卢瑟福背散射分析
卢瑟福背散射(RBS)在材料表征中的应用

1、运动学因子 运动学因子K
定性分析的质量分辨率 定性分析的质量分辨率: K称为运动学因子
动力学因子K在入射 角度为180o时与靶原 子质量的关系(入射 离子为粒子)。
从右图中可以看出,随着靶的原子质量 的增加,dK/dMr逐渐减小。这说明,利 用RBS测定轻元素时,其质量分辨率高; 测定重元素时,其质量分辨率低。(注 意:探测器的能量分辨率,动力学因子 都对质量分辨率有影响)。
W.K. Zhu, J.W. Mayer and M.A. Nicolet, Backscattering Spectrometry, Academic Press, 1978.
卢瑟福背散射能谱分析
RBS分析的优点: 1、提供深度信息。可以提供成分和深度的信息。一般的深度分析分 辨率为 150 Å左右;比较精细的分析包括细致的样品和探测器准直 可以达到 50 Å的分辨率 Å的分辨率。 2、比较适合于薄膜分析。RBS对于薄膜分析非常有用,可以程序化 地分析厚度在微米 纳米级的薄膜 地分析厚度在微米-纳米级的薄膜。 3、快速分析。一般情况下,RBS分析可以在10分钟左右完成。 4、高灵敏度。RBS 对于重元素非常敏感,可以精确测定单层薄膜的 信息;对于轻元素敏感度差一些。 5、计算简单。RBS能谱比较容易解释。目前各种计算和模拟软件都 比较成熟。如:RUMP、Simnra等等。 较成熟 如 等等
J.W. J W Mayer and E E. Rimini ed., ed Ion Beam Handbook for Materials Analysis, Academic Press, 1977.
4、阻止截面 阻止截面
能量损失dE/dx随着靶的元素组成和密度变化而变化,因而对于具体的靶难 以查到其dE/dx值。为此引入了阻止截面的概念。 dE/dx包括了高速的入射离子穿过其路径上原子的电子云时的能量损失,以 及在路径上与靶的原子核发生大量小角度碰撞时的能量损失 所以 d /d 及在路径上与靶的原子核发生大量小角度碰撞时的能量损失。所以,dE/dx 可以看作是入射离子通过其路径上的靶原子时所可能发生的全部能量损失 过程的一种平均值。也可以解释为暴露于离子束之下的每个靶原子独立贡 献的共同结果。 献的共同结果 假设靶的厚度为x,靶原子密度为N,则在此x厚度中损失的能量E正比于 将其 数 : Nx,将其比例系数定义为阻止截面
课堂六_卢瑟福背散射_280505226

1、运动学因子K
定性分析的质量分辨率: K称为运动学因子
动力学因子K在入射 角度为180o时与靶原 子质量的关系(入射 离子为α粒子)。
从右图中可以看出,随着靶的原子质量的 增加,dK/dMr逐渐减小。这说明,利用 RBS测定轻元素时,其质量分辨率高;测 定重元素时,其质量分辨率低。(注意: 探测器的能量分辨率,动力学因子都对质 量分辨率有影响)。
J.W. Mayer and E. Rimini ed., Ion Beam Handbook for Materials Analysis, Academic Press, 1977.
4、阻止截面ε
能量损失dE/dx随着靶的元素组成和密度变化而而变化,因而而对于具体的靶难 以查到其dE/dx值。为此引入入了阻止止截面面ε的概念。 dE/dx包括了高高速的入入射离子子穿过其路径上原子子的电子子云时的能量损失,以 及在路径上与靶的原子子核发生生大大量小小角角度碰撞时的能量损失。所以,dE/dx 可以看作是入入射离子子通过其路径上的靶原子子时所可能发生生的全部能量损失过 程的一一种平均值。也可以解释为暴露于离子子束之下的每个靶原子子独立立贡献的 共同结果。 假设靶的厚度为Δx,靶原子子密度为N,则在此Δx厚度中损失的能量ΔE正比比于 NΔx,将其比比例系数定义为阻止止截面面ε:
卢瑟福背散射能谱分析
RBS分析设备包括离子源、加速 装置、离子束筛选装置、聚焦装 置、样品室、探测器等等。 离子束产生后经过加速、筛选和 聚焦后达到样品上被散射,经过 探测器得到RBS能谱。
卢瑟福背散射能谱分析
RBS分析设备包括离子源、加速 装置、离子束筛选装置、聚焦装 置、样品室、探测器等等。 离子束产生后经过加速、筛选和 聚焦后达到样品上被散射,经过 探测器得到RBS能谱。
卢瑟福背散射沟道分析技术

E = E0 − ∫
x / cos θ 1 0
dE dx ( x ) dx in dE (x ) dx dx out
x / cos θ 2 dE dE dx ( x ) dx + ∫0 dx ( x ) dx in out
• [S ] 叫作能量损失因子
1 dE [S ] = cos θ1 dx 1 dE + cos θ 2 dx E out
E in
返 回
质量分辨
• 在K因子的推导中曾得出这样一个结论: 因子的推导中曾得出这样一个结论: 因子的推导中曾得出这样一个结论
∆M
2
M 2 ∆ E1 ≈ M 1(4 − (π - θ)2 )E 0
• 采用重离子入射 • 采用倾角入射,即增大θ1 θ2 采用倾角入射,即增大
E
out
薄靶
• 下图为薄靶的背散射图
多元素薄靶 1200 800 400 0 300 320 340 360 道数 380 400 420
计数
厚靶
沟道技术
• 带电粒子沿单晶体 的一定方向入射时, 出现新的物理现 象——离子的运动 受到晶轴或晶面原 子势的控制,相互 作用的几率与入射 方向和晶轴或晶面 的夹角有很大关系。
2
2 2 M 1 sin θ + M 1 cos θ 1 − M M2 2 E1 K= = M1 E0 1+ M2 1
运动学因子— 运动学因子—质量分析
K = 1 − 2 M 1M 2 /( M 1 + M 2 ) (1 − cos θ c )
卢瑟福背散射分析(RBS)

d d d
2.2.2 背散射微分截面—含量分析
• 探测系统的计数与平 均截面的关系为:
N s N p N 0 dx
返 回
2.2.3能损因子—深度分析
• 背散射中入射离子与靶物质的作用过程机制图:
2.2.3能损因子—深度分析
• 在入射路程中
E E0
x / cos1 0
– ΔE与x的关系是可化简为:
dE k 1 dE x x E x dx E0 cos1 dx kE0 cos 2
表面能近似
• 则在表面能近似下能损因子S定义如下:
k 1 dE dE x x S dx E0 cos1 dx kE0 cos 2
– 说明:表面能近似适用于薄靶,靶厚一般要小 于10000埃,近似误差大概在5%左右(对于 alpha粒子)
数值积分法
• 该方法是建立在表面能近似的基础上的, 对于厚靶,进行切片处理,对每一个薄片 采用表面能近似,再进行积分,这样处理 会提高精度,
– 例:2M alpha粒子入射到Si上,厚度8000埃
2
2.2.1 运动学因子—质量分析
• 令δ=π-θ, δ为一小量,且M2>>M1,则对K因子公式 求M2的偏导数并化减得:
M 1 ( 4 2 ) E0 E1 k E0 2 M 2 M 2 M2
由上式得出要提高质量分辨率:
1.增大入射离子能量
2.利用大质量的入射离子
3.散射角尽可能大
返 回
2.2.2 背散射微分截面—含量分析
• 卢瑟福散射截面公式为: (参见下式,详细推 导参见褚圣麟《原子物理学》P12或王广厚 《粒子同固体物质的相互作用》P8和P105)
卢瑟福背散

卢瑟福背散【摘要】卢瑟福背散射分析(RBS )是一种对离子束进行分析的方法,其主要优点是能对材料表层的成分作纵向分析,并且无需材料的标准样品就能作定量分析。
本报告主要介绍了RBS 的分析原理、实验装置,并且对实验谱图和数据作了简单分析,重点是对实验谱图进行了能量刻度的标定以及计算薄膜的厚度。
【关键词】RBS 分析原理【引言】背散射分析就是在一束单能的质子、粒子或其他重离子束轰击固体表面时,通过探测卢瑟福背散射(库伦弹性散射、散射角大于90度)离子产额随能量的分布(能谱)确定样品中元素的种类(质量数)、含量及深度分布。
因此背散射分析通常被称为卢瑟福背散射谱学RBS (Rutherford Backscattering Spectrometry).【实验原理】当比靶核轻的入射离子能量amu MeV E amu keV /1/100≤≤范围,靶原子核外电子对入射离子的屏蔽作用不大,且离子和靶原子核的短程相互作用(核力)影响也可以忽略时,离子在固体中沿直线运动,离子主要通过与电子相互作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面。
这个过程就称为离子的背散射过程。
描述离子背散射过程的三个基本物理概念主要有两体弹性碰撞的运动学因子、微分散射截面、固体的阻止截面。
一. 运动学因子和质量分辨率:运动学因子的定义:01E E K =其中0E 是入射粒子能量(动能),1E 是散射粒子能量(动能)。
根据动量与能量守恒定律,可以推导得到:212111⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-==M mM m cos θM m sin θE E K (1-1)由运动学因子公式可以看出:当入射离子种类(m ),能量(0E )和探测角度(θ)一定时,1E 与M 成单值函数关系。
所以,通过测量一定角度散射离子的能量就可以确定靶原子的质量数M 。
这就是背散射定性分析靶元素种类的基本原理。
^4He离子卢瑟福背散射的Geant4模拟

E =K E 0 ( 1 )
加, 背散 射谱低能侧 ( 对应 于从薄 膜后表面散射 的能量 ) 逐
渐 向左 移 , 说 明 随 着 厚 度 的 增 加 H e离 子 背 散 射 谱 半 宽 度
逐渐变大 。
K=[ M c o s O + ̄ / M — 2 - m — 2 s i n 0 ) ( M+ m ) r
1 6 5 。 方 向上使用环探测器 记录散 射离子 背散射 谱 , 环 探测
器 所 张 立 体 角为 1 0 。 , 其 几 何ห้องสมุดไป่ตู้示 意 图如 图 1 所示 :
图1 G e a n t 4模 拟 的 几 何 示 意 图
Fi g. 1 Ge o me t r y o f Ru t h e r f o r d b a c k s c a t t e r i n g
( 2 )
称 为 背 散 射 运 动 因子 , 从 式 中可 以 看 出 它 仅 与 M 、 M
通过 图 2数 据可 以得 到其 背散 射能谱 宽 度与 薄膜 厚
度 的关 系如 图 3所 示 :
和0 有关 。需要强调 的是 , 此处背散射 分析 只考 虑了 M <
的 弹 性碰 撞 情 况 。 因 为 当 M =M2 时, K=C O S , 最 大 散
子 的 能 量 就 可 以 进 行 质 量 分 析 。 散 射 离 子 的 能 量 坐 标 可 以转 换 成 相 应 的 靶 物 质 的 质 量 坐 标 。 由 此 利 用 卢 瑟 福 背 散射谱 ( R B S ) 可 以分 析 材料 的组 成 成 分 。
的应用 、 核 医学 、 辐射防护等领域 , 取得 了很 大的成果 , 得 到
三级大物实验报告-卢瑟福散射实验

实验题目:卢瑟福散射实验实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理: α粒子散射理论(1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫ ⎝⎛++⋅=∙∙222202241ϕπεr r m r Ze E (1) L b m mr ==∙∙νϕ2 (2) 由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:202242Ze Eb ctg πεθ= (3) 设EZe a 0242πε=,则a b ctg 22=θ (4) 设靶是一个很薄的箔,厚度为t ,面积为s ,则图3.3-1中的db ds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几率,也就是α粒子打在环ds 上的概率,即θθθππd s a sdb b s ds 2sin 82cos2232== (5) 若用立体角Ωd 表示,由于θθθπθθπd d d 2cos 2sin 42sin2==Ω则 有θθd s d a s ds 2sin 1642Ω= (6)为求得实际的散射的α粒子数,以便与实验进行比较,还必须考虑靶上的原子数和入射的α粒子数。
由于薄箔有许多原子核,每一个原子核对应一个这样的环,若各个原子核互不遮挡,设单位体积内原子数为0N ,则体积st 内原子数为st N 0,α粒子打在这些环上的散射角均为θ,因此一个α粒子打在薄箔上,散射到θ方向且在Ωd 内的概率为s t N sds ⋅0。
若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在Ωd 立体角内测得的α粒子为:2sin 42414220200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⋅=d E Ze t nN s t N s ds n dn (7) 经常使用的是微分散射截面公式,微分散射截面Ω⋅=Ωtd N n dn d d 01)(θσ 其物理意义为,单位面积内垂直入射一个粒子(n=1)时,被这个面积内一个靶原子(10=t N )散射到θ角附近单位立体角内的概率。
RBS

原子无规则 排列
•沟道分析的应用 • 确定晶轴 • 研究晶格损伤 • 确定杂质原子的晶格位置
RBS分析中主要有四个基本概念: 1. 运动学因子:这是一个与两体弹性碰撞后散射离 子所带能量相关的物理量,由被分析元素的质量 决定。 2. 微分散射截面:素的原子序数和入射离子的种类及能量有关。 3. 能量损失:由于入射离子与物质的相互作用,离 子进入靶中出射都要损失能量,这种能量损失与 被分析元素所在深度及基体的性质有关。 4. 能量歧离:由于入射离子与靶原子的相互作用的 统计性,造成背散射离子的能量歧离,它对被分 析元素的质量分辨本领和深度分辨本领有影响。
卢瑟福背散射(RBS)分析
•基本原理
离子背散射分析主要在能量 在几MeV以下的小型加速器上 进行的,来自加速器的带电离子 与靶原子发生弹性碰撞,用探测 器记录被散射的离子的能谱,通 过对能谱的分析可以得到靶中元 素的质量、浓度和深度分布。
★入射离子与靶原子核之间的大角度库仑散 射称为卢瑟福背散射(RBS)
•运动学因子
•微分散射截面
•能量损失
•背散射能谱分析
•卢瑟福背散射的应用
•背散射分析实验设计
弹性反冲探测(ERD)方法 ---轻元素分析
•ERD分析中的基本公式
•ERD分析的应用
•非卢瑟福散射
•沟道背散射分析
间隙原子
完美晶体,原子 有序排列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rutherford Backscattering Spectrometry (RBS)
2.1 背散射研究的发展史
1909年,盖革(H. Geiger) 和马斯顿(E. Marsden)观 察到了α粒子散射实验现象 1911年,卢瑟福(Lord Ernest Rutherford)揭示了该 现象,并确立了原子的核式 结构模型 1957年,茹宾(Rubin)首次 利用质子和氘束分析收集在 滤膜上的烟尘粒子的成份 1967年,美国的测量员5号空 间飞船发回月球表面土壤的 背散射分析结果
结束
2.2.1 运动学因子—质量分析
运动学因子的 定义: K=E1/E0, 其中E0是入射 粒子能量,E1 是散射粒子能 量。
2.2.1 运动学因子—质量分析
实验室坐标系中的K因子的表达式为(详细的推导参见 王广厚--《粒子同固体物质相互作用》P102):
2 2 M sin M 1 cos 1 1 M M2 2 E1 K M1 E0 1 M2 1
2 1/ 2
d L 1 d 40
2
Z1 Z 2 e 2 E sin 2 L
2
2
2
2.2.2 背散射微分截面—含量分析
• 因为探测器所张的立体角是有限的,故取平均散 射截面: (其定义式如下)
1
2.2 卢瑟福背散射分析的原理
RBS是利用带电粒子与靶核间的大角度库仑 散射的能谱和产额确定样品中元素的质量 数、含量及深度分布。该分析中有三个基 本点,即:
运动学因子—质量分析 背散射微分截面—含量分析 能损因子—深度分析
2.3最佳实验条件的选取
• 由背散射的原理可导出最佳的实验条件:
– 质量分辨 – 含量分辨 – 深度分辨
– ΔE与x的关系是可化简为:
k 1 dE dE x x E x dx E0 cos1 dx kE0 cos 2
表面能近似
• 则在表面能近似下能损因子S定义如下:
k 1 dE dE x x S dx E0 cos1 dx kE0 cos 2
计数
返回
单元素厚靶
• 表面产额
– 取δE为探测系统每一道对应的能量, δx为对应 于能量间隔的靶厚度,
– 则表面层的产额为:
• H=Npσ(E0)ΩNδx/cosθ1 • 为简化,令θ1 =0 • H=Npσ(E0)ΩNδx,利用表面能近似结论 • H=Npσ(E0)ΩNδE/S(E0)
单元素厚靶
• 这里只介绍表面能近似和数值积分法
表面能近似
• 由于薄靶和厚靶的近表面 区是一薄层,故近似认为 其能损值为一常量
– 入射路径上取:
dE dE x x dx in dx E0
– 出射路径上取:
dE dE x x dx out dx kE0
2
2.2.1 运动学因子—质量分析
• 令δ=π-θ, δ为一小量,且M2>>M1,则对K因子公式 求M2的偏导数并化减得:
M1 (4 2 ) E0 E1 k E0 2 M 2 M 2 M2
由上式得出要提高质量分辨率:
1.增大入射离子能量
2.利用大质量的入射离子
– 轻基体上的重元素有很好的分辨 – 重基体上的轻元素分辨差
返回
深度分辨
• 由表面能近似可值不同深度x1和x2处散射 的粒子能量差ΔE=S Δx,
– 即: Δx= ΔE/S由此式可知,要使Δx尽可能的 小,应从两方面着手 :
• 提高探测系统的分辨,即减小ΔE • 增大S
– 采用重离子入射 – 采用倾角入射,即增大θ1 θ2
2.4实验设备
• 一台小型加速器,目前实验式采用 2X1.7MeV串列加速器(如图)
2.4实验设备
• 电子学探测系统
2.5背散射能谱和产额
• 薄靶
– 单元素 – 多元素
• 厚靶
– 单元素 – 多元素
2.6 RBS技术的应用
• 表面层厚度的分析 • 杂质的深度分布 • 应用于阻止本领测定 • 利用共振背散射探测重基Leabharlann 上得轻元素• 由上式可得:
E kE0 E1 k
x / cos1 0
2.2.3能损因子—深度分析
• 上面导出了ΔE与深度x的关系式,由于式子比较复杂, 故在实际的应用中采用多种近似方法,(参见王广 厚《粒子同固体物质的相互作用》 P111)
– 表面能近似—适用于薄靶或厚靶的近表面区
– 平均能量近似—适用于厚靶 – 能量损失比法—适用于薄靶,对厚靶也适用,但精度差 – 数值积分法—适用于薄靶和厚靶
d d d
2.2.2 背散射微分截面—含量分析
• 探测系统的计数与平 均截面的关系为:
Ns N p N0dx
返 回
2.2.3能损因子—深度分析
• 背散射中入射离子与靶物质的作用过程机制图:
2.2.3能损因子—深度分析
• 在入射路程中
E E0
x / cos1 0
3.散射角尽可能大
返 回
2.2.2 背散射微分截面—含量分析
• 卢瑟福散射截面公式为: (参见下式,详细推 导参见褚圣麟《原子物理学》P12或王广厚 《粒子同固体物质的相互作用》P8和P105)
M 1 cos 1 M sin 2 2 1/ 2 M 1 1 M sin 2
返回
单元素薄靶
• 下图为单元素薄靶的背散射图
薄靶背散射图 1200 800 400 0 350 370 390 410 道数 430 450 470
返回
计数
多元素薄靶
• 下图为单元素薄靶的背散射图
多元素薄靶 1200 800 400 0 300 320 340 360 道数 380 400 420
– 说明:表面能近似适用于薄靶,靶厚一般要小 于10000埃,近似误差大概在5%左右(对于 alpha粒子)
数值积分法
• 该方法是建立在表面能近似的基础上的, 对于厚靶,进行切片处理,对每一个薄片 采用表面能近似,再进行积分,这样处理 会提高精度,
– 例:2M alpha粒子入射到Si上,厚度8000埃
• 在出射路程中
E1 kE
0
dE x dx dx in dE x dx dx out
x / cos 2 dE dE x dx 0 x dx dx in dx out
x / cos 2
– 在某一深度处的背散射产额:
• H(E1)= Npσ(E)ΩNδkE/S(E)
单元素厚靶
– δkE=( S(kE)/ S(E1))δE1 – H(E1)= – Npσ(E)ΩN {S(kE)/[ S(E1) S(E)]}δE1
返回
• 采用表面能近似误差为5% • 采用数值积分法误差为0.2%
返 回
质量分辨
• 在K因子的推导中曾得出这样一个结论:
M 2 E1 M 2 M1 (4 2 ) E0
• 增大散射角
• 增大入射粒子质量 • 增大入射粒子能量 • 提高探测系统的分辨
2
返回
含量分辨
• 由于散射粒子计数N正比于散射截面σ,故 截面越大,计数越多,分辨越好