黄酮类酚酸类

合集下载

橄榄叶的功效与作用

橄榄叶的功效与作用

橄榄叶的功效与作用橄榄树是地中海地区最古老的果树之一,橄榄叶在中东和地中海地区被广泛用于食品制作和中草药中,拥有丰富的营养成分和药用价值。

橄榄叶具有抗炎、抗氧化、抗菌等多种功效,可用于预防和治疗多种疾病。

一、橄榄叶的化学成分橄榄叶富含多种有益化学成分,其中包括酚类化合物、羟基酸、苦素、芦丁、酚酸类、黄酮类、三萜类等。

这些化学成分具有抗炎、抗氧化、抗菌、抗肿瘤等多种药理作用。

1.酚类化合物: 橄榄叶中含有丰富的酚类化合物,包括橄榄酚、橄榄内酯、橄榄内酯醇等。

这些酚类化合物具有明显的抗氧化和抗炎作用,可帮助清除自由基,减轻炎症反应。

2.羟基酸: 橄榄叶中含有肉毒碱等羟基酸类物质,具有降低血脂、防止心血管疾病等作用。

3.苦素: 橄榄叶中含有丰富的苦素,具有抗菌、抗病毒、抗肿瘤等作用。

苦素可以促进人体免疫力的提高,对于预防感染和疾病的发生具有重要意义。

4.芦丁: 橄榄叶中含有丰富的芦丁,具有抗炎、抗氧化、抗肿瘤等作用。

芦丁可增强毛细血管壁的弹性,改善微循环,对于防治心脑血管疾病和提高机体免疫力有益。

5.酚酸类: 橄榄叶中含有丰富的酚酸类化合物,如儿茶酸、咖啡酸等,具有抗炎、抗氧化、降血压等作用。

这些酚酸类化合物可抑制炎症反应,缓解疼痛,改善心血管功能。

6.黄酮类: 橄榄叶中含有丰富的黄酮类化合物,如山奈酚、异鼠李酮等,具有抗氧化、抗炎、抗衰老等作用。

黄酮类化合物可以清除自由基,减轻氧化应激损伤,延缓细胞老化。

7.三萜类: 橄榄叶中含有丰富的三萜类化合物,如齐墩果酸、蓝鉊醇等,具有抗氧化、抗菌、抗病毒等作用。

这些三萜类化合物可以增强免疫力,抵抗外界环境中的各种有害物质。

二、橄榄叶的功效与作用1.抗氧化作用: 橄榄叶中的酚类化合物、黄酮类化合物等具有明显的抗氧化作用,可以清除自由基,减轻氧化应激反应,保护细胞免受氧化损伤。

这对于预防衰老、癌症、心血管疾病等具有重要意义。

2.抗炎作用: 橄榄叶中的酚酸类、苦素等化合物具有抗炎作用,可以减轻炎症反应,缓解疼痛和不适。

茶多酚的作用与功效

茶多酚的作用与功效

茶多酚的作用与功效茶多酚是一种重要的生物活性成分,主要存在于茶叶中。

茶多酚具有抗氧化、抗癌、抗炎、抗衰老、降血脂、降血糖等多种生理功效,被广泛应用于食品、保健品和药物领域。

本文将详细介绍茶多酚的作用与功效,希望能够对读者朋友们有所启发。

第一部分:茶多酚的基本概述和分类茶多酚是指茶叶中含有的一类多酚化合物,其主要包括儿茶素、黄酮类和酚酸类等多种物质。

这些多酚化合物具有多个酚类羟基,能够与氧自由基结合,从而具有抗氧化作用。

茶多酚根据其化学结构的不同可分为儿茶素类、黄酮类和酚酸类三大类。

其中,儿茶素类是茶多酚的主要组成部分,占茶多酚总量的60%~80%。

黄酮类是茶多酚中次要的组成部分,占茶多酚总量的5%~15%。

酚酸类占茶多酚总量的5%~15%。

第二部分:茶多酚的抗氧化作用茶多酚具有很强的抗氧化作用,能够清除体内的自由基,减少自由基对细胞的损伤。

茶多酚不仅可以直接与自由基发生反应,还可以通过激活细胞内的抗氧化酶系统,间接发挥抗氧化作用。

研究表明,茶多酚对于抗氧化应激、预防和治疗氧化应激相关疾病具有重要的作用。

茶多酚的抗氧化作用主要通过以下几个方面发挥:1. 清除自由基:茶多酚可以与自由基发生反应,将其中和,从而达到抗氧化的效果。

2. 抗氧化酶活性的提高:茶多酚可以通过调节细胞内的抗氧化酶系统,增强体内抗氧化能力。

3. 抗氧化基因的表达:茶多酚可以通过调节基因的表达,增加抗氧化相关基因的表达水平,从而提高体内抗氧化能力。

4. 抗糖基化作用:茶多酚可以降低血糖,减少糖基化反应,从而降低自由基产生,减轻氧化应激的损伤。

茶多酚的抗氧化作用在抗衰老、抗癌、心血管疾病等方面具有重要的意义。

第三部分:茶多酚的抗衰老作用茶多酚具有抗衰老作用,主要通过抗氧化、抗糖基化、抗炎和调节细胞凋亡等多个途径发挥作用。

1. 抗氧化作用:茶多酚可以清除体内的自由基,减少细胞的氧化损伤,延缓细胞衰老。

2. 抗糖基化作用:茶多酚能够抑制糖基化反应,减少糖基化终产物的生成,从而减缓细胞的老化过程。

地黄的主要化学成分

地黄的主要化学成分

地黄的主要化学成分
地黄是一种中药材,其主要化学成分包括:
1. 黄酮类:如虎杖苷、异黄酮和儿茶素等。

2. 酚酸类:如咖啡酸和香草酸等。

3. 多糖类:如糖基化的蛋白多糖和糖基化的多糖等。

4. 生物碱类:如羚羊角碱、地黄苷和大黄苷等。

5. 甾体类:如熊果酸和地黄酚等。

这些化学成分主要具有滋阴补肾、补血安神、调节免疫等作用。

其中,地黄苷和大黄苷等生物碱类物质,具有很强的保护肝脏和心脏等重要脏器的作用,能够降低血压、抗炎、防癌等作用。

此外,地黄所含的多糖类物质,还具有一定的免疫调节作用,可以增强人体免疫力,避免发生炎症和肿瘤等疾病。

酚类化合物

酚类化合物

酚类化合物(一)主要化合物及其食物来源酚类化合物包括了一类有益健康的化合物,其共同特性是分子中含有酚的基团,因而具有较强的抗氧化功能。

根据分子组成的不同,植物性食物中的酚类化合物分为简单酚、酚酸、羟基肉桂酸衍生物及类黄酮。

常见的酚类化合物有:1.简单酚又称一元苯酚,如水果中分离出的甲酚、芝麻酚、桔酸(gallicacid)。

2.酚酸主要有香豆酸(coumaricacid)、咖啡酸(caffeicacid)、阿魏酸(ferulicacid) 和绿原酸(chlorogenicacid)等。

3.类黄酮(flavonoids),又称黄酮类化合物,包括黄酮、槲皮素、黄酮醇、黄烷醇、黄烷酮等。

4.异黄酮异黄酮广泛存在于豆科植物中,黄豆中所含异黄酮有:染料木苷元(三羟基异黄酮,又称金雀异黄素)、大豆苷元(二羟基异黄酮)、大豆苷、染料木苷、大豆黄素苷以及上述三种苷的丙二酰化合物。

5.茶多酚主要由5种单体构成,分别是表没食子儿茶素一没食子酸酯(EGCG)、表没食子儿茶素(EGC)、表儿茶素一没食子酸酯(ECG)、儿茶素(CA)和表儿茶素(EC)。

其中,EGCG的含量最高,被认为是茶多酚生物学活性的主要来源。

(二)生物学作用酚类化合物与人体健康关系的研究多集中在槲皮素、大豆异黄酮、茶多酚的生物学作用方面。

现将其主要的保健功能综述如下:1.抗氧化作用植物中所含的多酚化合物是重要的抗氧化剂,可以保护低密度脂蛋白免受过氧化,从而防止动脉粥样硬化和体内过氧化反应的致癌作用。

2.血脂调节功能大豆异黄酮可以降低胆固醇,含这种成分的大豆蛋白可使动物的低密度脂蛋白和极低密度脂蛋白以及胆固醇降低30%~40%。

茶多酚可减少肠内胆固醇的吸收,降低血液胆固醇,降低体脂和肝内脂肪聚积。

3.血管保护作用红葡萄酒中的多酚化合物可抑制血小板的活性,从而抑制血栓的形成,并可使已形成的血栓血小板解聚;还可促进血管内皮细胞分泌产生舒血管因子,减轻栓塞性心血管病的发生。

酚类物质的结构与性质及其与葡萄及葡萄酒的关系

酚类物质的结构与性质及其与葡萄及葡萄酒的关系

酚类物质的结构与性质及其与葡萄及葡萄酒的关系一、本文概述酚类物质是一类广泛存在于自然界中的化合物,因其独特的结构和性质,它们在多个领域,特别是生物化学和食品科学中扮演着重要角色。

本文旨在深入探讨酚类物质的结构与性质,以及它们与葡萄及葡萄酒之间的紧密联系。

我们将从酚类物质的基本结构出发,分析它们的化学特性,并探讨这些特性如何影响其在葡萄和葡萄酒中的表现。

我们将概述酚类物质的基本结构和分类,包括酚酸、黄酮类、单宁等,以及它们的主要化学性质,如抗氧化性、与金属离子的络合能力等。

接着,我们将重点关注葡萄和葡萄酒中的酚类物质,分析它们在葡萄生长、发酵和陈酿过程中的变化,以及这些变化如何影响葡萄酒的风味和品质。

我们还将讨论酚类物质在葡萄酒中的健康效益,如抗氧化、预防心血管疾病等。

通过综合分析酚类物质的结构与性质,以及它们在葡萄和葡萄酒中的作用,本文旨在为读者提供一个全面而深入的理解,从而更好地欣赏和品味葡萄酒,同时也为葡萄酒产业的持续发展提供理论支持。

二、酚类物质的结构与性质酚类物质是一类具有苯环和羟基(-OH)官能团的有机化合物,其结构特点决定了它们具有独特的化学和生物活性。

在葡萄和葡萄酒中,酚类物质主要包括酚酸、黄酮醇、黄酮、花色苷和单宁等。

酚类物质的基本结构由一个或多个苯环组成,苯环上的羟基赋予其特殊的化学性质。

羟基的存在使得酚类物质易于与其他分子形成氢键,这种相互作用在葡萄酒的口感和色泽形成中起到关键作用。

酚类物质还具有强烈的抗氧化性,能够清除自由基,对维护生物体的健康起到重要作用。

黄酮醇、黄酮和花色苷等酚类物质在葡萄和葡萄酒中的含量较高,它们呈现出明显的色泽特征,如黄酮醇呈现黄色,花色苷则呈现红色或蓝色。

这些色素物质不仅影响葡萄酒的颜色,还赋予其独特的口感和风味。

在葡萄酒的陈酿过程中,酚类物质之间的相互作用和转化也是影响葡萄酒品质的重要因素。

单宁是葡萄酒中一类特别重要的酚类物质,它们主要来源于葡萄皮、籽和茎等部分。

植物酚类化合物

植物酚类化合物

植物酚类化合物
植物酚类化合物是一类广泛存在于植物中的次生代谢产物,具有多种生物活性和药理作用。

它们通常具有一个或多个芳香环,并包含一个或多个羟基。

植物酚类化合物的种类繁多,包括黄酮类、单宁类、酚酸类、花青素类等。

其中,黄酮类是最常见的一类植物酚类化合物,如芦丁、槲皮素、大豆异黄酮等。

这些化合物具有抗氧化、抗炎、抗菌、抗病毒、降血脂、抗肿瘤等多种生物活性。

植物酚类化合物还具有一些药理作用,如镇痛、解热、抗过敏、抗抑郁等。

此外,它们还可以用于食品添加剂、化妆品、医药等领域。

植物酚类化合物的生物活性和药理作用与其化学结构密切相关。

不同的化学结构可以导致不同的生物活性和药理作用。

因此,对植物酚类化合物的研究对于开发新的药物和保健品具有重要意义。

总之,植物酚类化合物是一类非常重要的次生代谢产物,具有多种生物活性和药理作用。

它们的研究对于开发新的药物和保健品、改善人类健康具有重要意义。

千里光中几种黄酮和酚酸类成分的分离与鉴定

千里光中几种黄酮和酚酸类成分的分离与鉴定
油 醚 ) 乙酸 乙酯 ) 1O~ : 梯 度洗 脱 .L : ( 为 : O1 T C监控 , 合并 相 同流份 , 各流份 再经 S p ae , 2 e h dxI 0柱 , H- 甲
第1 2期
何 忠 梅 等 : 里 光 巾几 种 黄 酮 和 酚 酸 类 成 分 的 分 离 与 鉴 定 千
18 47
千里光 药材 ,0 8年 6月采 于吉林 省 通 化 县海 拔 8 01 的 山坡 , 鼓 吉林 农业 大 学 胡 全德 教 授 鉴 20 0 1 3 经
定 为千里 光 ( eei s n esB c .H m. 的 干涉全 草 , 材标 本存放 于本 院实 验室 。 Snc a dn u h . a ) oc 药
第2 7卷 第 l 2期
2 0年 1 01 2门
应 用 化 学
C N S OURN F AP L E C HI E E J AL O P I D HE S R MI T Y
V‘ _ 7 No 2 l 2 .1 l
De!2 0 t 0l .
千 里 光 中几 种 黄 酮 和 酚 酸 类 成 分 的 分 离 与 鉴 定
提取 和分离 : 千里 光 干燥 全 草 2 g 粉 碎 ,5 乙醇 提 取 3次 。提 取 液 减 压 浓 缩 回 收溶 剂 至 无 醇 0k , 9%
味 , 浸膏 2 6k。加 适 量水混悬 后 , 次 用石 油醚 ( p6 得 . g 依 b 0~9 、 0o 氯仿 、 C) 乙酸 乙酯及 水 饱 和正 丁醇 萃 取 。 各萃 取相 分别 回收溶 剂 , 相应 萃取 物 。 乙酸 乙酯 萃取 物 (6 ) 多 次硅 胶柱 层 析 , ( 将 得 将 10g 经 以 石
日退翳 , 虫止痒 。主治流感 、 呼 吸道感 染 、 炎 、 杀 上 肺 急性 扁桃 腺 炎 、 腺炎 、 腮 急性 肠 炎 、 菌痢 、 疸 型肝 黄 炎、 胆囊炎 、 急性 尿路感染 、 滴虫性 阴道炎 及烧烫 伤 等… 。现代 药理 学 实验表 明 , 千里 光抗 菌 、 抗炎 的活 性 部位主要集 中于 富含 黄酮和 酚酸类物质 的 乙酸 乙酯 提取 物 中 , 此 , 文对 千 里光 的 乙酸 乙酯提 为 本

茶多酚主要成分

茶多酚主要成分

茶多酚主要成分茶多酚是茶叶中的一种重要成分,具有丰富的营养价值和药用价值。

它是一种天然的抗氧化剂,对人体健康有着重要的保护作用。

茶多酚主要包括儿茶素、黄酮类及酚酸类等多种化合物,下面将分别介绍它们的作用。

儿茶素是茶多酚的主要成分,也是茶叶中含量最高的成分。

它具有抗氧化、抗炎、抗癌、抗衰老等多种功效。

抗氧化是儿茶素最重要的作用之一,它可以清除体内自由基,减少氧化损伤,延缓细胞衰老。

此外,儿茶素还具有抗菌、抗病毒、抗过敏等作用,可以增强人体免疫力,预防疾病的发生。

黄酮类化合物也是茶多酚的重要成分之一。

黄酮类化合物具有很强的抗氧化作用,可以清除体内的自由基,保护细胞免受氧化损伤。

此外,黄酮类化合物还具有抗炎、抗菌、抗病毒、抗过敏等多种生物活性。

它们可以减轻炎症反应,缓解疼痛,促进伤口愈合,提高人体免疫力。

酚酸类化合物是茶多酚中含量较低的一类化合物,但它们具有重要的生物活性。

酚酸类化合物具有抗氧化、抗炎、抗癌、抗衰老等多种功效。

它们可以清除体内自由基,防止DNA氧化损伤,减少肿瘤的发生。

此外,酚酸类化合物还具有抗炎作用,可以减轻炎症反应,缓解疼痛。

它们还可以抑制酪氨酸酶的活性,减少黑色素的形成,有助于美白皮肤,延缓皮肤衰老。

茶多酚具有很高的生物利用度,可以迅速被人体吸收利用。

它们在体内的作用机制比较复杂,主要通过抗氧化作用、抗炎作用、抗癌作用等多种途径发挥作用。

茶多酚可以保护细胞免受氧化损伤,减少疾病的发生;它们还可以减轻炎症反应,缓解疼痛;此外,茶多酚还可以抑制肿瘤细胞的生长和转移,具有抗癌作用。

茶多酚是茶叶中的重要营养成分,具有多种保健作用。

它可以清除体内自由基,减少氧化损伤,延缓细胞衰老;它还可以减轻炎症反应,缓解疼痛;此外,茶多酚还具有抗菌、抗病毒、抗过敏等多种生物活性,可以增强人体免疫力,预防疾病的发生。

因此,经常饮用茶叶可以摄入足够的茶多酚,对维护人体健康非常有益。

我们应该养成喝茶的习惯,享受茶带来的健康和美味。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chinese Journal of Natural Medicines 2010, 8(3): 0202 0207doi: 10.3724/SP.J.1009.2010.00202ChineseJournal ofNaturalMedicinesAnalysis of Flavonoids and Phenolic Acids in Iristectorum by HPLC-DAD-ESI-MS nSHU Pan 1,2, HONG Jun-Li 1,2, WU Gang 1,2, YU Bo-Yang3, QIN Min-Jian 1,2*1Department of Resources Science of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009;2Key Laboratory of Modern Traditional Chinese Medicines (Ministry of Education),China Pharmaceutical University, Nanjing 210009; 3Department of Complex Prescription of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, ChinaAvailable online May 2010[ABSTRACT]AIM: To develop high performance liquid chromatography combined with photodiode-array detection and electrospray ionization multiple-stage mass spectrometry (HPLC-DAD-ESI-MS n) for the analysis and identification of flavonoids and phenolic acids in the rhizome of Iris tectorum Maxim.. METHOD: The structures of flavonoids and phenolic acids were identified by chroma-tographic retention times, UV spectra as well as ESI-MS n spectra. RESULTS: Ten isoflavones were identified as tectori-genin-7-O-ȕ-glucosyl-4'-O-ȕ-glucoside (3), tectoridin (5), iristectorin B (6), iristectorin A (7), iridin (8), genistein (11),tectorigenin (12), iristectorigenin A (14), iristectorigenin B (16), i and rigenin (17). Two flavanones, one flavonol and one flavanonol were tenta-tively identified as hesperetin (9), 5, 7, 3'-trihydroxy-6, 4'-dimethoxyflavanone (10), rhamnocitrin (13) and dihydrokaempferide (15), respectively. The three phenolic acids were tectoruside (1), androsin (2) and apocynin (4). CONCLUSION: The developed simple and rapid method is useful to rapidly identify the bioactive constituents in the rhizome of Iris tectorum. Two flavanones, hesperetin (9)and 5,7,3'-trihydroxy-6, 4'-dimethoxyflavanone (10) were identified from this species for the first time.[KEY WORDS]Iris tectorum Maxim.; HPLC-DAD-ESI-MS n; Flavonoids; Phenolic acids[CLC Number]R917 [Document code] A [Article ID] 1672-3651(2010)03-0202-061 IntroductionIris tectorum Maxim. (Iridaceae) is a perennial herbwidely distributed in China, called Yuan Wei in Chinese. It isalso known as Japanese Roof Iris in some literature, becauseit was first observed growing on roofs in Japan by the Rus-sian botanist, Carl Maximowicz (1827–1891) [1]. Its rhizomehas been used in traditional Japanese medicine as an emeticand laxative [2]. In traditional Chinese medicine, it was usedas a bitter medicine to treat disorders described as Zheng JiaJie Ju, which are similar to modern descriptions of tumors[3-4]. According to the latest edition of the Chinese Pharma-copoeia, the rhizome of I. tectorum is referred to as “ChuanShe Gan” (Rhizoma Iridis Tectori), which is used as a tradi-tional herbal medicine to treat sore throat, disperse phlegmand for heat-clearing as well as detoxifying [5]. Previous phy-[Received on] 18-Mar-2009[Research Funding] This project was supported by National NaturalScience Foundation of China (No. 30170103)[ Corresponding author] QIN Min-Jian: Prof., Tel: 86-025-********,Fax: 86-025-********, E-mail: minjianqin@Copyright © 2010, China Pharmaceutical University.Published by Elsevier B.V. All rights reserved.tochemical investigations resulted in the isolation of severalflavonoids [6-11], iridal-type triterpenoids [2, 12-14] and quinones[15]. Some isoflavones and phenolic acids were found to havehigh content in I. tectorum, and exhibit considerableanti-infective, antitussive, expectorant, antibacterial, cyto-toxic and hepatoprotective effects [3, 16-20]. Those compoundswere considered as the main active components of I. tectorum.However, in the Chinese Pharmacopoeia, only tectoridin hasbeen used as the chemical marker for the quality control ofthe rhizome of I. tectorum. Therefore, qualitative evaluationof these main components of I. tectorum is significant for thequality control of this medicinal herb.With the soft ionization source such as atmosphericpressure chemical ionization (APCI) and electrospray ioniza-tion (ESI), MS combined with chromatographic techniqueshas become a powerful approach in the identification, quanti-fication and structural confirmation of active components inmedicinal plants. Nowadays, HPLC with photodiode arraydetection–electrospray ionization multiple-stage mass spec-trometry (HPLC-DAD–ESI-MS n) has grown into one of themost powerful analytical techniques available for analyzingcomplex herbal extracts [21-23]. It can simultaneously provideUV and multiple-stage mass spectra, which can be applied toidentify known components by comparing on-line detected chromatograms and spectra with those of authentic com-pounds, and can elucidate unknown structures based on the tandem mass fragmentation pathways of known ones. Previ-ously, there were no reports on the qualitative research of the major components in the rhizome of I. tectorum by HPLC-DAD–ESI-MS n.In this study, a HPLC-DAD–ESI-MS n method was de-veloped and validated for the identification of ten known isoflavones, three phenolic acids, two flavanones, one fla-vonol and one flavanonol in the rhizome of I. tectorum.2 Experimental2.1 Instrumentation and reagentsLiquid chromatography separation was performed using an Agilent 1100 HPLC system (Agilent Technologies, Palo Alto, CA, USA) composed of a quaternary pump, an on-line degasser, a column temperature controller and a diode array detector (DAD). A KH5200DB ultrasonic cleaning instru-ment (Jiangsu Kscsb Ultrasonic Instrument Co., Jiangsu, China) was used for extraction. HPLC grade acetonitrile (TEDIA, Fair¿eld, OH, USA) was used. HPLC grade water was obtained from a water purifying system (Milli-pore, Bedford, MA, USA); analytical grade acetic acid (Nanjing Reagent, Jiangsu, China) and HPLC grade methanol (Han-bang, Jiangsu, China) were used for sample preparation. For HPLC-DAD–ESI-MS n analysis, the LC system was coupled to ion trap mass spectrometer (Agilent Corp., Santa Clara, CA, USA) equipped with an ESI source.2.2 MaterialsI. tectorum was collected from Beijing, China, in August 2008. The plant was identified by Prof. QIN Min-jian and a voucher specimen (SP-08-0810) was deposited at the Her-barium of Medicinal Plants of China Pharmaceutical Univer-sity. Eight authentic compounds: Androsin, tectoridin, iris-tectorin A, iristectorin B, iridin, tectorigenin, iristectorigenin A and irigenin were isolated in our laboratory from I. tecto-rum. Their structures were elucidated by spectral data (MS, 1H NMR and 13C NMR). The purity of each compound was determined to be higher than 95% by HPLC. The samples of the herb and chemicals for analysis were stored in the refrig-erator at 20 q C.2.3 Sample preparationThe rhizomes of I. tectorum were air-dried and ground into powder. An aliquot (0.5 g) of the powder was weighed into a conical flask and 25 mL methanol (HPLC grade) was added. Then the mixture was ultrasonically extracted at room temperature for 40 min. The solution was centrifuged at 2 500 r·min 1, at room temperature for 10 min, the supernatant was filtered through a syringe filter (0.45 ȝm) before HPLC analysis.2.4 HPLC proceduresChromatographic separation was carried out on an Agilent Eclipse Plus TM C18 column (150 mm × 3.0 mm, 3.5 ȝm) at 40°C. Elution was performed at a flow rate of 0.8 mL·min 1. Solvents used were acetonitrile (A) and 0.05% acetic acid in water (B). All solvents were filtered through a 0.45 ȝm nylon filter and then degassed by sonication in an ultrasonic bath prior to use. Gradient was as follows: 5% B at 0 min, 12% B at 3 min, 15% B at 8 min, 20% B at 20 min, 28% B at 24 min, 35% B at 28 min, 65% B at 32 min, 65% B at 35 min, 100% B at 50 min, and the injection volume of sample solution was 5 ȝL. The chromatograms were recorded at 270 nm.2.5 ESI-MS parameterAgilent 1100 HPLC-MSD Trap SL mass spectrometer (Agilent Technologies, Palo Alto, CA, USA) equipped with an electrospray ionization source was used in both positive and negative ion modes. The mass spectrometry detector (MSD) parameters were as follows: negative and positive ionization modes, scan range from m/z 100 to 1 000, desol-vent gas temperature 350 °C, capillary voltage 3.1 kV (posi-tive mode) and 3.5 kV (negative mode). Nitrogen was used as nebulizing gas at a pressure of 40 psi and the flow rate was adjusted to 9.0 lL/min. All the operations, data acquisition and analysis were controlled by Chemstation software (Agilent Technologies, Palo Alto, CA, USA).3 Results and discussion3.1 Optimization of HPLC–DAD–ESI-MS conditions and method validationPhotodiode array detector (DAD) was used in HPLC analysis and the optimum monitor wavelength at 270 nm was selected from the full range spectra. Several binary solvent gradients were compared with respect to separation efficiency of phenolic acids and flavonoids. Modifiers such as formic acid, acetic acid and phosphoric acid were added to the mo-bile phase to enhance peak resolution. After several trials, a gradient solvent system described in the experimental section with acetic acid as modifier was developed and a total of 17 flavonoids and phenolic acids were resolved within 30 min. Since a complicated gradient of elution was used, variation in retention time may happen. The repeatability was assessed by analyzing six independent extracts prepared from the same batch of herb, respectively. The RSDs of the retention time were lower than 0.15% (Table 1).The flavonoids and phenolic acids were analyzed in both positive and negative ionization mode. According to the lit-erature, the negative ion mode should be more selective and more sensitive than the positive ion mode in crude plant phytochemical analysis [25]. Although the pseudomolecular ion signals of all the components investigated were observed in negative ion mode, some of the diagnostic Retro-Diels-Alder (RDA) ions were only observed in the positive ion mode which is helpful for the structural determi-nation of the A- and B-ring substitution patterns. As a result, the combined application of negative and positive ion mode appeared to be necessary for the structural analysis of flavon-oids by mass spectrometry.3.2 Identification of flavonoids and phenolic acids in I. tectorum by HPLC–DAD– ESI-MS nThe dominant fragmentation pathways of authentic compounds were studied. All authentic compounds exhibited [M + H]+ ions in positive ion mode and [M – H]- in negative ion mode with sufficient abundances that could be subjected to MS2 and MS3 analysis. MS2 and MS3 data were obtained by collision-induced dissociation (CID), and utilized for the structural identification of compounds with similar fragmen-tation patterns. Comparing retention times and the MS n spec-tra with those of the authentic standards, eight peaks were unambiguously identified as androsin (2), tectoridin (5), iris-tectorin B (6), iristectorin A (7), iridin (8), tectorigenin (12), iristectorigenin A (14) and irigenin (17). Nine other peaks were tentatively identified as tectoruside (1), tectori-genin-7-O-ȕ-glucosyl-4'-O-ȕ-glucoside (3), apocynin (4), hesperetin (9), 5,7,3'-trihydroxy-6,4'-dimethoxyflavanone (10), genistein (11), rhamnocitrin (13), dihydrokaempferide (15) and iristectorigenin B (16) by comparing their MS data and UV spectra with those reported in the literature [10, 23-28].The total ion currents (TIC) together with HPLC chro-matograms of the samples are shown in Fig. 1, and the chemical structures of the compounds from 1 to 17 are shown in Fig. 2From the above results, isoflavonoids were identified as the major constituents in the rhizome of I. tectorum. Four isoflavone O-glycosides and five aglycones were identified. Peak 5 (tectoridin) was taken as an example to discuss the fragmentation pathways in detail. The molecule ion at m/z 463 in positive ion mode showed MS2 fragment ion at m/z 301, due to the loss of one glucose residue. In the following MS3 experiment, the loss of a methyl radical (15 Da) from [M + H – 162]+ was the predominant fragmentation, indicat-ing an methoxyl group linked at the aglycone. Furthermore, the ion at m/z 301 successively yielded the diagnostic ions of isoflavonoids at m/z 183, with the neutral loss of 118 Da produced by RDA fragmentation [26, 29], suggesting that the methoxyl group was attached to the A-ring. Therefore, peak 5 was identified as tectoridin by comparing its retention time and mass fragmentation pattern with those of the standards. The proposed fragmentation pathway in positive ion mode is given in Fig. 3. Similar fragmentation pathways were ob-served in the spectra of other isoflavonoids.Table 1 HPLC-DAD-ESI-MS n data of flavonoids and phenolic acids identified in the rhizome of Iris tectorum Maxim.Peak No. t R/minRSD oft R/%UV Ȝmax/nm[M+H]+(m/z)Fragment ions (+)[M–H]-(m/z)Fragment ions(-) Identi¿cation1 4.5 0.11 226, 270, 304 491 329, 167 489 373, 327, 165 tectoruside2 5.3 0.08 228, 270, 304 - - 327 283, 165, 150 androsin3 6.7 0.07 212(sh*),264,336(sh) - - 623 461,299tectori-genin-7-O-ȕ-glucosyl-4'-O-ȕ-glucoside4 9.4 0.13 232, 278, 304 - - 165 150, 122 apocynin5 13.2 0.13 214 (sh), 266,334(sh) 463 301, 286, 183 461 446, 428, 299, 284 tectoridin6 14.7 0.10 230(sh),266,340(sh) 493 331, 316, 298, 183, 168491 437, 331, 329, 314, 262 iristectorin B7 16.8 0.14 230(sh),266,340(sh) 493 331, 316, 299, 183, 168491 437, 331, 329, 314 iristectorin A8 17.5 0.14 238(sh), 268 523 361, 346 521 506,488,466,442,359,344 iridin9 25.7 0.03 214(sh), 294 - - 301 286,273,259,257,244,193,181, 179, 151, 124hesperetin10 26.6 0.03 212(sh), 266 - - 331 316, 313, 301, 274, 251,193, 1815,7,3'-trihydroxy-6,4'-dimethoxyflava-none11 26.7 0.02 271, 210 - - 269 212, 167, 152, 118 genistein12 27.3 0.05 214(sh),266,340(sh) 301 286, 229, 168, 159 299 284, 240, 212 tectorigenin13 27.9 0.04 218(sh), 282, 338 - - 299 284, 271, 255, 132, 120 rhamnocitrin14 28.1 0.03 216(sh), 268, 340(sh) 331 316, 301, 298, 242,186, 134329 314, 299, 271 iristectorigenin A15 28.5 0.05 220(sh), 292 - - 301 283, 273, 139 dihydrokaempferide16 28.9 0.04 224(sh), 268 331 316, 301, 298, 287,273, 243, 195329 314, 301, 289 iristectorigenin B17 29.2 0.04 234(sh), 268 361 346, 328, 310, 301,286, 271, 183 359 344,299 irigenin* shoulder peak - not observedreferred to as 5, 7, 3'-trihydroxy-6, 4'-dimethoxyflavanone likewise. According to the literature, the structures of known flavonol and flavanonol as well as three phenolic acids were also tentatively identified. Results of all the HPLC-DAD and MS n analyses are listed in Table 1.4 ConclusionIn this study, fourteen known flavonoids and three phe-nolic acids were identified in the rhizome of I. tectorum by using HPLC-DAD-ESI-MS n in both positive and negative ion modes. Isoflavones seem to be the major constituents ac-cording to our study. Two flavanones were identified from this species for the first time.This newly established method was successfully applied to simultaneously identify the major constituents in the rhi-zome of I. tectorum. The results were consistent to other phytochemical analyses, but it’s timesaving and simple com-pared with the traditional phytochemical method [2, 6-15]. Moreover, with the high sensitivity of the mass spectrum detector (MSD), some components with trace amounts were also identified, and thus a full-scale chemical profile could be obtained. Those phenols identified in I. tectorum could be considered as chemical markers of this species which might be the major bioactive constituents of I. tectorum. Further quantitative analysis method of those components should be developed for the quality control of this medicinal herb. References[1] Klingaman G. Plant of the week: Japanese roof iris, Latin:Iris tectorum, Division of Agriculture, University of Arkan-sas, Little Rock, Arkansas, USA [EB/OL]. 2005. Availablefrom: /plantoftheweek/ articles/iris_ japanese_roof_3-4-05.htm,[2] Seki K, Tomihari T, Haga K, et al. Iristectorene B, a mono-cyclic triterpene ester from Iris tectorum [J].Phytochemistry,1994, 36(2): 433-438.[3] Fang R, Houghton PJ, Hylands PJ. Cytotoxic effects ofcompounds from Iris tectorum on human cancer cell lines [J].J of Ethnopharmacology, 2008, 118(2): 257-263.[4] Fang R, Houghton PJ, Luo C, et al. Isolation and structuredetermination of triterpenes from Iris tectorum [J]. Phyto-chemistry, 2007, 68(9): 1242-1247.[5] The State Pharmacopoeia Committee of the People's Repub-lic of China. Pharmacopoeia of the People’s Republic of China[Z]. Beijing: Chemical Industry Press, 2000: 28-29. [6] Shibata B. Constituents of Iris tectorum Maxim. [J]. Yaku-gaku Zasshi,1927, 543: 380-385.[7] Morita N, Shimokoriyama M, Shimizu M, et al. Studies onthe Medicinal Resources. XXXII. The Components of Rhi-zome of Iris tectorum Maximowicz (Iridaceae) [J]. ChemPharm Bull, 1972, 20 (4): 730-733.[8] Morita N, Shimokoriyama M, Shimizu M, et al. Studies onmedicinal resources. XXXċ. The Components of rhizome of Iris tectorum (Iridaceae) [J]. Yakugaku Zasshi, 1972, 92(8): 1052-1054.[9] Xu YL, Ma YB, Jiang X. Isoflavonoidsof Iris tectorum [J].Acta Bot Yunnan, 1999, 21 (1): 125-130.[10] Shan HQ, Qin MJ, Wu JR. Constituents of Rhizomes of Iristectorum [J]. Chin J Nat Med, 2007, 5 (4): 312-314.[11] Yuan CJ, Wang J, Chen S, et al. Study on the chemical con-stituents of Iris tectorum Maxim. [J]. Nat Prod Res Dev,2008, 20 (3): 444-446.[12] Seki K, Tomihari T, Haga K, et al. Iristectorenes A and C-G,monocyclic triterpene esters from Iris tectorum [J]. Phyto-chemistry, 1994, 36(2): 425-431.[13] Takahashi K, Hano Y, Suganuma M, et al.28-Deacetylbelamcandal, a tumor-promoting triterpenoidfrom Iris tectorum [J]. J Nat Prod, 1999, 62(2): 291-293. [14] Takahashi K, Hoshino Y, Suzuki S, et al. Iridals from Iristectorum and Belamcanda chinensis [J]. Phytochemistry,2000, 53(8): 925-929.[15] Seki K, Tomihari T, Haga K, et al. Iristectorones A-H, spiro-triterpene-quinone adducts from Iris tectorum [J]. Phyto-chemistry, 1994, 37(3): 807-815.[16] Kim YP, Yamada M, Lim SS, et al. Inhibition by tectorigeninand tectoridin of prostaglandin E2 production and cyclooxygenase-2 induction in rat peritoneal macrophages[J]. Biochim Biophys Acta-Mol Cell Biol Lipids, 1999,1438(3): 399-407.[17] Qin MJ, Ji WL, Liu J, et al. Scavenging effects on radicals ofisoflavones from rhizome of Belamcandae chinensis [J].Chin Tradit Herb Drugs, 2003, 34(7): 640-641.[18] Kang KA, Lee KH, Chae S, et al. Cytoprotective effect oftectorigenin, a metabolite formed by transformation of tec-toridin by intestinal microflora, on oxidative stress inducedby hydrogen peroxide [J]. Eur J Pharmacol, 2005, 519(1-2):16-23.[19] Thelen P, Scharf JG, Burfeind P, et al. Tectorigenin and otherphytochemicals extracted from leopard lily Belamcandachinensis affect new and established targets for therapies inprostate cancer[J]. Carcinogenesis, 2005, 26(8): 1360-1367.[20] Lee HU, Bae EA, Kim DH. Hepatoprotective effect of tec-toridin and tectorigenin on tert-butyl hyperoxide-inducedliver injury [J]. J Pharmacol Sci, 2005, 97(4): 541-544. [21] Sun JM, Zhang H, Yang JS. Analysis of Secoiridoid Gluco-sides in Jasminum lanceolarium Roxb. by HPLC-MS [J].Chin J Nat Med, 2009, 7 (6): 436-439.[22] Zhuoma D,Yan Z, Yang B, et al. Development of anHPLC-DAD–ESI-MS n method for quantitative analysis ofSaussurea tridactyla [J]. J Pharmaceut Biomed, 2008, 48 (4): 1076-1081.[23] Li J, Li WZM, Huang W, et al. Quality evaluation of Rhi-zoma Belamcandae (Belamcanda chinensis (L.) DC.) by us-ing high-performance liquid chromatography coupled withdiode array detector and mass spectrometry [J]. J Chroma-togr A, 2009, 1216(11): 2071-2078.[24] Abad-Garcia B, Garmon-Lobato S, Berrueta LA, et al. Afragmentation study of dihydroquercetin using triple quad-rupole mass spectrometry and its application for identifica-tion of dihydroflavonols in Citrus juices [J]. Rapid CommunMass Spectrom, 2009; 23(17): 2785-2792.[25] Fabre N, Rustan I, Hoffmann E, et al. Determination of fla-vone, flavonol, and flavanone aglycones by negative ion liq-uid chromatography electrospray ion trap mass spectrometry[J]. J Am Soc Mass Spectrom, 2001, 12(6): 707-715[26] Ma YL, Li QM, Heuvel HV, et al. Characterization of fla-vone and flavonol aglycones by collision-induced dissocia-tion tandem mass spectrometry [J]. Rapid Commun MassSpectrom, 1997, 11(12): 1357-1364.[27] Zhou DY, Xu Q, Xue XY, et al. Rapid qualitative and quan-titative analyses of flavanone aglycones in Fructus aurantiiby HPLC ion-trap MS [J]. J Sep Sci, 2007, 30(6): 858-867. [28] McNaba H, Ferreira ESB, Hulme AN, et al. Negative ionESI-MS analysis of natural yellow dye flavonoids-an iso-topic labelling study [J]. Int J Mass Spectrom,2009,284(1-3): 57-65.[29] Zhang X, Xiao HB, Xue XY, et al. Simultaneous characteri-zation of isoflavonoids and astragalosides in two Astragalusspecies by high-performance liquid chromatography coupledwith atmospheric pressure chemical ionization tandem massspectrometry [J]. J Sep Sci,2007, 30(13): 2059-2069.。

相关文档
最新文档