3,∴该抛物线与y轴的交点为(0,3).∴此时直线y=k(x+1)+4与y轴交点的纵坐标为3. ………………………6分∴3<t≤4. …………………………………………………………………7分28.(本小题满分7分)解:(1)DE.……………………………………………………………………1分(2)DE、BF、BP三者之间的数量关系是BF+BP DE.…………………2分理由如下:∵∠ACB=90°,D是AB的中点,∠A=30°∴DC=DB,∠CDB=60°.∵线段DP绕点D逆时针旋转60°得到线段DF,∴∠PDF=60°,DP=DF.又∵∠CDB=60°,∴∠CDB-∠PDB=∠PDF-∠PDB,∴∠CDP=∠BDF.∴△D C P≌△D B F.………………………………………………………3分∴ CP=BF.而CP=BC-BP,∴BF+BP=BC,……………………………………………………………4分在Rt△CDE中,∠DEC=90°,∴tanDE DCECE∠=,∴ CEDE , ∴ BC =2CEDE , ∴ BF +BP=DE ................................................................5分 (3)BF +BP =2DE tan α,BF -BP =2DE tan α. (7)分29.(本小题满分8分)解:(1)4,2a ; (2)分 (2)13; (3)分(3)① ∵ F 1的碟宽︰F 2的碟宽=2:1,∴12222:1a a =. ∵ a 1=13,∴ a 2=23 (4)分 又∵ 由题意得F 2的碟顶坐标为(1,1), (5)分 ∴ ()222113y x =-+ (6)分 ② F 1,F 2,...,F n 的碟宽的右端点在一条直线上;........................7分 其解析式为y =-x +5. (8)分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

北京门头沟初三一模数学试题目答案

北京门头沟初三一模数学试题目答案

北京门头沟初三一模数学试题目答案2011年门头沟区初三年级第一次统一练习数学试卷评分参考三、解答题(本题共30分,每小题5分)13.计算:101182sin 4520113-⎛⎫+︒-+ ⎪⎝⎭. 解: 101182sin 4520113-⎛⎫+︒-+ ⎪⎝⎭=2322132+⨯-+ …………………………………………………………4分=422+ . ……………………………………………………………………5分14.解分式方程 6133x x x +=+-. 解:去分母,得6(3)(3)(3)(3)x x x x x -++=+-.……………………………2分整理,得 99x =.解得1x =. ……………………………………………………………4分经检验,1x =是原方程的解.所以原方程的解是1x =. ………………………………………………5分15. 证明:∵AF DC =,∴AC DF =. …………………………1分EF BC ∥, ∴EFD BCA ∠=∠. …………………2分 在△ABC 与△DEF 中,,,,BC EF BCA EFD AC DF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△. ……………………………………………………4分∴AB =DE . ……………………………………………………………5分16. 解:222(2)(1)37x x x x x +-++-3222(21)37x x x x x x =+-+++- …………………………………………2分33222237x x x x x x =+---+- ………………………………………3分27x x =+-. ……………………………………………………………………4分当26x x +=时,原式671=-=-. ………………………………………………5分 A B C F DB O D1 x y 1 1 A . D2 17.解:设中国内地去年有x 个城市参加了此项活动,今年有y 个城市参加了此项活动. …1分依题意,得119,313.x y y x +=⎧⎨=-⎩………………………………………………………3分解得 33,86.x y =⎧⎨=⎩ ………………………………………………………………4分答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动. …5分18. 解:(1)∵反比例函数n y x =的图象经过点B (2,1), ∴2n =. ∴反比例函数的解析式是2y x =. …………1分点A (1,a )在反比例函数2y x =的图象上,∴2a =.∴(12)A ,.……………………………………2分 ∵正比例函数y mx 的图象经过点(12)A ,,∴ 2m =.∴正比例函数的解析式是2y x.……………………………………3分(2)依题意,得1232OD ⨯⨯=. ∴3OD =.∴ D 点坐标为1(3,0)D -或2(3,0)D . ……………………………………5分四、解答题(本题共20分,每小题5分)19. 解:(1)在□ABCD 中,AB DC ∥,∴∠ADC +∠DAB =180°.DF 、AE 分别是∠ADC 、∠DAB 的平分线, ∴12ADF CDF ADC ∠=∠=∠,12DAE BAE DAB ∠=∠=∠. ∴1()902ADF DAE ADC DAB ∠+∠=∠+∠=︒. ∴90AGD ∠=︒.∴AE ⊥DF .…………………………………………………………………2分(2)过点D 作DH AE ∥,交BC 的延长线于点H , 则四边形AEHD 是平行四边形,且FD ⊥DH .∴DH =AE =4,EH =AD =10.在□ABCD 中,AD BC ∥,∴∠ADF =∠CFD ,∠DAE =∠BEA .∴∠CDF =∠CFD ,∠BAE =∠BEA .∴DC =FC ,AB =EB .H GF E DC B AA图1A CB D O · 在□ABCD 中,AD =BC =10,AB =DC =6,∴CF =BE =6,BF =BC -CF =10-6=4.∴FE =BE -BF =6-4=2. …………………………………………………3分∴FH = FE +EH =12. ………………………………………………………4分在Rt △FDH 中,222212482DF FH DH --………………………5分20.解:(1)如图1,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.则∠CDB =∠ADB =90°.∴∠C +∠CBD =90°. ∵∠ABC =90°, ∴∠ABD +∠CBD =90°. ∴∠C =∠ABD . ∴△ADB ∽△BDC .∴AD BD BD CD =. ∵BD :CD =3:4,AD =3, ∴BD =4. 在Rt △ABD 中,2222345AB AD BD =+=+=. ………………………3分(2)直线ED 与⊙O 相切.证明:如图2,连结OD .由(1)得∠BDC=90°.∵E是BC的中点,∴DE=BE.∴∠EDB=∠EBD.∵OB=OD,∴∠ODB=∠OBD.∵∠OBD+∠EBD=90°,∴∠ODB+∠EDB=∠ODE=90°.∴ED是⊙O的切线.……………………………………………………5分21.解:(1)20.……………………………………………………………………1分(2)3.………………………………………………………………………2分(3)补全表1、图1和图2.……………………………………………5分22.解:(1)12.…………………………………………………………………………2分(2)12.………………………………………………………………………3分(3)5或15. ……………………………………………………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)根据题意,得220,Δ(2)4(2)(1)0.m m +≠⎧⎨=--+⨯-≥⎩ 解得2,3.m m ≠-⎧⎨≥-⎩ ∴m 的取值范围是m ≥-3且m ≠-2.……………………………………2分(2)关于x 的二次函数21(2)21y m x x =+--和22(2)1y m x mx m =++++的图象都经过x 轴上的点(n ,0), ∴22(2)21(2)1m n n m n mn m +--=++++.解得n =-1. …………………………………………………………………3分当n =-1时,2210m ++-=,解得m =-3. ……………………………………………………………4分(3)2322y x x =+-. ……………………………………………………………5分当x 的取值范围是>0x 或5<2x -时,二次函数3y 的值大于二次函数2y 的值.…………………………………………………7分24.解:(1)垂直,相等 ………………………………………………………………2分(2)猜想:(1)中的两个结论没有发生变化.证明:如图2,过D 作DG BC ⊥于G . ∵o 90ABC ∠=,∴DG ∥AB .∵AD ∥BC ,∴四边形ABGD 为矩形.∴AB =DG =2,AD =BG =1. ∵tan ∠DCB =DG CG =2, ∴2122DG CG ===. ∴ CB = AB =2. ∵o90ABC EBF ∠=∠=,∴ABC ABE EBF ABE ∠+∠=∠+∠.∴CBE ABF ∠=∠.在△ABF 和△CBE 中, G图254312OFE DC B A,,,AB CB ABF CBE BF BE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBE .∴21AF CE =∠=∠,.∵o 1390∠+∠=,34∠=∠,∴o 2490∠+∠=.∴o590∠=.AF CE.∴⊥ …………………………………………………………4分(3)①猜想:(1)中的两个结论没有发生变化.②如图3,AD ∥BC , ∴△AOD ∽△COB . ∴C AD OD B OB =. AD =1,BC =2,∴12ODOB =. 在Rt △DAB 中,22145BD AB AD =++.∴253OB = ∵5OF =,∴5BF BE == ∠1+∠FBM =90°,∠2+∠FBM =90°,21∠=∠∴.又o345OAB ,∠=∠=∴△BME ∽△BOA .∴.BM BE BO BA = 图3231OF E D CB A M52.225= ∴5.6BM = …………………………………………………………7分25. 解:(1)∵抛物线21(2)473my xm x m -=-+-+-关于y 轴对称,∴m -2=0.∴m =2.∴抛物线的解析式是2113y x =-+.…………………………………………2分令y =0,得3x =±∴(3,0)A -,(3,0)B .在Rt △BOC 中,OC =1, OB 3可得∠OBC =30º.在Rt △BOD 中,OD =3, OB 3可得∠OBD =60º.∴BC 是∠OBD 的角平分线.∴直线BD 与x 轴关于直线BC 对称. 因为点P 关于直线BC 的对称点在x 轴上,则符合条件的点P 就是直线BD 与抛物线2113y x =-+ 的交点. 设直线BD 的解析式为y kx b =+.∴30,3.k b b ⎧+=⎪⎨=⎪⎩ ∴3,3.k b ⎧=-⎪⎨=⎪⎩ ∴直线BD 的解析式为33y x =-+. ∵点P 在直线BD 上,设P 点坐标为(,33)x x -+. 又因为点P (,33)x x -+在抛物线2113y x =-+上,∴213313x x -+=-+. 解得123,23x x == . ∴120,3y y ==- . ∴点P 的坐标是(23,3)-.………………………………………………………3分 (2)过点P 作PG ⊥ x 轴于G ,在PG 上截取2PH =,连结AH 与y 轴交于点E ,在y 轴的负半轴上截取2EF =.∵ PH ∥EF ,PH EF =,∴ 四边形PHEF 为平行四边形,有HE PF =.。

2013年门头沟区初三年级数学中考第一次统一练习

2013年门头沟区初三年级数学中考第一次统一练习

2013年门头沟区初三年级第一次统一练习数学试卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的.1.-3的倒数是C.3-A.3 B.13D.1-32.2012年北京市的经济又迈上新的台阶,全市地区生产总值达到了1 780 000 000 000元,将1 780 000 000 000用科学记数法表示应为A .130.17810⨯B .121.7810⨯C .1117.810⨯D .101.7810⨯ 3.若一个多边形的内角和等于900º,则这个多边形的边数是A .5B .6C .7D .84.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是⊙O若∠ADC =26º,则∠AOB 的度数为 A .13º B.26º C.52º D .78º5.右图是某个几何体的表面展开图,则该几何体的左视图为6.有6张形状、大小、质地均相同的卡片,正面分别印有数字1、2、3、4、5、6,背面完全相同.现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面印有的数字恰好是奇数的概率为 A .16B .14C . 13D . 127.小明同学在社会实践活动中调查了20户家庭某月的用水量,A .B .C .D .如下表所示:则这20户家庭该月用水量的众数和中位数分别是 A .5,7 B .7,7 C .7,8 D .3,78.如图1,从矩形纸片AMEF 中剪去矩形BCDM 后,动点P 从点B 出发,沿BC 、CD 、DE 、EF 运动到点F 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则图形ABCDEF 的面积是A .28B .C .36D .48二、填空题(本题共16分,每小题4分)9. 若分式21x x -+的值为0,则x 的值为 .10.分解因式:21025ax ax a -+图2图1E D MBAFC11.如图,某班课外活动小组的同学用标杆测量学校旗杆 的高度,已知标杆高度CD =3m ,标杆与旗杆的水平 距离BD =15m ,人的眼睛与地面的高度EF =1.6m ,人 与标杆CD 的水平距离DF =2m ,且E 、C 、A 三点在 同一条直线上,则旗杆AB12.如图,在平面直角坐标系xOy 将线段0OM 绕原点O 长到1M ,使得001OM MM ⊥1OM 绕原点O 沿逆时针方向旋转45︒使得112OM M M ⊥,得到线段2OM 段3OM ,4OM ,,则点1M 的坐标是 , 点M 5的坐标是 ;若把点)(n n n y x M ,(n 是自然数)的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标(),nnx y 称之为点n M 的绝对坐标, 则点83n M +的绝对坐标是 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分)13.计算:113tan 30(1)6-⎛⎫-︒π- ⎪⎝⎭.14.解不等式组:234,314 5.x x x x +<+⎧⎨+-⎩≥15.已知1582=+x x ,求2)12()1(4)2)(2(++---+x x x x x 的值.ADE16.已知:如图,点A 、E 、B 在同一条直线上,AC ∥DB ,AB =BD ,AC =BE .求证:BC =DE .17.如图,在平面直角坐标系xOy 的图象与反比例函数myx的图象交于B (3-,n )两点.(1(2)若P 是y 轴上一点,且满足△直接写出OP 的长.18.列方程或方程组解应用题:某地要对一条长2500米的公路进行道路改造,在改造了1000米后,为了减少施工对交通造成的影响,采用了新的施工工艺,使每天的工作效率是原来的1.5倍,结果提前5天完成任务,求原来每天改造道路多少米.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,∠A =∠ADC =120º,DCEABAB =AD ,E 是BC 的中点,DE =15,DC =24,求四边形ABCD 的周长.20.已知:如图,AB 是⊙O 的直径,AC 是⊙OM 为AB 上一点,过点M 作DM ⊥AB ,交弦于点E ,交⊙O 于点F ,且DC =DE .(1)求证:DC 是⊙O 的切线;(2)如果DM =15,CE =10,5cos 13AEM ∠=求⊙O 半径的长.21.某市政园林绿化局要对甲、乙、丙、丁四个品种的树苗进行树苗成活率试验,从中选取成活率高的品种进行推广.通过试验得知丙种树苗的成活率为89.6%,以下是根据试验数据制成的统计图表的一部分.试验用树苗中各品种树苗所占百分比统计图 各品种树苗成活数统计图表1 试验用树苗中各品种树苗种植数统计表请你根据以上信息解答下列问题:(1)这次试验所用四个品种的树苗共株;(2)将表1、图1和图2补充完整;(3)求这次试验的树苗成活率.22.操作与探究:在平面直角坐标系xOy中,点P能每次向上平移2(1)实验操作:在平面直角坐标系xOy中,点平移1点P从原点O出发,平移2坐标是(0,4),(1,2),(2,0);点P发,平移3次后可能到达的点的坐标是;(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数2y的图象上;=x-2+平移2次后在函数42+-=x y 的图象上,….若点P 平移5次后可能到达的点恰好在直线3y x =上,则点P 的坐标是 ; (3)探究运用:点P 从原点O 出发经过n 次平移后,到达直线x y =上的点Q ,且平移的路径长不小于30,不超过32,求点Q 的坐标.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x 的一元二次方程21(2)2602x m x m +-+-=.(1)求证:无论m 取任何实数,方程都有两个实数根; (2) 当<3m 时,关于x 的二次函数21(2)262y x m x m =+-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且2AB =3OC ,求m 的值;(3)在(2)的条件下,过点C 作直线l ∥x 轴,将二次函数图象在y 轴左侧的部分沿直线l 翻折,二次函数图象的其余部分保持不变,你结合图象回答:当直线y 共点时,b 的取值范围.24.已知:在△ABC 中,AB =AC ,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,点M 在线段DF上,且∠BAE =∠BDF ,∠ABE =∠DBM .(1) 如图1,当∠ABC =45°时,线段 DM 与AE 之间的数量关系是 ;(2) 如图2,当∠ABC =60°时,线段 DM 与AE 之间的数量关系是 ;(3)① 如图3,当ABC α∠=(0<<90α︒︒)时,线段 DM 与AE 之间的数量关系是 ;② 在(2)的条件下延长BM 到P ,使MP =BM ,连结CP ,若AB =7,AE=求sin ∠ACP 的值.AB CDEF M MFED CB A ABCDEF M图1 图2 图325.在平面直角坐标系xOy中,抛物线2=-++与x轴交于y x bx cA、B两点,与y轴交于点C,顶点为D,过点A的直线与抛物线交于点E,与y轴交于点F,且点B的坐标为(3,0),点E的坐标为(2,3).(1)求抛物线的解析式;(2)若点G为抛物线对称轴上的一个动点,H为x轴上一点,当以点C、G、H、F四点所围成的四边形的周长最小时,求出这个最小值及点G、H的坐标;(3)设直线AE与抛物线对称轴的交点为P,M为直线AE 上的任意一点,过点以P、D、M、N若能,请求点M2013年北京市门头沟区初三年级第一次统一练习数学试卷评分参考一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.计算:()113tan 3016-⎛⎫-︒π- ⎪⎝⎭. 解: ()1013tan 3016-⎛⎫-︒π- ⎪⎝⎭=631- ……………………………………………………………………4分=7+ . ……………………………………………………………………………5分14.解不等式组:234,314 5.x x x x +<+⎧⎨+-⎩≥ 解:解不等式①,得x <1. (2)分解不等式②,得x ≤6. (4)分∴原不等式组的解集为x <1. ………………………………………………………5分 15.解:2(2)(2)4(1)(21)x x x x x ++--++ 222444441x x x x x =--++++ ………………………………………………… 3分283x x =+-.……………………………………………………………………4分当2815x x +=时,原式15312=-=. …………………………………………… 5分16.证明:∵AC ∥DB ,∴∠B AC=∠DBA .…………………………………………………………………1分在△BAC 与△DBE 中,① A BDE,,,AB BD BAC DBA AC BE =⎧⎪∠=∠⎨⎪=⎩∴△B A C ≌△DBE . …………………………………………………………4分∴BC =DE . …………………………………………………………………5分17.解:(1)∵反比例函数m y x=∴m =6.∴反比例函数的解析式是6y x= 点A (-3,n )在反比例函数 ∴n =-2.∴B (-3,-2).……………………………2分 ∵一次函数y =kx +b 的图象经过A (2,3)、B (-3,-2)两点, ∴ 23,3 2.k b k b +=⎧⎨-+=-⎩ 解得 1,1.k b =⎧⎨=⎩∴ 一次函数的解析式是y =x +1.…………………………………………………3分(2)OP 的长为 3或1. (5)分18.解: 设原来每天改造道路x米.………………………………………………………………1分 依题意,得2500100015005.1.5x x x--= ……………………………………………………3分解得x =100. …………………………………………………………………………4分经检验,x =100是原方程的解,且符合题意.答:原来每天改造道路100米. …………………………………………………………5分 四、解答题(本题共20分,每小题5分) 19. 解:如图,过点A 作AF ⊥BD 于F .∵∠BAD =120°,AB =AD ,∴∠ABD =∠ADB =30°. ∵∠ADC =120°, ∴∠BDC =∠ADC -∠ADB =12030︒-︒=90°.在Rt △BDC 中,∠BDC =90°,DE =15,E 是BC 的中点,DC =24,∴BC=2DE =30.…………………………………2分FBAECD∴18BD =.………3分∵AD =AB ,AF ⊥BD ,∴1118922DF BD ==⨯=.在Rt △AFD 中,∵∠AFD =90°,∠ADB =30°,∴9cos cos 30DF DF AD AB ADB =====∠︒…………4分∴四边形ABCD 的周长=AB +AD +DC +BC 243054=+=+ (5)分20. (1)证明:如图1,连结OC .∵OA =OC ,DC =DE ,∴∠A =∠OCA ,∠DCE =∠DEC . 又∵DM ⊥AB ,∴∠A +∠AEM =∠OCA +∠DEC =∴∠OCA +∠DCE =∠OCD =90∴DC 是⊙O (2)解:如图2,过点D 作DG ⊥AC 于点G ∵DC =DE ,CE =10,∴EG =12CE =5.∵cos ∠DEG =cos ∠AEM =EG DE=513,∴DE =13.∴DG =12.图1A∵DM =15,∴EM =DM -DE =2.…………3分∵∠AME =∠DGE =90°,∠AEM∴△AEM ∽△DEG . ∴AMEM AE=DGEG DE =.∴212513AM AE ==.∴245AM =,265AE =. ∴AC AE EC =+=∵AB 为⊙O 的直径,∴∠ACB =90°. ∴cos A =AM AC AEAB=.∴24715AB =.…………4分∴⊙O 的半径长为1247230AB =. ………………………………………………5分21.解:(1)500. …………………………………………………………………………1分(2)补全表1、图1和图2. ………………………………………………………4分(3)89.8%.……………………………………………………………………………5分22.解:(1)(0,6),(1,4),(2,2),(3,0).……………………………………………2分(2)(2,6).…………………………………………………………………图2…………3分(3)设点Q 的坐标为(x ,y ).由题意,得 ⎩⎨⎧=+-=.,22x y n x y 解得 2,32.3n x n y ⎧=⎪⎪⎨⎪=⎪⎩∴ 点Q的坐标为)32,32(n n .∵平移的路径长为x +y ,∴30≤34n ≤32.∴22.5≤n ≤24.∵点Q 的坐标为正整数,∴点Q 的坐标为(16,16). ………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)根据题意,得221Δ(2)4(26)(4)2m m m =--⨯⨯-=-.∵无论m 为任何实数时,都有(m -4)2≥0,即Δ≥0,∴方程有两个实数根.…………………………………………………………2分(2)令y =0,则21(2)2602x m x m +-+-=.解得 x 1=6-2m ,x 2=-2.∵ m <3,点A 在点B 的左侧, ∴ A (-2,0),B (26m -+,0).……………………………………………3分 ∴ OA=2,OB =26m -+. 令x =0,得y =2m -6. ∴C (0,2m -6).∴OC =-(2m -6)=-2m +6. ∵ 2AB =3 OC , ∴ 2(226)3(26)m m -+=-+. 解1m …………4分(3)当1m =时,抛物线的解析式为12y =点C 的坐标为(0,-4).当直线13y x b =+经过C 点时,可得当直线13y x b =+(b <-4)与函数(x >0得211432x b x x +=--.整理得2386240.x x b ---=由()()2Δ8436240b =--⨯⨯--=,解得449b =-. 结合图象可知,符合题意的b 的取值范围为b >-4或44<9b -.………………7分24.解:(1)DM AE =.………………………………………………………………………2分 (2)12DM AE =. …………………………………………………………………3分 (3)①cos DM AE =α. ………………………………………………………………4分② 如图,连结AD 、EP . ∵AB =AC ,∠ABC =60°, ∴△ABC 为等边三角形.又∵D 为BC 的中点,∴AD ⊥BC ,∠DAC =30°,BD =DC =12BC =72.∵∠BAE =∠BDM ,∠ABE =∠DBM ,∴△ABE ∽△DBM .∴12BMDB BEAB ==.∴EB =2BM . 又∵PB =2BM ,∴EB =PB .∵60EBP ABE ABP PBC ABP ABC ∠=∠+∠=∠+∠=∠=︒, ∴△BEP 为等边三角形.∴EM ⊥BP .∴∠BMD =90°.∵D 为BC 的中点,M 为BP 的中点,∴DM ∥PC .∴∠BPC =∠BMD = 90°.∵AB CB =,BE BP =,∠ABE =∠DBM , ∴△ABE ≌△CBP .∴BCP BAE ∠=∠,∠BPC =∠BEA = 90°. 在Rt △AEB 中,∵∠BEA =90°,AE=AB =7,∴cos EAB ∠∴cos cos PCB BAE ∠=∠…5分在Rt △ABD中,sin AD AB ABD =⋅∠=在Rt △NDC 中,cos DC CN NCD ==∠∴ND =∴NA AD ND =-=过点N 作NH ⊥AC 于H . ∴12NH AN =.…………………………………………………………6分∴sin NH ACP CN ∠=.…………………………………………………图2…7分25. 解:(1)由二次函数2y x bx c =-++的图象经过B (3,0)、E (2,3)两点,得 930,42 3.b c b c -++=⎧⎨-++=⎩ 解这个方程组,得2,3.b c =⎧⎨=⎩ (1)分∴抛物线的解析式为223y x x =-++. …………………………………………2分 (2)令y =0,得2230x x -++=.解这个方程,得x 1=-1,x 2=3.∴A (-1,0). 令x =0,得3y =.∴C (0,3).如图,在y 轴的负半轴上取一点I ,使得点F 与点I 关于x 轴对称,在x 轴上取一点H ,连结HF 、HI 、HG 、GC 、GE ,则HF =HI .∵抛物线的对称轴为直线1x =,∴点C 与点E 关于直线1x =对称,CG =EG . 设直线AE 的解析式为y =kx +b .∴0,2 3.k b k b -+=⎧⎨+=⎩ 解得 1,1.k b =⎧⎨=⎩ ∴直线AE 的解析式为y =x +令x =0,得y =1.∴点F ∴CF =2.∵点F 与点I 关于x 轴对称,∴I (0,-1).∴EI ===∵要使四边形CFHG 的周长最小,由于CF 是一个定值,∴只要使CG +GH +HF 最小即可. ∵CG +GH +HF =EG +GH +HI ,∴只有当EI 为一条直线时,EG +GH +HI 最小. 设直线EI 的解析式为y =k 1x +b 1.∴11123,1.k b b +=⎧⎨=-⎩ 解得112,1.k b =⎧⎨=-⎩∴直线EI 的解析式为y =2x -1.∵当x =1时,y =1,∴点G 的坐标为(1,1).…………………………………3分∵当y =0时,12x =,∴点H 的坐标为(12,0). ……………………………4分∴四边形CFHG 周长的最小值=CF +CG +GH +HF =CF +EI=2+ 5 分(3) 以P 、D 、M 、N由抛物线223y x x =-++的顶点D 直线AE 与对称轴的交点P PD =2. ∵点M 在直线AE 上, 设M (x ,x +1),①当点M 在线段AE 上时,点N则N(x,x+3) .∵N在抛物线上,∴x+3=-x2+2x+3.解得,x=0或x=1(舍去)∴M(0,1).………………………………………………………………………6 分②当点M在线段AE(或EA)的延长线上时,点N在点M下方,则N(x,x-1).∵N在抛物线上, ∴x-1=-x2+2x+3.解得x或x.∴M(,)或(,.……………………………………8 分∴点M的坐标为(0,1)或)或,).。

北京市门头沟区中考数学一模试卷及答案(word解析版)

北京市门头沟区中考数学一模试卷及答案(word解析版)

北京市门头沟区2013年中考数学一模试卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.(4分)(2013•门头沟区一模)﹣3的倒数是()A.B.﹣3 C.3D.考点:倒数.分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选A.点评:本题考查了互为倒数的定义,是基础题,熟记概念是解题的关键.2.(4分)(2013•门头沟区一模)2012年北京市的经济又迈上新的台阶,全市地区生产总值达到了1 780 000 000 000元,将1 780 000 000 000用科学记数法表示应为()A.0.178×1013B.1.78×1012C.17.8×1011D.1.78×1010考点:科学记数法—表示较大的数.分析:根据科学记数法的定义和乘方得意义求解.解答:解:1 780 000 000 000=1.78×1012.故选B.点评:本题考查了科学记数法﹣表示较大的数:用a×10n(1≤a<10,n为正整数)形式表示数的方法叫科学记数法.3.(4分)(2010•西藏)若一个多边形的内角和等于720°,则这个多边形的边数是()A.5B.6C.7D.8考点:多边形内角与外角.专题:压轴题.分析:利用多边形的内角和公式即可求解.解答:解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选B.点评:本题考查了多边形的内角和公式及利用内角和公式列方程解决相关问题.内角和公式可能部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学,理解比记忆更重要.4.(4分)(2013•门头沟区一模)如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,若∠ADC=26°,则∠AOB的度数为()A.13°B.26°C.52°D.78°考点:圆周角定理;垂径定理.分析:由OA是⊙O的半径,弦BC⊥OA ,根据垂径定理的即可求得=,然后由圆周角定理,求得∠AOB的度数.解答:解:∵OA是⊙O的半径,弦BC⊥OA,∴=,∵∠ADC=26°,∴∠AOB=2∠ADC=52°.故选C.点评:此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.5.(4分)(2013•门头沟区一模)如图是某个几何体的表面展开图,则该几何体的左视图为()A.B.C.D.考点:展开图折叠成几何体;简单几何体的三视图.分析:由圆锥的展开图特点以及三视图的定义判断得出即可.解答:解:因为圆锥的展开图为一个扇形和一个圆形,故这个几何体是圆锥,再利用圆锥的左视图是三角形.故选:A.点评:此题主要考查了展开图折叠成几何体以及三视图问题,熟悉圆锥的展开图特点是解答此题的关键.6.(4分)(2013•门头沟区一模)有6张形状、大小、质地均相同的卡片,正面分别印有数字1,2,3,4,5,6,背面完全相同.现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面印有的数字是偶数的概率是()A.B.C.D.考点:概率公式.分析:让偶数的个数除以卡片的总张数即可求得相应概率.解答:解:6个数字中,偶数有2,4,6三个,所以抽到偶数的概率是.故选C.点评:此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)(2013•门头沟区一模)小明同学在社会实践活动中调查了20户家庭某月的用水量,如下表所示:月用水量(吨) 3 4 5 7 8 9 10户数 4 2 3 6 3 1 1则这20户家庭该月用水量的众数和中位数分别是()A.5,7 B.7,7 C.7,8 D.3,7考点:众数;中位数.分析:根据中位数和众数的定义进行解答,将这组数据从小到大重新排列,求出最中间两个数的平均数是中位数,众数是一组数据中出现次数最多的数据.解答:解:∵用水量为7吨的户数有6户,户数最多,∴该月用水量的众数是7;∵共有20个数,∴这20户家庭该月用水量的中位数是第10个和11个数的平均数,∴该月用水量的中位数是(7+7)÷2=7;故选B.点评:此题考查了中位数与众数,掌握中位数与众数的定义是解题的关键,众数是一组数据中出现次数最多的数据,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.8.(4分)(2013•门头沟区一模)如图1,从矩形纸片AMEF中剪去矩形BCDM后,动点P 从点B出发,沿BC、CD、DE、EF运动到点F停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则图形ABCDEF的面积是()A.32 B.34 C.36 D.48考点:动点问题的函数图象.专题:压轴题;动点型.分析:正确读图象是解决本题的关键.解答:解:根据函数图象可以知道,从0到4,y随x的增大而增大,因而BC=4,P在CD 段时,底边AB不变,高不变,因而面积不变,由图象可知CD=3;同理:ED=2,EF=17﹣9=8;则AF=BC+DE=4+2=6,则图形ABCDEF的面积是:矩形AMEF的面积﹣矩形BMDC的面积=8×6﹣4×3=36.图形ABCDEF的面积是36.故选C.点评:根据函数图象的增减性,把图象的特殊点,与实际图形中的点对应起来.二、填空题(本题共16分,每小题4分)9.(4分)(2013•门头沟区一模)若分式的值为零,则x的值为2.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是,分子为0,分母不为0.解答:解:分式值为0,则2x﹣4=0,解得x=2,当x=2时,x+1=3≠0.故当x=2时,分式的值是0.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.10.(4分)(2013•门头沟区一模)因式分解:ax2﹣10ax+25a=a(x﹣5)2.考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a ﹣b)2.解答:解:ax2﹣10ax+25a=a(x2﹣10x+25)﹣﹣(提取公因式)=a(x﹣5)2.﹣﹣(完全平方公式)故答案为:a(x﹣5)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.(4分)(2013•门头沟区一模)为测量操场上悬挂国旗的旗杆的高度,设计的测量方案如图所示:标杆高度CD=3m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E、C、A三点共线,则旗杆AB的高度为13.5米.考点:相似三角形的应用.专题:应用题.分析:利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出=,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.解答:解:∵CD⊥FB,AB⊥FB,∴CD∥AB,∴△CGE∽△AHE,∴=,即:=,∴=,∴AH=11.9,∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).故答案为:13.5.点评:本题考查了相似三角形的应用,主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.12.(4分)(2013•门头沟区一模)如图,在平面直角坐标系xOy中,点M0的坐标为(1,0),将线段OM0绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,则点M1的坐标是(1,1),点M5的坐标是(﹣4,﹣4);若把点M n(x n,y n)(n是自然数)的横坐标x n,纵坐标y n都取绝对值后得到的新坐标(|x n|,|y n|)称之为点M n的绝对坐标,则点M8n+3的绝对坐标是(24n+1,24n+1)(用含n的代数式表示).考点:坐标与图形变化-旋转.专题:新定义;规律型.分析:由于线段OM0绕原点O沿逆时针方向旋转45°,得M1M0⊥OM0,所以△OM0M1是等腰直角三角形,而点M0的坐标为(1,0),得到点M1的坐标为(1,1),根据等腰直角三角形的性质得OM1=OM0=,同理得到OM2=×=2,OM3=()3=2,OM4=()4=4,则可确定点M5的坐标,按此规律得到OM8n+2=()8n+2=24n+1,由于从M0开始,每8个点循环的落在坐标轴和四个象限内,则可得到点M8n+2与点M2的位置一样,都在y轴的正半轴上,于是得到点M8n+3的绝对坐标是(24n+1,24n+1).解答:解:∵点M0的坐标为(1,0),线段OM0绕原点O沿逆时针方向旋转45°,得M1M0⊥OM0,∴△OM0M1是等腰直角三角形,∴OM1=OM0=,点M1的坐标为(1,1),同理可得OM2=×=2,OM3=()3=2,OM4=()4=4,∴点M5的坐标是(﹣4,﹣4);∴OM8n+2=()8n+2=24n+1,∵点M8n+2在y轴的正半轴上,∴点M8n+3的绝对坐标是(24n+1,24n+1).故答案为(1,1);(﹣4,﹣4);(24n+1,24n+1).点评:本题考查了坐标与图形变化﹣旋转:在直角坐标系中利用旋转的性质求出相应的线段长,再根据各象限点的坐标特征确定点的坐标.也考查了规律型问题的解决方法和等腰直角三角形的判定与性质.三、解答题(本题共30分,每小题5分)13.(5分)(2013•门头沟区一模)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及负整数指数幂、特殊角的三角函数值、二次根式化简、零指数幂四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:=6﹣3×+3+1=7+2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、零指数幂等考点的运算.14.(5分)(2013•门头沟区一模)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解不等式①,得x<1,解不等式②,得x≤6,所以,不等式组的解集为x<1.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(5分)(2013•门头沟区一模)已知x2+8x=15,求(x+2)(x﹣2)﹣4x(x﹣1)+(2x+1)2的值.考点:整式的混合运算—化简求值.分析:首先将所求代数式化简,然后将x2+8x的值整体代入求解.解答:解:(x+2)(x﹣2)﹣4x(x﹣1)+(2x+1)2=x2﹣4﹣4x2+4x+4x2+4x+1(3分)=x2+8x﹣3;(4分)当x2+8x=15时,原式=15﹣3=12.(5分)点评:注意解题中的整体代入思想.16.(5分)(2013•门头沟区一模)已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:BC=DE.考点:全等三角形的判定与性质.专题:证明题.分析:根据AC∥DE,证得∠ACD=∠D,∠BCA=∠E,通过等量代换可知∠B=∠D,再根据AC=CE,可证△ABC≌△CDE,所以BC=DE.解答:证明:∵AC∥DE,∴∠ACD=∠D,∠BCA=∠E.又∵∠ACD=∠B,∴∠B=∠D.在△ABC和△CDE中,∴△ABC≌△CDE(AAS).∴BC=DE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.(5分)(2013•门头沟区一模)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数的图象交于A(2,3)、B(﹣3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;设直线AB解析式为y=kx+b,将B坐标代入反比例解析式中求出n的值,确定出B 坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)如图所示,对于一次函数解析式,令x=0求出y的值,确定出C坐标,得到OC 的长,三角形ABP面积由三角形ACP面积与三角形BCP面积之和求出,由已知的面积求出PC的长,即可求出OP的长.解答:解:(1)∵反比例函数y=的图象经过点A(2,3),∴m=6.∴反比例函数的解析式是y=,Q点A(﹣3,n)在反比例函数y=的图象上,∴n=﹣2,∴B(﹣3,﹣2),∵一次函数y=kx+b的图象经过A(2,3)、B(﹣3,﹣2)两点,∴,解得:,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C(0,1),OC=1,根据题意得:S△ABP=PC×2+PC×3=5,解得:PC=2,则OP=OC+CP=1+2=3或OP=CP﹣OC=2﹣1=1.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.18.(5分)(2013•门头沟区一模)列方程或方程组解应用题:某地要对一条长2500米的公路进行道路改造,在改造了1000米后,为了减少施工对交通造成的影响,采用了新的施工工艺,使每天的工作效率是原来的1.5倍,结果提前5天完成任务,求原来每天改造道路多少米.考点:分式方程的应用.分析:设原来每天改造道路x米,则采用了新的施工工艺每天改造道路1.5x米,根据时间之间的数量关系建立方程求出其解即可.解答:解:设原来每天改造道路x米,则采用了新的施工工艺每天改造道路1.5x米,由题意得,解得:x=100.经检验,x=100是原方程的解,且符合题意.答:原来每天改造道路100米.点评:本题是一道工程问题的运用题,考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据时间之间的数量关系建立方程是解答本题的关键.19.(5分)(2013•门头沟区一模)如图,在四边形ABCD中,∠A=∠ADC=120°,AB=AD,E是BC的中点,DE=15,DC=24,求四边形ABCD的周长.考点:解直角三角形;含30度角的直角三角形;勾股定理.分析:过A作AF⊥BD与F,根据已知∠A=∠ADC=120°,AB=AD,可知∠ADC=30°,即可证明∠BDC=90°,然后根据直角三角形斜边中线是斜边的一般可求BC的长,继而求出BD的长,在Rt△AED中,根据特殊角的三角函数值可求得AD的长,即可求得ABCD的周长.解答:解:如图,过A作AF⊥BD与F,∵∠BAD=120°,AB=AD,∴∠ABD=∠ADB=30°,∵∠ADC=120°,∴∠BDC=∠ADC﹣∠ADB=120°﹣30°=90°,在Rt△BDC中,∠BDC=90°,E是BC的中点,DE=15,∴BC=2DE=30,则BD===18,∵AD=AB,AF⊥BD,∴DF=BD=×18=9,在Rt△AFD中,∵∠AFD=90°,∠ADB=30°,∴AD=AB===6,则四边形ABCD的周长=AB+BC+CD+AD=6+30+24+6=54+12..点评:本题考查了解直角三角形的知识以及勾股定理的应用,难度一般,解答本题的关键是在各直角三角形中利用解直角三角形的知识求出四边形的边长.20.(5分)(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.(1)求证:DC是⊙O的切线;(2)如果DM=15,CE=10,,求⊙O半径的长.考点:切线的判定;相似三角形的判定与性质.专题:计算题.分析:(1)连接OC,由OA=OC,DC=DE,利用等边对等角得到两对角相等,根据DM垂直于AC,得到一对角互余,等量代换得到∠OCD=90°,即可得到DC为圆O的切线;(2)过D作DG垂直于AC,连接OB,利用三线合一得到G为CE中点,由CE长求出EG长,利用对顶角相等得到∠DEG=∠AEM,确定出cos∠DEG=cos∠AEM,在直角三角形DEG中,利用锐角三角函数定义求出DE的长,再利用勾股定理求出DG的长,由DM﹣DE求出EM的长,由一对直角相等,一对对顶角相等得到三角形AEM与三角形DEG相似,由相似得比例求出AM与AE的长,AE+EC求出AC的长,由AB为圆的直径,得到三角形ABC为直角三角形,利用锐角三角函数定义表示出cosA,即可求出AB的长,进而确定出圆的半径.解答:(1)证明:如图,连结OC,∵OA=OC,DC=DE,∴∠A=∠OCA,∠DCE=∠DEC,又∵DM⊥AB,∴∠A+∠AEM=∠OCA+∠DEC=90°,∴∠OCA+∠DCE=∠OCD=90°,∴DC是⊙O的切线;(2)如图所示,过D作DG⊥AC,连接OB,∵DC=DE,CE=10,∴EG=CE=5,∵cos∠DEG=cos∠AEM==,∴DE=13,∴DG==12,∵DM=5,∴EM=DM﹣DE=2,∵∠AME=∠DGE=90°,∠AEM=∠DEG,∴△AEM∽△DEG,∴==,即==,∴AM=,AE=,∴AC=AE+EC=,∵AB为圆O的直径,∴∠ACB=90°,∴cosA==,∴AB=,则圆O的半径为AB=.点评:此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.21.(5分)(2013•门头沟区一模)某市政园林绿化局要对甲、乙、丙、丁四个品种的树苗进行树苗成活率试验,从中选取成活率高的品种进行推广.通过试验得知丙种树苗的成活率为89.6%,以下是根据试验数据制成的统计图表的一部分.表1 试验用树苗中各品种树苗种植数统计表甲种乙种丙种丁种种植数(株)150 125 125请你根据以上信息解答下列问题:(1)这次试验所用四个品种的树苗共500株;(2)将表1、图1和图2补充完整;(3)求这次试验的树苗成活率.考点:条形统计图;统计表;扇形统计图.专题:图表型.分析:(1)用丙种树苗的株数除以所占的百分比,计算即可得解;(2)先求出乙种树苗的株数,再求出甲种树苗和乙种树苗所占的百分比,根据成活率求出丙种树苗成活的株数,然后补全表格和统计图即可;(3)用成活的总株数除以所用四个品种的树苗共株数,计算即可得解.解答:解:(1)所用四个品种的树苗有:125÷25%=500株;(2)乙种树苗:500﹣150﹣125﹣125=100株,甲种树苗所占的百分比:×100%=30%,乙种树苗所占的百分比:×100%=20%;丙种树苗成活的株数:125×89.6%=112;表1中填入100,补图1和图2如图;(3)×100%=89.8%,故这次试验的树苗成活率89.8%.故答案为:500.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(5分)(2013•门头沟区一模)操作与探究:在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系xOy中,点P从原点O出发,平移1次后可能到达的点的坐标是(0,2),(1,0);点P从原点O出发,平移2次后可能到达的点的坐标是(0,4),(1,2),(2,0);点P从原点O出发,平移3次后可能到达的点的坐标是(0,6),(1,4),(2,2),(3,0);(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数y=﹣2x+2的图象上;平移2次后在函数y=﹣2x+4的图象上,….若点P平移5次后可能到达的点恰好在直线y=3x上,则点P的坐标是(2,6);(3)探究运用:点P从原点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于30,不超过32,求点Q的坐标.考点:一次函数综合题.分析:(1)根据平移的规律是:在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度.所以平移可以连续向上平移,也可以连续向右平移,也可以先向上平移后向右平移(或先向右平移后向上平移);(2)根据正比函数图象上点的坐标特征来填空;(3)设点Q的坐标为(x,y),求出Q点的坐标,得出n的取值范围,再根据点Q 的坐标为正整数即可进行解答.解答:解:(1)∵在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度,∴当点P平移3次后的坐标是:①当点P连续向上平移3次时,点P的坐标是(0,6);②当点P先向右平移1次,再向上平移2次时,点P的坐标是(1,4);③当点P先向右平移2次,再向上平移1次时,点P的坐标是(2,2);③当点P连续相右平移3次时,点P的坐标是(3,0).(2)∵平移1次后在函数y=﹣2x+2的图象上;平移2次后在函数y=﹣2x+4的图象上,∴点P平移n次后可能到达的点恰好在直线y=﹣2x+2n上,又∵点P平移5次后可能到达的点恰好在直线y=3x上.∴﹣2x+2×5=3x,解得x=2,则y=2×3=6,∴P(2,6);(3)设点Q的坐标为(x,y).由题意,得,解得,∴点Q的坐标为.∵平移的路径长为(x+y),∴30≤≤32.∴22.5≤π≤24.∵点Q的坐标为正整数,∴点Q的坐标为(16,16).故答案是:(0,6),(1,4),(2,2),(3,0);(2,6).点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2013•门头沟区一模)已知关于x的一元二次方程.(1)求证:无论m取任何实数,方程都有两个实数根;(2)当m<3时,关于x的二次函数的图象与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,且2AB=3OC,求m的值;(3)在(2)的条件下,过点C作直线l∥x轴,将二次函数图象在y轴左侧的部分沿直线l翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G.请你结合图象回答:当直线与图象G只有一个公共点时,b的取值范围.考点:二次函数综合题.分析:(1)运用根的判别式就可以求出△的值就可以得出结论;(2)先当x=0或y=0是分别表示出抛物线与x轴和y轴的交点坐标,表示出AB、OC的值,由2AB=3OC建立方程即可求出m的值;(3)把(2)m的值代入抛物线的解析式就可以求出抛物线的解析式和C点的坐标,当直线经过点C时就可以求出b的值,由直线与抛物线只有一个公共点建立方程,根据△=0就可以求出b的值,再根据图象就可以得出结论.解答:解:(1)根据题意,得△=(m﹣2)2﹣4××(2m﹣6)=(m﹣4)2,∵无论m为任何数时,都有(m﹣4)2≥0,即△≥0.∴无论m取任何实数,方程都有两个实数根;(2)由题意,得当y=0时,则,解得:x1=6﹣2m,x2=﹣2,∵m<3,点A在点B的左侧,∴A(﹣2,0),B(﹣2m+6,0),∴OA=2,OB=﹣2m+6.当x=0时,y=2m﹣6,∴C(0,2m﹣6),∴OC=﹣(2m﹣6)=﹣2m+6.∵2AB=3OC,∴2(2﹣2m+6)=3(﹣2m+6),解得:m=1;(3)如图,当m=1时,抛物线的解析式为y=x2﹣x﹣4,点C的坐标为(0,﹣4).当直线y=x+b经过点C时,可得b=﹣4,当直线y=x+b(b<﹣4)与函数y=x2﹣x﹣4(x>0)的图象只有一个公共点时,得x+b═x2﹣x﹣4.整理得:3x2﹣8x﹣6b﹣24=0,∴△=(﹣8)2﹣4×3×(﹣6b﹣24)=0,解得:b=﹣.结合图象可知,符合题意的b的取值范围为b>﹣4或b<﹣.点评:本题是一道一次函数与二次函数的综合试题,考查了一元二次方程根的判别式的运用,二次函数与坐标轴的交点坐标的运用,轴对称的性质的运用,解答时根据函数之间的关系建立方程灵活运用根的判别式是解答本题的关键.24.(7分)(2013•门头沟区一模)已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,点M在线段DF上,且∠BAE=∠BDF,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,线段DM与AE之间的数量关系是AE=MD;(2)如图2,当∠ABC=60°时,线段DM与AE之间的数量关系是AE=2MD;(3)①如图3,当∠ABC=α(0°<α<90°)时,线段DM与AE之间的数量关系是DM=cosα•AE;②在(2)的条件下延长BM到P,使MP=BM,连结CP,若AB=7,AE=,求sin∠ACP 的值.考点:相似形综合题.分析:(1)首先连接AD,由AB=AC,∠ABC=45°,易得AB=BD,又由∠BAE=∠BDM,∠ABE=∠DBM,可证得△ABE∽△DBM,根据相似三角形的对应边成比例,即可得AE=DM;(2)由∠ABC=60°及△DBM∽△ABE,根据相似三角形的对应边成比例,即可求得MD=AE,继而可得AE=2MD;(3)①由△DBM∽△ABE,根据相似三角形的对应边成比例,即可得DM=cosαAE;②首先连接AD,EP,设AD交CP于N,根据题意易证得△ABC是等边三角形,△ABE∽△DBM,继而可证得△BEP为等边三角形,然后在Rt△AEB中,利用余弦函数的定义求出cos∠EAB=,得出cos∠PCB=,再解Rt△ABD,求出AD=,解Rt△NDC,得到CN=,ND=,则NA=,然后过N作NH⊥AC,垂足为H.解Rt△ANH,求出NH=AN=,然后利用三角函数的定义,即可求得sin∠ACP的值.解答:解:(1)如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC,即AB=BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴=,∴AE=MD;(2)由(1)知△DBM∽△ABE,∴==cos∠ABC=cos60°=,∴MD=AE,∴AE=2MD;(3)①由(1)知△DBM∽△ABE,∴==cos∠ABC=cosα,∴DM=cosα•AE;②如图2,连接AD,EP,设AD交CP于N.∵AB=AC,∠ABC=60°,∴△ABC是等边三角形.又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=AB.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴==2,∠AEB=∠DMB,∴BE=2BM.又∵BM=MP,∴EB=BP.∵∠EBM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°.在Rt△AEB中,∠AEB=90°,AE=2,AB=7,∴cos∠EAB=,cos∠PCB=cos∠EAB=.在Rt△ABD中,AD=AB•sin∠ABD=,在Rt△NDC中,CN==,ND==,∴NA=AD﹣ND=.过N作NH⊥AC,垂足为H.在Rt△ANH中,NH=AN=,∴sin∠ACP==.故答案为AE=MD;AE=2MD;DM=cosα•AE.点评:此题考查了相似三角形的判定与性质、勾股定理、等边三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,掌握转化思想与数形结合思想的应用.25.(8分)(2013•门头沟区一模)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,顶点为D,过点A的直线与抛物线交于点E,与y轴交于点F,且点B的坐标为(3,0),点E的坐标为(2,3).(1)求抛物线的解析式;(2)若点G为抛物线对称轴上的一个动点,H为x轴上一点,当以点C、G、H、F四点所围成的四边形的周长最小时,求出这个最小值及点G、H的坐标;(3)设直线AE与抛物线对称轴的交点为P,M为直线AE上的任意一点,过点M作MN∥PD 交抛物线于点N,以P、D、M、N为顶点的四边形能否为平行四边形?若能,请求点M的坐标;若不能,请说明理由.考点:二次函数综合题.分析:(1)将点B和点E的坐标代入y=﹣x2+bx+c,建立二元一次方程组,求出b、c的值即可;(2)先根据(1)的结论求出A、C的坐标及对称轴,画出函数图象,在y轴的负半轴上取一点I,使得点F点I关于x轴对称,在x轴上取点H,连接HF、HI、HG、GC、GE、则GF=HI.由待定系数法求出AE的解析式,求出F的坐标,就可以求出CF的值,由勾股定理可以求出EI的值,根据两点之间线段最短,求出求出EI的解析式就可以求出G、H的坐标,由勾股定理就可以求出最小值;(3)根据平行四边形的性质和AE的解析式就可以求出D的坐标,由抛物线的解析式可以求出D的坐标,求出PD的值,可以设出M的坐标(x,x+1)分情况讨论当M在线段AE上和在线段AE或EA的延长线上时,分别表示出N点的坐标从而求出结论.解答:解:(1)∵y=﹣x2+bx+c经过(3,0)和(2,3),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∴对称轴为x=1.当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴A(﹣1,0).当x=0时,y=3,∴C(0,3)∴CE=2.OC=3如图,在y轴的负半轴上取一点I,使得点F点I关于x轴对称,在x轴上取点H,连接HF、HI、HG、GC、GE、则GF=HI.∵抛物线的对称轴为x=1,∴点C点E关于对称轴x=1对称,∴CG=EG.设直线AE的解析式为y=kx+b,由题意,得,解得:,∴直线AE的解析式为y=x+1.当x=0时,y=1,∴F(0,1),∴OF=1,CF=2.∵点F与点I关于x轴对称,∴I(0,﹣1),∴OI=1,CI=4.在Rt△CIE中,由勾股定理,得EI==2.∵要使四边形CFHG的周长最小,而CF是定值,∴只要使CG+GH+HF最小即可.∵CG+GH+HF=EG+GH+HI,∴只有当EI为一条直线时,EG+GH+HI最小.设EI的解析式为y=k1x+b1,由题意,得,解得:,∴直线EI的解析式为:y=2x﹣1,∵当x=1时,y=1,∴G(1,1).∵当y=0时,x,∴H(,0),∴四边形CFHG的周长最小值=CF+CG+GH=CF+EI=2+2;(3)∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∴D(1,4)∴直线AE的解析式为y=x+1.∴x=1时,y=2,∴P(1,2),∴PD=2.∵四边形DPMN是平行四边形,∴PD=MN=2.∵点M在AE上,设M(x,x+1),①当点M在线段AE上时,点N点M的上方,则N(x,x+3),∵N点在抛物线上,∴x+3=﹣x2+2x+3,解得:x=0或x=1(舍去)∴M(0,1).②当点M在线段AE或EA的延长线上时,点N在M的下方,则N(x,x﹣1).。

北京市门头沟区2014-2015学年年级(上)期末考试数学试题(含答案)

北京市门头沟区2014-2015学年年级(上)期末考试数学试题(含答案)

门头沟区2014—2015学年度第一学期期末调研试卷八年级数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一.个.是符合题意的,请将答案填写在下面表格内.1.25的算术平方根是().A .5B .5±C .5±D .5 2.下列实数中,是无理数的是(). A .3πB .3.0-C .227D 3.下列计算中正确的是( ).A =B . =C . =D . 24=-4.下列图形中,是轴对称图形的是( ).5.方程2460x x --= 的根的情况是( ) .A .有两个相等实数根B .有两个不相等实数根C .没有实数根D .无法判断 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .2,2,3B .2,3,4C .3,4,5D .5,8,13 7.下列根式中,最简二次根式是( ). A .21 BC .8 D8.下列各式中,正确的是( ).A .326x x x = B .nm n x m x =++ C . a b a b c c -++=- D .221132236d cd cd cd ++= 9.如图,在△ABC 中,AB =AC =4,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 分别交AB 、AC 于M 、N ,则△AMN 的周长为( ).A .12B .4C .8D .不确定10.已知△ABC 的三条边分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .6 B .7 C .8 D .9 二、填空题(本题共20分,每小题2分) 11.如果分式2132x x -+的值为0,那么x = . 12有意义,x 的取值范围是 .13.如图,点D 、E 分别在线段AB 、AC 上,AB=AC ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是 (只写一个条件即可). 14.将一元二次方程x 2-6x -5=0化成(x -3)2=b 的形式,则b =_______. 15.一个三角形的两条边长为3,8,且第三边长为奇数,则第三边长为_______. 16.当12x <<= .17.已知x =1是关于x 的一元二次方程22+10x kx -=的一个解,则k 的值是_______. 18.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .若∠BAE =40°,则∠C =_______°. 19.12111R R R =+是物理学中的一个公式,其中各个字母都不为零且120R R +≠.用12R R ,表示R ,则R =_______.CBAENMEDCBA20.如图,已知点P 在锐角∠AOB 内部,∠AOB =α,在OB 边上存在一点D ,在OA 边上存在一点C ,能使PD+DC 最小,此时∠PDC =_______. 三、计算(本题共10分,每小题5分)21.计算:26193a a +-+. 22.计算: (四、解方程(本题共15分,每小题5分)23.23620x x --=. 24.3(2)24x x x +=+. 25.6122x x x +=-+.五、解答题(本题共17分,其中26-27每小题5分,28题7分)26.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB=FD . 求证:AE=FC .27.如图,△ABC 中,AD ⊥BC 于点D ,AD=BD ,∠C =65°,求∠BAC 的度数.28.已知:在Rt △ABC 中,∠C =90°.(1)请在线段BC 上作一点D ,使点D 到边AC 、AB 的距离相等(要求:尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若AC =6,BC =8,请求出CD 的长度.EB C DA BCA六、解答题(本题共18分,每小题6分)29.关于x的一元二次方程2410x x m-+-=有两个相等的实数根,求m的值及方程的根.30.先化简,再求值:22521132x x x xx x x x⎛⎫-+++-÷⎪-+-⎝⎭,其中2340x x--=.31.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行使速度.七、解答题(本题10分)32.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C 是线段AB 所在平面内任意一点,分别以AC 、BC 为边,在AB 同侧作等边 三角形ACE 和BCD ,联结AD 、BE 交于点P .(1)如图1,当点C 在线段AB 上移动时,线段AD 与BE 的数量关系是: . (2)如图2,当点C 在直线AB 外,且∠ACB <120°,上面的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE 是否随着∠ACB 的大小发生变化,若变化写出变化规律,若不变,请求出∠APE 的度数.(3)如图3,在(2)的条件下,以AB 为边在AB 另一侧作等边三角形△A BF ,联结AD 、BE 和CF 交于点P ,求证:PB+PC+P A=BE .PED C BA图2图3FPEDCBA图1PEDBCA门头沟区2014—2015学年度第一学期期末调研八年级数学参考答案及评分参考一、选择题(本题共30分,每小题3分)21.计算:26193a a +-+. 解:=61(3)(3)3a a a++-+………………………… ………………………………1分=63(3)(3)(3)(3)a a a a a -++-+- ………… …………………………………2分=6(3)(3)(3)a a a +-+-……………………… …………………………………………3分=3(3)(3)a a a ++-… ………………………………………………………………4分=13a -.……………………………………………………………………………5分 22.计算: ( 解:=(2分 =……………………………………………………………………3分 =43-.……………………………………………………………………………5分四、解方程(本题共15分,每小题5分)23.23620x x --= . 解:∵a=3,b=-6,c=-2∴224(6)43(2)=b ac -=--⨯⨯-60>0 ………………………………………2分∴x ===……………………………………4分所以方程的解是1233,33x x ==.……………………………………5分 24.3(2)24x x x +=+.解:3(2)2(2)x x x +=+…………………………………………………………………1分3(2)2(2)0x x x +-+=……………………………………………………………2分 (32)(2)0x x -+=…………………………………………………………………3分 320,20x x -=+= ………………………………………………………………4分∴122,23x x ==-.…………………………………………………………………5分 25.6122x x x +=-+. 解:(2)6(2)(2)(2)x x x x x ++-=+-………………………………………………2分2226124x x x x ++-=-88x =1x =.………………………………………………………… 4分经检验,1x =是原方程的根.所以原方程的根是1x =.……………………………………………………………5分五、解答题(本题共17分,其中26-27每小题5分,28题7分) 26.证明:∵BE ∥DF∴∠ABE =∠FDC ……………………………………………………………1分 在△ABE 和△FDC 中,EA F AB FDABE FDC ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABE ≌△FDC (ASA )……………………4分∴AE=FC (全等三角形对应边相等).………5分 27.解:∵AD ⊥BC∴∠B +∠BAD =90°(直角三角形两锐角互余)……1分 ∵AD=BD∴∠B =∠BAD=45°(等边对等角) ………………3分 ∵∠C =65°∴∠BAC=180°-∠B-∠C =180°-45°-65°=70°(三角形内角和等于180°).…5分28.(1)作图正确,保留痕迹,有结论:所以点D 为所求.……………………………2分 (2)解:过点D 做DE ⊥AB 于E ,设DC =x ,则BD =8-x∵Rt △ABC 中,∠C =90°,AC =6,BC =8 ∴由勾股定理得AB=………………………………………3分∵点D 到边AC 、AB 的距离相等∴AD 是∠BAC 的平分线 又∵∠C =90°,DE ⊥AB∴DE =DC =x ……………………………………4分 在Rt △ACD 和Rt △AED 中,AD ADDC DE =⎧⎨=⎩∴Rt △ACD ≌Rt △AED (HL )∴AE =AC =6…………………………………………5分 ∴BE =4Rt △DEB 中,∠DEB =90° ∴由勾股定理得222DE BE BD +=即2224(8)x x +=-………………………………………………………………6分 解得x =3答:CD 的长度为3.………………………………………………………………7分六、解答题(本题共18分,每小题6分)29. 解:△=224(4)41(1)=-4+20b ac m m -=--⨯⨯-∵方程有两个相等的实数根∴△=0………………………………………………………………………………2分 即4200m -+=∴m =5………………………………………………………………………………3分 当m=5时,方程为2440x x -+=………………………………………………4分2(2)0x -=………………………………………………………………………5分∴122x x == ……………………………………………………………………6分答:m 的值是5,方程的根是2.30.22521132x x x x x x x x ⎛⎫-+++-÷ ⎪-+-⎝⎭,其中2340x x --=. 解:=25(1)23(1)1x x x x x x x ⎡⎤-+--⨯⎢⎥-++⎣⎦.…………………………………………………………2分=523x x x x ----. ………………………………………………………………………3分 =6(3)x x --. ………………………………………………………………………4分∵2340x x --= ∴234x x -= ∴原式=6(3)x x --=263x x --=32-.………………………………………………6分31.解:设原来火车的速度是x 千米/时,根据题意得12801280113.2x x-= ……………………………………………………………3分 解得x =80 ………………………………………………………………4分经检验,是原方程的根且符合题意. ………………………………………5分 3.2x =256答:高铁的行使速度是256千米/时.………………………………………………6分 七、解答题(本题10分)32.(1)AD =BE .…………………………………………………………………………1分 (2)AD =BE 成立,∠APE 不随着∠ACB 的大小发生变化,始终是60°.- 11 -证明:∵△ACE 和△BCD 是等边三角形∴EC = AC ,BC =DC ∠ACE =∠BCD =60°∴∠ACE +∠ACB =∠BCD +∠ACB ,即∠ECB =∠ACD 在△ECB 和△ACD 中,EC AC ECB ACD BC DC =∠=∠=⎧⎪⎨⎪⎩∴△ECB ≌△ACD (SAS )∴AD =BE ……………………………………4分 ∠CEB =∠CAD 设BE 与AC 交于Q又∵∠AQP =∠EQC ,∠AQP+∠QAP +∠APQ =∠EQC+∠CEQ +∠ECQ=180° ∴∠APQ =∠ECQ =60°,即∠APE =60°. …………………………………………6分 (3)由(2)同理可得∠CPE =∠EAC =60° …………………………………………7分在PE 上截取PH=PC ,连接HC , ∴△PCH 为等边三角形 ∴HC=PC ,∠CHP =60° ∴∠CHE =120°又∵∠APE =∠CPE =60° ∴∠CP A =120° ∴∠CP A =∠CHE 在△CP A 和△CHE 中,CPA CHE CAP CEH PC HC ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△CP A ≌△CHE (AAS )∴AP =EH …………………………………………………………………………9分 ∴PB+PC+P A= PB+PH+ EH =BE .………………………………………………10分 说明:1.各题若只有结果无过程只给1分;结果不正确按步骤给分。

2024年北京市门头沟区九年级中考一模数学试题(原卷版)

2024年北京市门头沟区九年级中考一模数学试题(原卷版)

门头沟区2024年初三年级综合练习(一)数学考生须知:1.本试卷共10页,共三道大题,28个小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校和姓名,并将条形码粘贴在答题卡相应位置处.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.5.考试结束,将试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下列几何体中,俯视图是三角形的是( )A. B. C. D.2. 近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为( )A. B. C. D. 3. 下图是手机的一些手势密码图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4. 一个正n 边形的每一个外角都是60°,则这个正n 边形是( )A 正四边形 B. 正五边形 C. 正六边形 D. 正七边形5. 数轴上的两点所表示的数分别为a ,b ,且满足,下列结论正确的是( )A. B. C. D. 6. 如图,,平分交于点,,则().72.110⨯82.110⨯92.110⨯102.110⨯·0,0a b a b >+<0,0a b >>0,0a b <<0,0a b ><0,0a b <>AB CD AD BAC ∠CD D 130∠=︒CAB ∠=A. B. C. D. 7. 同时掷两枚质地均匀的骰子,朝上的一面点数之和为整数的平方的概率为( )A. B. C. D. 8. 如图,在等边三角形中,有一点P ,连接、、,将绕点B 逆时针旋转得到,连接、,有如下结论:①;②是等边三角形;③如果,那么.以上结论正确的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本题共16分,每小题2分)9.的取值范围是__________.10 因式分解:______.11. 如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是_______.12. 在中,,,,点P 在线段上(不与B 、C 两点重合),如果的长度是个无理数,则的长度可以是______.(写出一个即可).30︒45︒60︒90︒16736142936ABC PA PB PC BP 60︒BD PD AD BPC BDA ≌ BDP △150BPC ∠=︒²²²PA PB PC =+x 22mx mx m -+=ABC 90C ∠=︒3AB =2AC =BC AP AP13. 已知一元二次方程,有两个根,两根之和为正数,两根之积是负数,写出一组符合条件的a、b的值_________.14. “洞门初开,佳景自来”,园林建筑中的门洞设计有很多数学中的图形元素,如图中的门洞造型,由四个相同的半圆构成,且半圆的直径围成了正方形,如果半圆的直径为米,则该门洞的通过面积为_______平方米.15. 下面是某小区随机抽取的50户家庭的某月用电量情况统计表:月用电量x(千瓦时/户/月)户数(户)61511144已如月用电量第三档的标准为大于240小于等于400,如果该小区有500户家庭,估计用电量在第三档的家庭有______户.16. 5月20日是中国学生营养日,青少年合理膳食是社会公共卫生关注的问题之一.某食堂为了均衡学生的营养,特设置如下菜单,每种菜品所含的热量,脂肪和蛋白质如下:编号菜名类别热量/千焦脂肪/g蛋白质/g1宫保鸡丁荤菜1033187 2炸鸡排荤菜12541920 3糖醋鱼块荤菜211218144土豆炖牛肉荤菜109523165香菇油菜素菜911117 20x ax b++=1240x≤240300x<≤300350x<≤350400x<≤400x>6家常豆腐素菜102016137清炒冬瓜素菜564718韭菜炒豆芽素菜491239米饭主食3601810紫菜鸡蛋汤汤10058学校规定每份午餐由1份荤菜,2份素菜,1份汤和1碗米饭搭配.小明想要搭配一份营养午餐,那么他摄入的脂肪最低量是____________g .(12岁岁的青少年男生午餐营养标准:摄入热量为2450千焦,摄入蛋白质为65g ,蛋白质越接近标准越营养)三、解答题(本题共68分,第17~21题每小题5分,第22~24题每小题6分,第25题5分,第26题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤.17. .18. .19. 已知,求代数式的值.20. 如图所示,在长为11、宽为10矩形内部,沿平行于矩形各边的方向割出三个完全相同的小矩形,求每个小矩形的面积.21. 如图,在四边形中,,,,点E 为中点,射线交的延长线于点F ,连接.的14-011(2021)22sin 45()3π---+︒-()2131242x x x x ⎧+>-⎪⎨-<+⎪⎩23210x x +-=22(1)(2)(2)3x x x x +-+-+ABCD AD BC ∥90A ∠=︒BD BC =CD BE AD CF(1)求证:四边形是菱形;(2)若,,求的长.22. 在平面直角坐标系中,一次函数的图象由的图象向上平移2个单位得到,反比例函数 的图象过点.(1)求一次函数表达式及m 的值;(2)过点平行于x 轴的直线,分别与反比例函数一次函数的图象相交于点M 、N ,当时,画出示意图并直接写出n 的值.23. 某市统计局为研究我国省会及以上城市发展水平与人均之间关系,收集了年个城市的人均数据(单位:万元)以及城市排名,进行了相关的数据分析,下面给出了部分信息..城市的人均的频数分布直方图(数据分成组:,,,,):频数(城市个数)的BCFD 1AD =2CF =BF xOy ()0y kx b k =+≠1y x =()20m y m x=≠()14A ,()0P n ,2m y x =y kx b =+PM MN =GDP 202331GDP GDP a GDP 558x <≤811x <≤1114x <≤1417x <≤1720x <≤.城市的人均(万元)的数值在这一组的是:;.以下是个城市年的人均(万元)和城市排名情况散点图:根据以上信息,回答下列问题(1)某城市的人均为万元,该城市排名全国第_____;(2)在个城市年的人均和城市排名情况散点图中,请用“”画出城市排名的中位数所表示的点;(3)观察散点图,请你写出一条正确结论.24. 如图,在中,,的平分线交于点,过点作交于点.(1)求证:直线是以点为圆心,为半径的的切线;(2)如果:,,求的半径.25. 如图是某跳台滑雪场的横截面示意图,一名运动员经过助滑、起跳从地面上点O 的正上方4米处的A 点滑出,滑出后的路径形状可以看作是抛物线的一部分,通过测量运动员第一次滑下时,在距所在直线水平距离为d 米的地点,运动员距离地面高度为h 米.获得如下数据:水平距离d /米02468垂直高度h /米488的b GDP 1114x <≤12.313.213.613.8,,,c 312023GD GDP GDP 13.8GDP 312023GDP GDP GDP ABC 90C ∠=︒CAB ∠CB D D OD CB ⊥AB O CD O OA O 3sin 5CAB ∠=3BC =O OA 132172请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出运动员滑行过程中距离地面的最大高度为_____米;(3)求h 关 于d 的函数表达式;(4)运动员第二次滑下时路径形状可表示为:,当第一次和第二次距离所在直线的水平距离分别为、,且时能成功完成空中动作,则该运动员_________(填写“能”或“不能”)完成空中动作.26. 在平面直角坐标系中,点,在抛物线上,设抛物线的对称轴为直线.(1)如果抛物线经过点,求的值;2C 215463h d d =-++OA 1d 2d 1223d d ≤≤-xoy ()1,A x m ()2,B x n ()240y ax bx a =++>x h =()2,4h(2)如果对于,,都有,求取值范围;(3)如果对于,或,存在,直接写出的取值范围.27. 如图,,,点在射线上,且,点在上且,连接,取的中点,连接并延长至,使,连接.(1)如图1,当点在线段上时.①用等式表示与的数量关系;②连接,,直接写出,的数量关系和位置关系;(2)如图2,当点在线段的延长线上时,依题意补全图形2,猜想②中的结论是否还成立,并证明.28. 在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,14x h =-23x h =m n >h 142h x h -≤≤+21x ≤212x ≥m n >h AB BC =90ABC ∠=︒P AB 90CEP ∠=︒F EP EF EC =AF AF G EG H GH GE =AH P AB AH CE BH BE BH BE P AB xOy O O 40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O求b的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创历史新高,将数字 13100000 用科学记数法表示为(

A.13.1× 106 B.1.31× 107 C. 1.31×108 D. 0.131× 108
3.(3 分)在五张完全相同的卡片上,分别写有数字
卡片的概率是(

0,﹣ 1,﹣ 2, 1,3,现从中随机抽取一张,抽到写有负数的
A.
B.
C.
三、解答题(本题共 30 分,每小题 5 分) 17.( 5 分)如图,点 A、B、 C、 D 在同一条直线上, BE∥DF,∠ A=∠ F, AB=FD.求证: AE=FC.
18.( 5 分)计算:

19.( 5 分)解不等式组

20.( 5 分)已知 x2﹣ 2x﹣7=0,求( x﹣ 2) 2+( x+3 )( x﹣ 3)的值.
D.
4.(3 分)在下面四个几何体中,俯视图是三角形的是(

A.① B.② C.③ D.④ 5.( 3 分)已知反比例函数的表达式为
,它的图象在各自象限内具有 y 随 x 增大而减小的特点,那么 k 的取
值范围是(

A. k>1 B. k< 1 C. k> 0 D. k< 0
6.(3 分)如图,直线 AB∥ CD, BE平分∠ ABC,交 CD 于 D,∠ CDB=30°,那么∠ C 的度数为(

13.( 3 分)因式分解: ax2﹣ 10ax+25a=

14.( 3 分)如图是小明设计的用激光笔测量城墙高度的示意图,在点
P 处水平放置一面平面镜,光线从点 A 出发
经平面镜反射后刚好射到城墙 CD的顶端 C 处,已知 AB⊥BD, CD⊥BD,AB=1.2 米, BP=1.8 米, PD=12 米,那么该
城墙高度 CD=
米.
15.( 3 分)学习了三角形的有关内容后,张老师请同学们交流这样一个问题:
“已知一个等腰三角形的周长是 12,
其中一条边长为 3,求另两条边的长 ”.同学们经过片刻思考和交流后,小明同学举手讲:
“另两条边长为 3、6 或
4.5、 4.5 ”,你认为小明回答是否正确:
,理由是

16.( 3 分)如图,在平面直角坐标系 xOy 中,二次函数 y=﹣ x2﹣ 2x 图象位于 x 轴上方的部分记作 F1,与 x 轴交于

A.120 °B. 130 °C. 100 °D. 150 °
7.(3 分)小明同学在社会实践活动中调查了 20 户家庭某月的用水量,如下表所示:
月用水量(吨)
3
4
5
7
8
9
10
户数
4
2
3
6
3
1
1
则这 20 户家庭该月用水量的众数和中位数分别是(

A.5, 7 B. 7, 7 C. 7,8 D. 3, 7 8.( 3 分) 如图, ⊙ O 的直径 AB 与弦 CD(不是直径) 交于点 E,且 CE=DE,∠A=30°,OC=4,那么 CD的长为 ( )
2015 北京市门头沟区初三(一模)数

一、选择题(本题共 30 分,每小题 3 分)下列各题均有四个选项,其中只有一个是符合题意的.
1.(3 分)﹣ 5 的倒数是(

A.5 B.
C.﹣ 5 D.
2.(3 分) 2014 年 3 月 5 日,李克强总理在政府工作报告中指出: 2013 年全国城镇新增就业人数约 13100000 人,
,m=
( 2)根据以上信息,补全条形统计图;
( 3) 2014 年 1 月末,某市有机动车的私家车车主约
; 200 000 人,根据上述信息,请你估计一下持有 “影响不大 ”这
4 / 20
种态度的车主约有多少人? 25.( 5 分)如图,在△ ABC 中, AB=AC,以 AC 为直径作⊙ O 交 BC 于点 D,过点 D 作⊙ O 的切线 EF,交 AB 和 AC 的延长线于 E、 F. ( 1)求证: FE⊥ AB; ( 2)当 AE=6,sin∠ CFD= 时,求 EB的长.
距上班地点 18 千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的
2 倍还多 9 千米,他从
家出发到达上班地点,乘公交所用时间是自驾车所用时间的
,问李明自驾车上班平均每小时行驶多少千米?
四、解答题(本题共 20 分,每小题 5 分) 23.(5 分) 如图,菱形 ABCD的对角线 AC和 BD 交于点 O,分别过点 C、D 作 CE∥ BD,DE∥ AC,CE和 DE 交于点 E. ( 1)求证:四边形 ODEC是矩形; ( 2)当∠ ADB=60°, AD=2 时,求 tan∠ EAD 的值.
x,
电子蜘蛛与记录仪之间的距离为 y,表示 y 与 x 函数关系的图象如图 2 所示,那么记录仪可能位于图 1 中的(

A.点 M B .点 N C.点 P D.点 Q 二、填空题(本题共 18 分,每小题 3 分)
11.( 3 分) 5 的算术平方根是

12.( 3 分)当分式
的值为 0 时, x 的值为
2 / 20
点 P1 和 O;F2 与 F1 关于点 O 对称, 与 x 轴另一个交点为 P2;F3 与 F2 关于点 P2 对称, 与 x 轴另一个交点为 P3;….这
样依次得到 F1,F2,F3 ,…,Fn,则其中 F1 的顶点坐标为
,F8 的顶点坐标为
,Fn 的顶点坐标为
(n
为正整数,用含 n 的代数式表示) .
24.( 5 分) 2014 年 1 月 10 日,国内成品油价格迎来了首次降低,某调查员就 有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:
车主的态度
百分比
A.没有影响
4%
B.影响不大
p
C.有影响
52%
D.影响很大
m
E.不关心这个问题
10%
“汽油降价对用车的影响 ”这一问题向
( 1)结合上述统计图表可得: p=
21.( 5 分)已知关于 x 的一元二次方程 x2+2x+k﹣ 2=0 有两个不相等的实数根. ( 1)求 k 的取值范围; ( 2)若 k 为正整数,且该方程的根都是整数,求 k 的值.
3 / 20
22.( 5 分)列方程或方程组解应用题:
北京快速公交 4 号线开通后,为响应 “绿色出行 ”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家
1 / 20
A.
B. 4 C.
D.8
9.(3 分)如图是某一正方体的展开图,那么该正方体是(
)A.B. NhomakorabeaC.
D.
10.( 3 分)如图 1,一个电子蜘蛛从点 A 出发匀速爬行, 它先沿线段 AB 爬到点 B,再沿半圆经过点 M 爬到点 C.如
果准备在 M 、N、P、Q 四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为
相关文档
最新文档