小学六年级数学比和比例(难题)
六年级下册数学试题-第五节 比和比例 无答案 全国通用

第五节 比和比例知识提要: 1、比和比例的意义2、求比值和化简比3、比例尺图上距离和实际距离的比,叫做这幅图的比例尺。
用式子表示:比例尺=图上距离:实际距离 或 比例尺=图上距离实际距离4、正比例和反比例(1)两种相关联的量,一种量( x )变化,另一种量( y )也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
用式子表示: yx =k (一定)。
(2)两种相关联的量,一种量( x )变化,另一种量( y )也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用式子表示:x y =k (一定)。
(3)规律:正比例 两种量同时扩大,同时缩小,它们的比值不变反比例 一种量扩大,另一种量就缩小;一种量缩小,另一种量就扩大,它们的积不变5、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“1”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
在解答分数应用题时,要注意以下几点:(1)题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。
(2)若题中数量发生变化的,一般要选择不变量为单位“1”。
(3)应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。
找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。
(4)题中有明显的等量关系,也可以用方程的方法去解。
(5)赋值解比例问题1、把下列比化简成最简整数比0.6:0.18= 56:34=0.8:415= 7.2:9.9=2、0.6:9的比值是( ),若前项增加5.4,要使比值不变,后项应增加( )3、判断两个量成什么比例关系 (1)圆的面积和圆的半径(2)一个因数不变,积和另一个因数。
六年级下册数学试题-专题10比和比例 全国通用 有答案

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。
比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。
“:”是比号,读作“比”,所以a:b读作a比b。
比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。
前项除以后项所得的商是比的结果,叫做比值。
例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。
比可以写成分数形式,如7:4可读作:七比四。
比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。
比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。
同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。
例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
把两个数的比化成最简整数比的,称为化简比或比的化简。
四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。
组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。
例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。
例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。
五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。
小学六年级数学思维能力(奥数)《较复杂的比和比例》训练题

小学六年级数学奥数《较复杂的比和比例》训练题1、一个正方形的一边减少20%,另一边增加2米,得到一个长方形,这个长方形的面积与原正方形面积相等.原正方形的边长是多少米?2、一把小刀售价3元.如果小明买了这把小刀,那么小明与小强剩余的钱数之比是2:5;如果小强买了这把小刀,那么两人剩余的钱数之比变为8:13.小明原来有多少钱?3、甲、乙两人原有的钱数之比为6:5,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为18:11,求原来两人的钱数之和为多少?4、一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要多少天可以完成作业?5、动物园门票大人20元,小孩10元.六一儿童节那天,儿童免票,结果与前一天相比,大人增加了60%,儿童增加了90%,共增加了2100人,但门票收入与前一天相同.六一儿童节这天共有多少人入园?6、某水果批发市场存放的苹果与桃子的吨数的比是1:2,第一天售出苹果的20%,售出桃子的吨数与所剩桃子的吨数的比是1:3;第二天售出苹果18吨,桃子12吨,这样一来,所剩苹果的吨数是所剩桃子,问原有苹果和桃子各有多少吨?吨数的4157、有一个长方体,长和宽的比是2:1,宽与高的比是3:2.表面积为272cm,求这个长方体的体积.8、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.已知这个长方体的全部棱长之和是220厘米,求这个长方体的体积.9、某高速公路收费站对于过往车辆收费标准是:大型车30元,中型车15元,小型车10元.一天,通过该收费站的大型车和中型车数量之比是5:6,中型车与小型车之比是4:11,小型车的通行费总数比大型车多270元.(1)这天通过收费站的大型车、中型车、小型车各有多少辆?(2)这天的收费总数是多少元?10、6枚壹分硬币摞在一起与5枚贰分硬币摞在一起一样高,4枚壹分硬币摞在一起与3枚伍分硬币摞在一起一样高.用壹分、贰分、伍分硬币各摞成一个圆柱体,并且三个圆柱体一样高,共用了124枚硬币,问:这些硬币的币值为多少元?11、某工地用3种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为6:8:9,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投入工作,一共干了25天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?12、将一堆糖果全部分给甲、乙、丙三个小朋友.原计划甲、乙、丙三人所得糖果数的比为5:4:3.实际上,甲、乙、丙三人所得糖果数的比为7:6:5,其中有一位小朋友比原计划多得了15块糖果.那么这位小朋友是 (填“甲”、“乙”或“丙”),他实际所得的糖果数为多少块?13、今年儿子的年龄是父亲年龄的14,15年后,儿子的年龄是父亲年龄的511.今年儿子多少岁?14、一个周长是56厘米的大长方形,按图⑴与图⑵所示意那样,划分为四个小长方形.在图⑴中小长方形面积的比是:1:2A B=,:1:2B C=.而在图⑵中相应的比例是':'1:3A B=,':'1:3B C=.又知长方形'D的宽减去D的宽所得到的差与'D的长减去D的长所得到差之比为1:3.求大长方形的面积.(1)DCBA⑵D'C'B'A'15、北京中学生运动会男女运动员比例为19:12,组委会决定增加女子艺术体操项目,这样男女运动员比例变为20:13;后来又决定增加男子象棋项目,男女比例变为30:19,已知男子象棋项目运动员比女子艺术体操运动员多15人,则总运动员人数为多少?16、袋子里红球与白球的数量之比是19:13.放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11.已知放入的红球比白球少80只.那么原来袋子里共有只球.17、有若干个突击队参加某工地会战,已知每个突击队人数相同,,以后上级从第一突而且每个队的女队员的人数是该队的男队员的718击队调走了该队的一半队员,而且全是男队员,于是工地上的全体女队员的人数是剩下的全体男队员的8,问开始共有多少支突击队参加17会战?18、某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人?19、有甲、乙两块含铜率不同的合金,甲块重6千克,乙块重4千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为多少千克?20、下图是一个园林的规划图,其中,正方形的3是草地;圆的46是竹林;竹林比草地多占地450平方米.问:水池占多少平方米? 721、乙两个班共种树若干棵,已知甲班种的棵数的1等于乙班种4,且乙班比甲班多种树24棵,甲、乙两个班各种树多少棵? 的棵数的15,甲本月支出的钱数是乙支22、甲本月收入的钱数是乙收入的58,甲节余240元,乙节余480元.甲本月收入多少元?出的3423、甲、乙两车分别从A、B两地同时相向开出,甲车速度是50千多50米/小时,乙车速度是40千米/小时,当甲车驶过A、B距离的13千米时与乙车相遇,A、B两地相距多少千米?24、甲、乙、丙三个数,已知()甲乙丙,:2:7:4:3+=甲乙丙。
小升初真题特训:比和比例-小学数学六年级下册人教版(有答案 有解析)

小升初真题特训:比和比例-小学数学六年级下册人教版(有答案有解析)小升初真题特训:比和比例-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________一、选择题1.(2023·江苏·小升初真题)学校田径队中有四名队员的身高在140厘米至150厘米.小明身高170厘米,如果他加入田径队后,这五名田径队员的平均身高( ).A.不会有变化B.增加12.5厘米C.最多增加4厘米D.增加4厘米至6厘米2.(2023·全国·小升初真题)两地间的实际距离是80千米,画在地图上是4厘米.这幅地图的比例尺是().A.1:20 B.1:20000 C.1:20000003.(2022·福建南平·统考小升初真题)如图,阴影部分的面积相当于甲圆面积的,相当于乙圆面积的,那么甲和乙两个圆的面积比是()。
A.6∶1 B.6∶5 C.5∶64.(2023·全国·小升初真题)甲数的等于乙数的,甲数和乙数的比是()A.7:4 B.4:7 C.:5.(2023·全国·小升初真题)图上距离1厘米,表示实际距离20米,那么比例尺是()A.1:20 B.1:200 C.1:20006.(2022·广东惠州·统考小升初真题)甲数的等于乙数的(甲数、乙数不为),那么甲数与乙数的比是()。
A.B.C.D.7.(2023春·全国·六年级小升初模拟)从圆中剪出一个最大的正方形,则正方形的面积与圆的面积之比为()。
A.π∶4 B.2∶π C.3∶π8.(2022·浙江宁波·统考小升初真题)下面各题中,成反比例关系的是()。
A.路程一定,速度和时间B.时间一定,路程和速度C.单价一定,总价和数量D.数量一定、总价和单价二、判断题9.(2023·全国·小升初真题)若2X=5Y,则X和Y一定成正比例关系.( ).10.(2022·湖南衡阳·统考小升初真题)某班男、女生人数的比是7∶8,男生占全班人数的。
完整版六年级奥数题比和比例一

比例问题填空题1.4:( )= 20=()10=( )%2. 在3:5里,如果前项加上6,要使比值不变,后项应加 _.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是____ 毫米.4. 某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、茄子面积的比是25:1:丄,三种蔬菜各种了亩.25. 买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了____ 支.6. 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 _—7. 自然数A、B满足- 丄 -,且A:B=7:13.那么,A+B=.A B 1828. 光明小学有三个年级,一年级学生占全校学生人数的25%二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生______________ 人.9. 水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺____ 吨.黄砂多 _____ 吨.10. 甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要_____ 小时.11. 已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.12. 有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克, 求在新合金内铜与锌的比.13. 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50 千米•问:此人走完全程用了多少时间?14. 一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?练习题1有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220cm求这个长方体的体积。
六年级数学比和比例试题

六年级数学比和比例试题1.(1分)(2012•富源县)“一只青蛙四条腿,两只眼睛,一张嘴;两只青蛙八条腿,四只眼睛,两张嘴,三只青蛙…那么青蛙的只数与腿的条数成正比例关系”.(判断对错)【答案】正确【解析】判断两种量成不成比例,成什么比例,就看这两种量是否是①相关联;②一种量变化,另一种量也随着变化,变化方向相同或相反;③对应的比值或乘积一定;如果这两种量相关联的量都是变量,且对应的比值一定,就成正比例;如果两种量相关联的量都是变量,且对应的乘积一定,就成反比例;如果是其它的量一定或乘积、比值不一定,就不成比例.解:因为青蛙的腿的条数:只数=4:1=8:2=4(一定),是青蛙的腿的条数与只数对应的比值一定,所以青蛙的只数与腿的条数成正比例关系;故判断为:正确.点评:此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是否都是变量,且对应的比值一定,或是对应的乘积一定,再做出判断.2.在下面各比中,能与:组成比例的是()。
A.4:3B.3:4C.:3D.:【答案】A【解析】像这种判断两个比能否组成比例的题目,可以用求比值的方法,先把:化简,然后再看看四个选项中哪个比值和它相等。
也可以根据比例的基本性质,分别假设四个选项都可以和它组成比例,看看内项积是不是等于外项积。
通过计算可知,正确答案为A。
3.下图中,A城到C城的实际距离是180千米,量一量,算一算,这幅图的比例尺是多少?根据这个比例尺你能算出A城到B城的实际距离吗?【答案】1:9000000,270千米【解析】先测量A城到C城的图上距离是2厘米,根据比例尺的定义,图上距离:图上距离=2厘米:180千米=1:9000000,再测量AB两城之间的图上距离是3厘米,3×9000000=27000000(厘米),换算之后得到270千米。
4.聪聪在同一时刻测量了直立在太阳下的四根竹竿的影长,结果如下:(1)竹竿的高度与影长之间成()关系。
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1.(6分)求未知数x4.2+0.5x=5.6:=:x=.【答案】x=2.8;x=;x=6【解析】①依据等式的性质,方程两边同时减去4.2,再同除以0.5求解;②先根据比例的基本性质,把原式转化为x=×,然后根据等式的性质,在方程两边同时乘4求解;③先根据比例的基本性质,把原式转化为0.6x=4×0.9,然后根据等式的性质,在方程两边同时除以0.6求解.解:①4.2+0.5x=5.64.2+0.5x﹣4.2=5.6﹣4.20.5x÷0.5=1.4÷0.5x=2.8②:=:xx=×x×4=××4x=③=0.6x=4×0.90.6x÷0.6=3.6÷0.6x=6点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.2.一个直径4mm的手表零件,画在图纸上直径是8cm,这幅图纸的比例尺是()。
【答案】20:1【解析】比例尺表示图上距离和实际距离的比,所以这幅图的比例尺是:8cm:4mm,统一单位化简后是80mm:4mm=20:1。
3. a、b是两种相关联的量,如果a、b成正比例,那么“?”处应该填();如果a、b成反比例,那么“?”处应该填()。
【答案】2.4【解析】如果ab成正比例,那么它们的比值就是一定的,即3:4=5:?,解比例得到?=。
如果a、b成反比例,那么它们的乘积就是一定的,即3×4=5×?,得到?=2.4。
4.一段路,甲小时走完,乙小时走完,甲乙两人的速度比是3:4。
()【答案】√【解析】审题时要看清,条件给出的是甲乙的时间,而最后表示的是两人的速度之比。
根据条件得到甲的速度是1÷,乙的速度是1÷,所以甲乙的速度比是3:4,题目正确。
5.①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?【答案】5:4【解析】如下表所示,由②知,一、二、三班的男生总数比二、三班总人数多1;由③知,四至九班的男生总数比四、五、六班总人数少1.因此,一至九班的男生总数是二、三、四、五、六共五个班的人数之和,由于每班人数均相等,则女生总数等于四个班的人数之和.所以,男、女生人数之比是.6.在比例尺为1:2000000的这个地图上,量得北京到郑州的距离是32厘米;把它画在比例尺为的地图上。
六年级下册-第二单元比和比例能力提高题和奥数题(附答案)
第二单元 比和比例能力提升题和奥数题板块一 比例题1.小明读一本书,已读的页数和未读的页数之比是5∶4,如果再读27页,已读的页数和未读的页数之比是2∶1。
求这本书有多少页?练习1.甲、乙两袋糖果的质量比是3∶2,如果从甲袋糖果中拿出5千克放入乙袋,这时甲、乙两袋糖果的质量比是1∶1。
两袋糖果一共重多少千克?例题2.甲数是乙数的103,乙数是丙数的94,求这三个数的连比。
练习2.在学校召开的秋季运动会上,李小强、刘小刚、王小林三个人参加了百米赛跑。
赛跑的过程中,李小强的速度比刘小刚慢101,刘小刚的速度比王小林慢101,他们三人的速度比是多少?例题3.蓝天小学和新世纪小学学生人数的比为3∶5。
如果从蓝天小学转入新世纪小学150人,则蓝天小学与新世纪小学学生人数的比为3∶7。
求原来蓝天小学和新世纪小学各有多少人?练习3.甲、乙两个仓库货物的质量比是7:5,如果甲仓给乙仓26吨,那么甲、乙两个仓库货物的质量比是3:4.甲仓原来有多少吨货物?例题4.某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。
求这天这三种车辆通过的数量。
练习4.学校组织体检,收费标准如下:老师每人3元,学生每人2元。
已知老师和学生的人数比为2:9,共收得体检费3120元。
那么老师、学生各有多少人?例题5.甲、乙、丙三人合买一台电视机,甲所付钱数的21等于乙所付钱数的31,等于丙所付钱数的73。
已知丙比甲多付了120元,那么这台电视机多少钱?练习5..甲、乙、丙三人逛商场,甲花的钱数的21等于乙花的钱数的31,乙花的钱数的74等于丙花的钱数的43,丙比甲多花47元,乙花了多少元?例题6.张、王、李、赵4人联合为灾区捐款,张捐的钱数是王,李,赵总和的41,王捐的钱是张,李,赵总和的237,李捐的钱是张,王,赵总和的114,赵捐了9元钱。
六年级比和比例的几种类型题(含例题分析)
比和比例的几种类型(含例题)题型一:已知具体量和比例关系,求某个量或总量。
例1:甲、乙、丙三个同学体重总和是110千克,他们的体重比是4:5:2。
最重的一个同学达多少千克? 思路分析:1、题目已知的具体量是总体重110千克,所以先求出他们的体重和(单位“1”):4+5+2=11 2、根据问题找出:最重的一个同学占总体重的115,110×115= 50(kg )例2:把一批书按4:5:6分给甲、乙、丙三个班,甲班分到160本则,这批书一共有多少本? 思路分析:1、题目已知的具体量是甲班分到160本书,所以单位“1”就是甲班,2、根据问题找出这批书总数是:4+5+6=15,总数占甲班的14 ,160÷14= 600(本) 练习:1、大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的比是( )。
2、把(5平方米):(50平方分米)化成最简整数比是( ),它们的比值是( )。
3、甲乙两数的比是11:9,甲数占两数和的)()(,乙数占两数和的)()(。
4、甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
5、在含盐10%的500克盐水中,再加入50克盐,这时盐与盐水的比是( )。
6、学校买回315棵树苗,计划按3:4分给五、六年级种植,两个年级各分到树苗多少棵?7、学校把购进的图书按2∶3∶4分配给四、五、六三个年级。
已知六年级分得56本,学校共购进图书多少本? 8、把一批书按4:5分给甲、乙两个班,甲班比乙班少20本,甲、乙两班各分到多少本书?9、一种农药水是用药和水按1:100配成的,要配制这种农药水8080千克,需要药粉多少千克?10、一个分数,分子和分母的和是28,分子与分母的比是1:3,这个分数是多少?11、一个养鱼塘按1:2:3养殖草鱼、鲤鱼、白脸鱼,已知鲤鱼养了6666尾,草鱼和白脸鱼各养了多少尾?练习:12、小明和小刚都积攒了一些零用钱,他们所积攒的钱数比是7:4。
六年级【小升初】小学数学专题课程《比和比例问题》(含答案)
16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。
在计算中,要注意各种量的单位要统一。
二、按比例分配的应用题把一个数量按照一定的比分配成几部分。
按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。
关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。
三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。
四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。
2.设未知数为x,并注明单位名称。
3.根据比值(一定)或积(一定)建立比例式,并解比例。
4.检验,写答语。
考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。
一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。
要分的总数是390,总份数是42+45+43=130。
其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。
【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比例(1)
2、某校合唱队与舞蹈队人数之比为3 :2,如果将合唱队的队员调10名到舞蹈队,
那么这时的人数比为7 :8,原合唱队有人
3、甲、乙、丙三人外出参观。
午餐时,甲带有4包点心,乙带有3包点心,丙带有
7元钱却没有买到食物,他们决定把甲、乙二人的点心平均分成三份食用,由丙把7元钱还给甲和乙,那么,甲应分得元
@
4、三个容积相同的瓶子装满酒精溶液,酒精与水的比分别是3 :2, 3 :1, 4 :1,
当把三瓶酒精溶液混合时,酒精与水的比是
5、有甲、乙、丙三个长方体,它们的长之比是2 :2 :3,宽之比是3 :5 :6,高之比是6 :2 :5,如果丙的体积是90立方厘米,那么甲、乙两个长方体的体积之和是
立方厘米。
比和比例(2)
3.4.
5.6.
比和比例(3)
比和比例(4)。