(d)解驻波方程
驻波解析

原点描写合成驻波。由于绳很长,可不考虑反射。 绳上的波速设为u 。
解 设左端的振动为y1 =Acos t,则右端的振动 为 y2=Acos ( t + )。
设右行波的波动表达式(以绳的中心为坐标原点)
y1Acos(t[ux)1]
设左行波的波动表达式(以绳的中心为坐标原点)
dE k2dV A 22co 2(2 s πx)si2 nt dE p2dV A 22si2n 2 πxco 2st
(1) cos t = ±1 各质点的位移达到最大,dEk为零,
势能dEp不为零。波节处势能最大;在波腹处势 能最小。势能集中在波节附近。
波腹处势能始终为0
(2) cos t = 0 各质点都回到平衡位置,此时所有
反射波在B点的振动方程
tl y反 BAco2 s([T)]
反射波的表达式
y 反 A co 2 (T s t [ l) 2 (l x )]
y反
Acos2( t T
212x)
Acos2(t x)
T
(2)驻波的表达式为
yy入y反
Acos2(t x)Acos2(t x)
T
T
2Asin2xsin2t
x k
2
点O 到点B 之间的波节
x 0 ,,,3 ,2 ,5 , 3 ,7 ,4 ,9 ,5
22 2 2 2
波腹的坐标
sin 2π x 1 2π x(2k1)π x (2k 1)
2
4
x ,3 ,5 ,7 ,9 ,1 ,1,3 1 ,5 1,7 19
4444444 4 4 4
例题* 两人各执长为l 的绳的一端,以相同的角 频率和振幅在绳上激起振动,右端的 ]A co (t sx [l)]
《大学物理》习题训练与详细解答四(机械波)

2 2 u Tu
x 2 的 振 动 方 程 为 : y A c o s ( t ) A c o s ( t . ) 8 u 2 8 2 y A c o s ( t ) 4 3 x 2 3 x 的 振 动 方 程 为 : y A c o s ( t ) A c o s ( t . ) 8 u 2 8 2 y A c o s ( t ) 4
答案为:(A)
4
4.图2所示,一平面简谐波沿OX轴正向传播,波长为 A c o s ( 2 v t ) ,则P2点 若P1点处质点的振动方程为 y 1 处质点的振动方程为
与P1点处质点振动状态相同的那些点的位置是
L L y c o s [2 ( t 1 2) ] 2 A x L k (k 1 , 2 ......) 1
( 2 )试以 A 点 距 5 cm 处的 B 点 (A 在 的左边)为坐标 出 原 波 点写
A c o s ( t ) 解:(1)对照振动方程的标准形式 y 0 可得 A 0 . 0 3 m ,, 0 = 4 0
c20 m /s ,沿x轴正向传播的波的波 以A为坐标原点、 动方程 y Acos[ (t x) ] 0 u x y 0.03cos4 (t ) (m ) 注意单位转换 20
t x y Acos[2 ( ) 0 ] T x y 0.1cos[4 (t ) 0 ] 20
15
又t 0 , y A c o s A , 0 0 0
x y 0 . 1 cos 4 ( t ) ( m ) ( x 0 ) 20 (2)由波动方程求t0时刻的波形方程,只须令波动方程 的t为常数t0. 则所求t=T/4时刻的波形方程为
机械波(3)

2
( 2 x L)
可以去掉 5 2 x 3 3 干涉减弱条件 ( 2k 1) 5 2 即 x ( 2k 1) 3 3
得
因
x 1 3k
( k 0,1,2,)
即 0 1 3k 20
0 x 20
19 1 解得 k 3 3 所以 k 6, 5, 4, 3, 2, 1, 0
按叠加原理,各点合振动的位移为
1 2
A cos( t 2 A cos
驻波表达式
振幅因子
2 x
2 x
) A cos( t
2 x
)
cos t
2 A cos
2 x
cos t
简谐振动因子
x A( x ) 2 A cos 2
§11.7 驻波 半波损失
驻波是干涉的特例,两列振幅相同的相干波, 在同一介质中沿同一直线相向传播时叠加而形成 的一种波形不向前传播的波,称为驻波,它是一种 特殊的干涉现象 ---分段振动现象
一.驻波表达式(驻波方程) 2 x 1 A cos( t ) 2 x 2 A cos( t )
6
)0
)0
6
2
) 0,
sin(
6
2
6
2
2
P点相位落后O点相位,故不用3π/2
∴ λ = 3m
P.46.3. 一横波沿X轴负方向传播, 若t时刻波形曲线如 图所示, 在t+T/4时刻原X轴上的1、2、3三点的振动 位移分别是 ( B ) (A) A、0、-A (B) -A、0、A (C) 0、A、0 (D) 0、-A、0
振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
机械波一章习题解答

机械波一章习题解答习题13—1 一平面简谐波的波动方程为)3cos(1.0πππ+-=x t y (SI),t =0时的波形曲线如图所示,则:[ ](A) O 点的振幅为-0.1m 。
(B) 波长为3m 。
(C) a 、b 两点间位相差为2π。
(D) 波速为9m/s 。
解:首先,由于振幅是非负数,所以答案(A)可以被排除;另一方面,该波的波动方程可以写成⎥⎦⎤⎢⎣⎡+-=ππ)3(3cos 1.0x t y与标准波动方程比较容易得到:rad/s 3πω=,波速m/s 3=u ,因此,波长m 23322=⨯==ππωπλu所以(B)和(D)也可以被排除,所以最后应当选择答案(C)。
事实上,因a 、b 两点相距为4λ,故相应两点的位相差应当是2π。
习题13—2 已知一平面简谐波的波动方程为)cos(bx at A y -=(a 、b 为正值),则:[ ](A) 波的频率为a 。
(B) 波的传播速度为b /a 。
(C) 波长为b /π。
(D) 波的周期为a /2π。
解:该波的波动方程可以写成⎥⎦⎤⎢⎣⎡-=)(cos a x t a A y与波动方程的标准形式比较可知,圆频率为a ,波速为a /b ,波长为b /2π,波的周期为a /2π,因此,应当选择答案(D)。
习题13─3 一平面简谐波以速度u 沿X 轴正向传播,在t t '=时的波形曲线如图所示,则坐标原点O 的振动方程为:[ ](A) ⎥⎦⎤⎢⎣⎡+'-=2)(cos πt t bua y 。
(B) ⎥⎦⎤⎢⎣⎡-'-=2)(2cos ππt t bua y 。
–习题13―1图习题13―3图(C) ⎥⎦⎤⎢⎣⎡+'-=2)(cos ππt t b u a y 。
(D) ⎥⎦⎤⎢⎣⎡-'-=2)(cos ππt t b ua y 。
解:由波形曲线可知b 2=λ,因此ππλππνωbub u u ====2222t t '=时,原点处质元通过平衡位置向Y 轴正向运动,其位相为2πϕω-=+'t ,所以,t but '--='--=ππωπϕ22故坐标原点O 的振动方程为⎥⎦⎤⎢⎣⎡-'-='--=2)(cos )2cos(),0(πππππt t bua tb u t b u a t y (SI)习题13—4 如图,有一平面简谐波沿X 轴负方向传播,坐标圆点O 的振动规律为)cos(0ϕω+=t A y ,则B 点的振动方程为:[ ](A) []0)(cos ϕω+-=u x t A y 。
程守洙《普通物理学》(第5版)辅导系列-章节题库-第11章 机械波和电磁波【圣才出品】

7.图 11-3 所示为一沿 Ox 轴正方向传播的横波在 t=T/6 时刻的波形图,式中 T 为 周期,设波源位于坐标原点,那么波源的初相为______。
3 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 11-3
【答案】0
8.一警笛发射频率为 1500Hz 的声波,并以 25m/s 的速度向前运动,在警笛后方有 一人,他在静止时听到警笛的频率是______;若他以 6m/s 的速度跟踪警笛,他听到的频 率是______;在警笛后方空气中声波的波长是______。(空气中声速:330m/s)
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 11 章 机械波和电磁波
一、选择题 1.一横波沿绳子传播时的波动表达式为 y=0.05cos(4πx-10πt),则其( )。 A.波长为 0.5 m B.波速为 5m·s-1 C.波速为 25m·s-1 D.频率为 2Hz 【答案】A 【解析】
1 / 32
圣才电子书
A.A1+A2
十万种考研考证电子书、题库视频学习平 台
B.
C. D.
图 11-1
【答案】A
4.如图 11-2 所示,一平面简谐波沿 x 轴正方向传播,已知 P 点的振动方程为 ,则波动方程为( )。
图 11-2
A. B. C. D. 【答案】A 【解析】在 x 轴取任意点 Q,其平衡位置为 x。由于波沿轴正方向传播,则 Q 点的振
2.在驻波中,两个相邻波节间各质点的振动为( )。 A.振幅相同,相位相同; B.振幅不同,相位相同; C.振幅相同,相位不同; D.振幅不同,相位不同。 【答案】B 【解析】在驻波中,两相邻波节之间的质元振动相位相同,振幅不等。
大学物理学(第三版)赵近芳第5章答案

大学物理学(第三版)赵近芳第5章答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN习题五5-1 振动和波动有什么区别和联系平面简谐波动方程和简谐振动方程有什么不同又有什么联系振动曲线和波形曲线有什么不同解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =.(2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.当谐波方程)(cos uxt A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.(3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.5-2 波动方程y =A cos [ω(u x t -)+0ϕ]中的ux表示什么如果改写为y =A cos (0ϕωω+-u x t ),u x ω又是什么意思如果t 和x 均增加,但相应的[ω(u x t -)+0ϕ]的值不变,由此能从波动方程说明什么解: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;uxω则表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为)cos(0φωω+-=uxt A y t则t t ∆+时刻的波动方程为])()(cos[0φωω+∆+-∆+=∆+ux x t t A y t t 其表示在时刻t ,位置x 处的振动状态,经过t ∆后传播到t u x ∆+处.所以在)(ux t ωω-中,当t ,x 均增加时,)(u xt ωω-的值不会变化,而这正好说明了经过时间t ∆,波形即向前传播了t u x ∆=∆的距离,说明)cos(0φωω+-=uxt A y 描述的是一列行进中的波,故谓之行波方程.5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为),(t x f y =,则相对形变量(即应变量)为x y ∂∂/.波动势能则是与x y ∂∂/的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处0/=∂∂x y ),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.题5-3图对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化.5-4 波动方程中,坐标轴原点是否一定要选在波源处 t =0时刻是否一定是波源开始振动的时刻 波动方程写成y =A cos ω(uxt -)时,波源一定在坐标原点处吗在什么前提下波动方程才能写成这种形式解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,0=t 的时刻也不一定是波源开始振动的时刻;当波动方程写成)(cos uxt A y -=ω时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同解: 取驻波方程为vt x A y απλπcos 2cos2=,则可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律可表示为x A λπ2cos2.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.5-6 波源向着观察者运动和观察者向波源运动都会产生频率增高的多普勒效应,这两种情况有何区别解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,(如题5-6图所示),因而观察者在单位时间内接收到的完整数目(λ'/u )会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即B v u u +=',因而单位时间内通过观察者完整波的数目λu '也会增多,即接收频率也将增高.简单地说,前者是通过压缩波面(缩短波长)使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.题5-6 图多普勒效应5-7 一平面简谐波沿x 轴负向传播,波长λ=1.0 m ,原点处质点的振动频率为ν=2. 0 Hz ,振幅A =0.1m ,且在t =0时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程. 解: 由题知0=t 时原点处质点的振动状态为0,000<=v y ,故知原点的振动初相为2π,取波动方程为])(2cos[0φλπ++=xT t A y 则有 ]2)12(2cos[1.0ππ++=x t y)224cos(1.0πππ++=x t m5-8 已知波源在原点的一列平面简谐波,波动方程为y =A cos(Cx Bt -),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程; (3)任一时刻,在波的传播方向上相距为d 的两点的位相差.解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.5-9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度; (3)求x =0.2m处质点在t =1s 时的位相,它是原点在哪一时刻的位相这一位相所代表的运动状态在t =1.25s 时刻到达哪一点解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅ 222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m5-10 如题5-10图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.(1)若波沿x 轴正向传播,该时刻O ,A ,B ,C 各点的振动位相是多少(2)若波沿x 轴负向传播,上述各点的振动 位相又是多少解: (1)波沿x 轴正向传播,则在t 时刻,有题5-10图对于O 点:∵0,0<=O O v y ,∴2πφ=O对于A 点:∵0,=+=A A v A y ,∴0=A φ 对于B 点:∵0,0>=B B v y ,∴2πφ-=B对于C 点:∵0,0<=C C v y ,∴23πφ-=C(取负值:表示C B A 、、点位相,应落后于O 点的位相) (2)波沿x 轴负向传播,则在t 时刻,有对于O 点:∵0,0>'='O Ov y ,∴2πφ-='O对于A 点:∵0,='+='A A v A y ,∴0='A φ 对于B 点:∵0,0<'='B B v y ,∴2πφ=B对于C 点:∵0,0>'='C C v y ,∴23πφ='C(此处取正值表示C B A 、、点位相超前于O 点的位相)5-11 一列平面余弦波沿x 轴正向传播,波速为5m ·s -1,波长为2m ,原点处质点的振动曲线如题5-11图所示. (1)写出波动方程;(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.解: (1)由题5-11(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴230πφ=, 又5.225===λυuHz ,则ππυω52== 题5-11图(a)取 ])(cos[0φω+-=uxt A y , 则波动方程为)]235(5cos[1.0ππ+-=x t y m (2) 0=t 时的波形如题5-11(b)图题5-11图(b) 题5-11图(c) 将5.0=x m 代入波动方程,得该点处的振动方程为)5cos(1.0)235.05.055cos(1.0πππππ+=+⨯-=t t y m 如题5-11(c)图所示.5-12 如题5-12图所示,已知t =0时和t =0.5s 时的波形曲线分别为图中曲线(a)和(b) ,波沿x 轴正向传播,试根据图中绘出的条件求: (1)波动方程; (2)P 点的振动方程.解: (1)由题5-12图可知,1.0=A m ,4=λm ,又,0=t 时,0,000<=v y ,∴20πφ=,而25.01==∆∆=t x u 1s m -⋅,5.042===λυu Hz ,∴ππυω==2 故波动方程为]2)2(cos[1.0ππ+-=x t y m(2)将1=P x m 代入上式,即得P 点振动方程为t t y ππππcos 1.0)]22cos[(1.0=+-= m题5-12图5-13 一列机械波沿x 轴正向传播,t =0时的波形如题5-13图所示,已知波速为10 m ·s -1,波长为2m ,求: (1)波动方程;(2) P 点的振动方程及振动曲线; (3) P 点的坐标;(4) P 点回到平衡位置所需的最短时间.解: 由题5-13图可知1.0=A m ,0=t 时,0,200<=v A y ,∴30πφ=,由题知2=λm ,10=u 1s m -⋅,则5210===λυuHz∴ ππυω102==(1)波动方程为]3)10(10cos[.01ππ+-=x t y m题5-13图(2)由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值)∴P 点振动方程为)3410cos(1.0ππ-=t y p (3)∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m(4)根据(2)的结果可作出旋转矢量图如题5-13图(a),则由P 点回到平衡位置应经历的位相角题5-13图(a)πππφ6523=+=∆ ∴所属最短时间为121106/5==∆=∆ππωφt s 5-14 如题5-14图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =A cos(0ϕω+t ).(1)分别就图中给出的两种坐标写出其波动方程;(2)写出距P 点距离为b 的Q 点的振动方程.解: (1)如题5-14图(a),则波动方程为])(cos[0φω+-+=uxu l t A y 如图(b),则波动方程为题5-14图])(cos[0φω++=uxt A y (2) 如题5-14图(a),则Q 点的振动方程为])(cos[0φω+-=ub t A A Q 如题5-14图(b),则Q 点的振动方程为])(cos[0φω++=ubt A A Q5-15 已知平面简谐波的波动方程为)24(cos x t A y +=π(SI).(1)写出t =4.2 s 时各波峰位置的坐标式,并求此时离原点最近一个波峰的位置,该波峰何时通过原点(2)画出t =4.2 s 时的波形曲线.解:(1)波峰位置坐标应满足ππk x t 2)24(=+ 解得 )4.8(-=k x m (,2,1,0±±=k …) 所以离原点最近的波峰位置为4.0-m . ∵uxt t t ωωππ+=+24 故知2=u 1s m -⋅,∴ 2.024.0=-='∆t s ,这就是说该波峰在2.0s 前通过原点,那么从计时时刻算起,则应是42.02.4=-s ,即该波峰是在4s 时通过原点的.题5-15图(2)∵2,4==u πω1s m -⋅,∴12===ωπλuuT m ,又0=x 处,2.4=t s 时,ππφ8.1642.40=⨯=A A y 8.02.44cos 0-=⨯=π又,当A y -=时,πφ17=x ,则应有πππ1728.16=+x 解得 1.0=x m ,故2.4=t s 时的波形图如题5-15图所示5-16 题5-16图中(a)表示t =0时刻的波形图,(b)表示原点(x =0)处质元的振动曲线,试求此波的波动方程,并画出x =2m 处质元的振动曲线.解: 由题5-16(b)图所示振动曲线可知2=T s ,2.0=A m ,且0=t 时,0,000>=v y ,故知20πφ-=,再结合题5-16(a)图所示波动曲线可知,该列波沿x 轴负向传播,且4=λm ,若取])(2cos[0φλπ++=xT t A y题5-16图则波动方程为]2)42(2cos[2.0ππ-+=x t y 5-17 一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为18.0×10-3J ·m -2·s -1,频率为300 Hz ,波速为300m ·s -1,求 :(1)波的平均能量密度和最大能量密度(2)两个相邻同相面之间有多少波的能量解: (1)∵ u w I =∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅ 4max 102.12-⨯==w w 3m J -⋅(2) νπλπωud w d wV W 224141=== 7251024.9300300)14.0(41106--⨯=⨯⨯⨯⨯=πJ5-18 如题5-18图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求: (1) 1S 外侧各点的合振幅和强度; (2) 2S 外侧各点的合振幅和强度解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r 0,0211===-=A I A A A(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.0)4(2222=-+-=∆r r λλππφ2121114,2A A I A A A A ===+=5-19 如题5-19图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5 m ,波速u =0.2m ·s -1,求:(1)两波传到P 点时的位相差;(2)当这两列波的振动方向相同时,P 处合振动的振幅; *(3)当这两列波的振动方向互相垂直时,P 处合振动的振幅.解: (1) )(2)(12BP CP ---=∆λπϕφφ)(BP CP u --=ωπ 0)4.05.0(2.02=--=ππ题5-19图(2)P 点是相长干涉,且振动方向相同,所以321104-⨯=+=A A A P m(3)若两振动方向垂直,又两分振动位相差为0,这时合振动轨迹是通过Ⅱ,Ⅳ象限的直线,所以合振幅为33122211083.210222--⨯=⨯==+=A A A A m5-20 一平面简谐波沿x 轴正向传播,如题5-20图所示.已知振幅为A ,频率为ν 波速为u .(1)若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;(2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置.解: (1)∵0=t 时,0,000>=v y ,∴20πφ-=故波动方程为]2)(2cos[ππ--=u x t v A y m题5-20图(2)入射波传到反射面时的振动位相为(即将λ43=x 代入)2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为 ππλλπ25432-=-⨯-,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为]2)(2cos[ππυ--=u x t A y ]2)(2cos[ππυ-++u x t A)22cos(2cos 2ππυπυ-=t u x A故波节位置为2)12(22πλππυ+==k x u x 故 4)12(λ+=k x (,2,1,0±±=k …)根据题意,k 只能取1,0,即λλ43,41=x 5-20 一驻波方程为y =0.02cos20x cos750t (SI),求: (1)形成此驻波的两列行波的振幅和波速; (2)相邻两波节间距离.解: (1)取驻波方程为t uxA y πυπυ2cos 2cos 2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅ (2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离 157.02==∆λx m5-22 在弦上传播的横波,它的波动方程为1y =0.1cos(13t +0.0079x ) (SI)试写出一个波动方程,使它表示的波能与这列已知的横波叠加形成驻波,并在x =0处为波 节.解: 为使合成驻波在0=x 处形成波节,则要反射波在0=x 处与入射波有π的位相差,故反射波的波动方程为)0079.013cos(1.02π--=x t y5-23 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =0.06cos(t x ππ4-)(SI), 2y =0.06cos(t x ππ4+)(SI).(1)试证明绳子将作驻波式振动,并求波节、波腹的位置;(2)波腹处的振幅多大x =1.2m 处振幅多大 解: (1)它们的合成波为)4cos(06.0)4cos(06.0t x x y ππππ++-= t x ππ4cos cos 12.0=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动. 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置.(2)波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即097.0)2.1cos(12.0=⨯=π驻A m5-24 汽车驶过车站时,车站上的观测者测得汽笛声频率由1200Hz 变到了1000 Hz ,设空气中声速为330m ·s -1,求汽车的速率.解: 设汽车的速度为s v ,汽车在驶近车站时,车站收到的频率为 01υυsv u u-=汽车驶离车站时,车站收到的频率为02υυsv u u+= 联立以上两式,得3010012001000120030021211=+-⨯=+-=υυυυυu1s m -⋅5-25 两列火车分别以72km ·h -1和54 km ·h -1的速度相向而行,第一 列火车发出一个600 Hz 的汽笛声,若声速为340 m ·s -1,求第二列火车上的观测者听见该声音的频率在相遇前和相遇后分别是多少解: 设鸣笛火车的车速为201=v 1s m -⋅,接收鸣笛的火车车速为152=v 1s m -⋅,则两者相遇前收到的频率为66560020340153400121=⨯-+=-+=υυv u v u Hz 两车相遇之后收到的频率为54160020340153400121=⨯+-=+-=υυv u v u Hz。
大物习题答案第5章机械波

第5章机械波基本要求1.理解描述简谐波的各物理量的意义及相互间的关系.2.理解机械波产生的条件.掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.理解波的能量传播特征及能流、能流密度概念.3.了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件.4.理解驻波及其形成。
5.了解机械波的多普勒效应及其产生的原因.基本概念1.机械波机械振动在弹性介质中的传播称为机械波,机械波产生的条件首先要有作机械振动的物体,即波源;其次要有能够传播这种机械振动的弹性介质。
它可以分为横波和纵波。
2.波线与波面沿波的传播方向画一些带有箭头的线,叫波线。
介质中振动相位相同的各点所连成的面,叫波面或波阵面。
在某一时刻,最前方的波面叫波前。
3.波长λ在波传播方向上,相位差为2π的两个邻点之间的距离称为波长,它是波的空间周期性的反映。
4.周期T与频率ν一定的振动相位向前传播一个波长的距离所需的时间称为波的周期,它反映了波的时间周期性,波的周期与传播介质各质点的振动周期相同。
周期的倒数称为频率,波的频率也就是波源的振动频率。
5.波速u单位时间里振动状态(或波形)在介质中传播的距离。
它与波动的特性无关,仅取决于传播介质的性质。
6.平面简谐波的波动方程在无吸收的均匀介质中沿x轴传播的平面简谐波的波函数为()2cos y A tx ωϕπλ=+或s )co (x y A tu ωϕ⎡⎤=+⎢⎥⎣⎦其中,“-”表示波沿x 轴正方向传播;“+”表示波沿x 轴负方向传播。
波函数是x 和t 的函数。
给定x ,表示x 处质点的振动,即给出x 处质点任意时刻离开自己平衡位置的位移;给定t ,表示t 时刻的波形,即给出t 时刻质点离开自己平衡位置的位移。
7.波的能量 波动中的动能与势能之和,其特点是同体积元中的动能和势能相等。
任意体积元的222k 211d =d d d sin ()22P W W W VA t x πλρωωϕ==-+8.平均能量密度、能流密度 一周期内垂直通过某一面积能量的平均值是平均能量密度,用w 表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u + vR u u ( A) vs , ( B) vs , ( C) vs , ( D ) vs u u + vR u − vR
解:质点振动频率与波源 相同,只是接收器运动时, 相同,只是接收器运动时, 接收的频率与波源频率不 同。
s
p
R
vR
(A) )
4
二、填空题 1、如果已知在固定端x=0处反射的反射波方程式是 、如果已知在固定端 处反射的反射波方程式是
c ν '= ν c+u
而 ν '=
u ∆λ = λ' −λ = λ c
法二: 法二: c =
u λ ' = (1 + )λ λ' λ c ∆λ ⋅ c 10−11 × 3 ×108 u= = = 5 ×103 ( m / s ) λ 6 ×10−7 − 10−11
,ν =
得
c
c
λ′
c−v c ⋅ c+v λ
y ( x = 1 / 6 ) = 0 . 02 cos 400 t ( SI )
6
3、在塔楼上报警的警钟,每隔0.5s 响一声, 、在塔楼上报警的警钟,每隔 响一声, 连续不断地响,某人坐在以v=60km/h的速度向 连续不断地响,某人坐在以 的速度向 警钟行驶的车中,设空气中声速为340m/s,则 警钟行驶的车中,设空气中声速为 , 629 次警声。 此人在5分钟内可听到 次警声。 此人在 分钟内可听到 解:ν = 2 Hz
y = 0 . 04 cos( 2 π x ) cos( 400 t ) ( SI )
则在x=1/6 (m)处的媒质元的振幅为 0.02m 则在 处的媒质元的振幅为 该媒质元的振动表达式为
y = 0 . 02 cos( 400 t ) ( SI )
解: A ( x = 1 / 6 ) = 0 . 04 cos( π / 3 ) = 0 . 02 ( m )
cos( ω t +
π
2
)
代入上式 , 得
y
M
p o's( ω t + = 2 A cos( ω t −
π
2
o )
)
π
2
10
2、波长为6×10-7 m的来自某星体的光,与实验室光源所发出 、波长为 × 的来自某星体的光, 的来自某星体的光 的同种元素的标识光谱比较时,发现波长向红端偏移10 的同种元素的标识光谱比较时,发现波长向红端偏移 -11 m 即波长增加10 (即波长增加 -11 m。求地球和星体之间的远离速度。 。求地球和星体之间的远离速度。 远离地球而去, 解:设星球以速度 u 远离地球而去,则地球上接收到星体发 出的光的频率为ν′(u<<c)用机械波多普勒效应近似 出的光的频率为 用机械波多普勒效应近似
有半波损失
y反 o ' = A cos ω t
以O′为波源写反射波波动方程
7λ y反 = A cos[ ω t + (x − )] λ 4 = A cos( ω t + 2π
2π
y
o
M
p o'
x
9
λ
x+
π
2
)
y (3)合 = y 入 + y反 )
= 2 A cos 将 xp = 2π x
λ 3λ
2
解:蝙蝠朝着表面平直的墙壁发出脉冲:声源动, 蝙蝠朝着表面平直的墙壁发出脉冲:声源动, 接收者(墙壁)不动, 接收者(墙壁)不动,墙壁接收到的信号的频率为
1 40 us ν1 = ν= ν= ν 1 − 1 40 39 us − u
(A) )
蝙蝠接收到墙壁表面反射回来的脉冲:声源不动, 蝙蝠接收到墙壁表面反射回来的脉冲:声源不动,接 收者(蝙蝠) 收者(蝙蝠)动,蝙蝠接收到的信号的频率为 us + u 1 41 ν2 = ν 1 = (1 + )ν 1 = ν = 4.1×104 Hz us 40 39
大学物理规范作业
15
1
一、选择题 1、两列相干波,其波动方程分别为 、两列相干波, y1 = A cos 2π (ν t − x λ ) , y 2 = A cos 2π (ν t + x λ ) 沿相反方向传播、迭加形成的驻波中, 沿相反方向传播、迭加形成的驻波中,各处的 振幅是: 振幅是:
( A) 2 A ,
( B) 2 A cos(2πνt ) ,
( D) 2 A cos(2πx / λ ) 2π x cos 2πν t 解:驻波方程 y 2 = 2 A cos λ
(D) )
2
( C ) 2 A cos(2πx / λ ) ,
2、蝙蝠在洞中飞来飞去,它利用超声脉冲导航非常有效。假定 、蝙蝠在洞中飞来飞去,它利用超声脉冲导航非常有效。 蝙蝠的超声发射频率为3.9× 蝙蝠的超声发射频率为 ×104 Hz,在一次朝着表面平直的墙 , 壁飞扑期间,它的运动速率为空气中声速的1/40 ,那么它自己听 壁飞扑期间,它的运动速率为空气中声速的 那么它自己听 到的从墙壁反射回来的脉冲的频率为: 到的从墙壁反射回来的脉冲的频率为:
3
3、设声波在媒质中的传播速度为u,声源的频 、设声波在媒质中的传播速度为 , 率为v 若声源S不动 而接收器R相对于媒质 不动, 率为 s,若声源 不动,而接收器 相对于媒质 以速度v 沿着SR连线向着声源 运动, 连线向着声源S运动 以速度 R 沿着 连线向着声源 运动,则位于 SR连线中点的质点 的振动频率为 连线中点的质点P的振动频率为 连线中点的质点
( c + v )λ 2 = ( c − v )λ ′2
′ 2 − λ2 ∆λ λ 10−11 × 3 ×108 = 5 ×103 ( m / s ) v= 2 2c≈ c = 6 ×10−7 ′ +λ ′ λ λ
11
y 反 = A cos 2π (ν t −
x
λ
x
)
O X
设反射后波的强度不变, 设反射后波的强度不变,那么入射波方程式是
λ 2π x π π 形成的驻波的方程式是 y = 2 A cos( + ) cos( 2πν t + ) λ 2 2 反射波O点的振动 解:反射波 点的振动 y 反 o = A cos 2πν t
us + u 340 + 6 ×10 3600 ν' = ν= × 2 = 2.098 us 340
4
次数 = ν ' × 300 = 629(次)
7
三、计算题
1、如图所示,一圆频率为 振幅为 的平面波沿 x 轴正方向 、如图所示,一圆频率为ω, 振幅为A的平面波沿 传播, 传播,设在 t=0 时刻波在原点处引起的振动使媒质元由平衡位 轴的负方向运动。 是垂直于 轴的波密媒质反射面。 置向 y 轴的负方向运动。M是垂直于 x 轴的波密媒质反射面。 设反射波不衰减, ;(1) 已知 oo' = 7λ 4 , po' = λ 4 ;设反射波不衰减,求;( )入 射波与反射波的波动方程;( )合成波方程;( )p点的合 射波与反射波的波动方程;(2)合成波方程;(3) 点的合 ;( ;( 振动方程。 振动方程。
y
M
解:(1) )
y 0 = A cos( ω t + y 入 = A cos( ω t −
π
2
) x+
o
π
2 )
p o'
r Ao 0
x
2π
λ
y
o
8
(2)入射波在 ′引起的振动 )入射波在O
y入o'
2π 7 λ = A cos( ω t + − ) 2 λ 4
π
= A cos( ω t − π )
入射波O点的振动 入射波 点的振动 入射波方程 驻波方程
y 入 = A cos[ 2π (ν t +
)+π]
y 入 o = A cos( 2πν t + π )
x
y 入 = A cos[ 2π (ν t +
y = 2 A cos( 2π x
λ
+
π
2
λ
)+π]
π
2 )
5
) cos( 2 πν t +
2、一驻波的方程式是 、