直线与方程教案
高中数学必修二《直线与方程》教案设计

高中数学必修二《直线与方程》教案设计一、教学目标1.知识目标:o学生能够掌握直线的点斜式、两点式和一般式方程的表达形式及其相互转换。
o学生能够理解直线方程中斜率、截距的概念,并能根据给定条件求出直线方程。
o学生能够运用直线方程解决简单的几何问题,如求两直线的交点、判断两直线是否平行或垂直。
2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提高数学建模能力。
o提高学生的运算能力,能够熟练进行直线方程的推导和计算。
o增强学生的问题解决能力,能够运用所学知识解决实际问题。
3.情感态度价值观目标:o培养学生严谨的数学学习态度,注重逻辑推理和证明过程。
o激发学生的学习兴趣,鼓励学生积极探索数学奥秘,培养数学学习的自信心。
o培养学生的合作精神,通过小组讨论和合作学习,提高团队协作能力。
二、教学内容-重点:直线的点斜式、两点式和一般式方程的表达及相互转换;斜率、截距的概念及应用。
-难点:直线方程的应用,如求两直线的交点、判断两直线的位置关系。
三、教学方法-讲授法:用于直线方程的基本概念和理论的讲解。
-讨论法:通过小组讨论,加深学生对直线方程的理解和应用。
-案例分析法:通过具体案例分析,提高学生解决实际问题的能力。
-多媒体教学法:利用多媒体资源,如、动画等,直观展示直线方程的图形和推导过程。
四、教学资源-教材:《高中数学必修二》-教具:黑板、粉笔、直尺、圆规-多媒体资源:课件、直线方程推导动画、几何画板软件-实验器材:无需特定实验器材五、教学过程六、课堂管理1.小组讨论:每组4-5人,确保每组成员水平均衡,指定小组长负责协调讨论和记录。
2.维持纪律:明确课堂规则,如举手发言、不打断他人讲话等,对违规行为及时提醒和处理。
3.激励策略:对积极参与讨论、表现突出的学生给予表扬和奖励,如加分、小礼品等。
七、评价与反馈1.课堂小测验:每节课结束前进行小测验,检查学生对本节课内容的掌握情况。
2.课后作业:布置适量的课后作业,巩固所学知识,要求学生按时完成并提交。
直线与方程复习优秀教案

直线与方程复习优秀教案教案标题:直线与方程复习教学目标:1.理解直线的定义,能够识别直线的特征和性质。
2.掌握直线的各种表示方法,包括点斜式、一般式和截距式。
3.能够根据给定条件写出直线的方程,并且能够在直线和坐标系中相互转换。
4.能够应用直线的性质和方程解决实际问题。
5.培养学生的逻辑思维、分析问题和解决问题的能力。
教学重点:1.直线的特征和性质。
2.直线的表示方法与转换。
3.直线的方程的写法和应用。
教学难点:1.直线方程的应用。
教学准备:1.教材课件、笔记本电脑以及投影仪。
2.小白板、粉笔、草稿纸和橡皮擦。
3.直线和坐标系的图形素材。
教学过程:一、导入(5分钟)1.引发学生对直线的思考:请学生回答,直线有什么特征和性质?为什么我们要学习直线的方程?2.引入本节课的主要内容:通过讨论学生提出的问题,引导学生了解直线方程的重要性。
二、直线的特征和性质(10分钟)1.讲解直线的定义:直线是由无数个点连在一起形成的。
指出直线的两边无限延伸、不弯曲以及无端点等特征。
2.引导学生找出直线的性质,包括直线的斜率、方向、长度等。
三、直线的表示方法与转换(20分钟)1.介绍直线的表示方法:点斜式、一般式和截距式。
以示意图解释每种表示方法的意义和用法。
2.通过例题的演示,讲解点斜式、一般式和截距式的转换方法。
3.练习:给学生一些小练习,巩固直线表示方法和转换的理解。
四、直线的方程的写法和应用(25分钟)1.讲解直线方程的写法:写出通过给定点的直线方程、写出经过给定两点的直线方程、写出垂直于给定直线的直线方程和写出平行于给定直线的直线方程。
2.引导学生通过例题,练习直线方程的写法。
3.应用:通过实际问题,引导学生运用直线方程解决实际问题。
五、错误分析和答疑(10分钟)1.分析学生在学习过程中产生的常见错误,解释正确的做法。
2.解答学生提出的问题,澄清学生对直线和方程的疑惑。
六、课堂练习(15分钟)1.分发练习题,让学生独立完成。
2023年直线与方程教案高三【精选4篇】

2023年直线与方程教案高三【精选4篇】直线与方程教案高三篇一《直线的方程》教案一、教学目标知识与技能:理解直线方程的点斜式的特点和使用范围过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。
二、教学重难点教学重点:点斜式方程教学难点:会使用点斜式方程三、教学用具:直尺,多媒体四、教学过程1、复习导入,引入新知我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率)那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。
2、师生互动,探索新知探究一:在平面直角坐标系中,直线l过点p(0,3),斜率k=2,q(x,y)是直线l上不同于点p的任意一点,如ppt上图例所示。
通过上节课所学,我们可以得出什么?由于p,q都在这条直线上,我们就可以用这两点的坐标来表示直线l的斜率,可以得出公式:y-3x-0=2 那我们就可以的出方程y=2x+3 所以就有l上的任意一点坐标(x,y)都满足方程y=2x=3,满足方程y=2x+3的每一个(x,y)所对应的点都在直线l上。
因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。
3、知识剖析,深化理解我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。
设q(x,y)是直线l上不同于点p的任意一点,由于点p,q都在l,求直线的方程。
设点p(x0,,y0),先表示出这个直线的额斜率是y-y0x-x0=k,然后可以推得公式y-y0=k(x-x0)那如果当x=x0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(x不能等于x0)1)过点,斜率是k的直线l上的点,其坐标都满足方程(1)吗?p(x0,y0)(x0,y0),斜率为k的直线l上吗?2)坐标满足方程(1)的点都在经过p那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。
《直线与方程》教案

芯衣州星海市涌泉学校直线与方程【一】教学背景分析1.教材分析直线的点斜式方程选自必修〔2〕第二章平面解析几何初步§2.1.2直线的方程.在之前已经学习过必修1、3、4、5.这一节一一共分三课时,这是第一课时的内容.直线作为常见的简单几何图形,在实际生活和消费理论中有着广泛的应用.直线的方程属于解析几何学的根底知识,是研究解析几何学的开始,对后续圆、直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义.2.学情分析直线的方程是学生在初中学习了一次函数的概念和图象及直线的斜率后进展研究的.但由于学生刚开始学习解析几何、第一次用坐标来求方程;在学习过程中,会出现“数〞与“形〞互相转化的困难.另外高中学生在探究问题的才能,交流的意识等方面有待加强.根据上述教材构造与内容分析,考虑到学生已有的认知构造和心理特征,我制定如下教学目的:3.教学目的(1)知识与技能:①熟记直线的点斜式、斜截式方程;②会求直线的点斜式、斜截式方程;(2)过程与方法:①进一步培养学生用代数方法研究几何问题的才能;②通过直线的方程特征观察直线的位置特征,培养学生的数形结合才能.(3)情感态度与价值观:①培养学生研究问题时,注意其特殊情况的意识,培养思维的严谨性;②培养学生主动探究知识、交流的意识.根据以上对教材、教学目的及学情的分析,我确定如下的教学重点和难点:4.教学重点与难点(1)重点:直线点斜式方程的导出、记忆;直线的斜截式方程.(2)难点:点斜式方程的推导及点斜式、斜截式方程的初步应用.为使学生能到达本节设定的教学目的,我再从教法和学法上进展分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式〞问题教学法.利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联络,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使才能与知识的形成相伴而行,使学生在解决问题的同时,形成了方法.另外我恰当的利用多媒体课件进展辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣.2.学法分析本节课通过推导直线的点斜式方程,加深对用坐标求方程的理解.通过求直线的点斜式方程,理解一个点和方向可以确定一个直线.通过求直线的斜截式方程,熟悉用待定系数法求k、b的过程;让学生利用图形直观启迪思维,来完成从感性认识到理性思维的质的飞跃;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的才能.下面我就对详细的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由六个问题组成的问题链驱动的,一一共分为五个环节:下面表达我的教学程序与设计意图.(一)温故知新——启迪思维[教师活动]问题一画出一次函数y=2x+1的图象,假设把y=2x+1看作一个方程,那么方程的解与图象上的点的坐标有何关系?[学生活动]通过动手画图、观察图象、正反比照,由详细到抽象,由模糊到明晰逐步归纳、概括、抽象出两者之间的关系,并尝试用语言进展初步的表述.[教师活动]对于不同学生的表述进展分析、归纳,用标准的数学语言进展描绘.[设计意图]从学生熟知的旧知识出发提醒规律,试图做到“用学生已有的数学知识去学数学〞.通过对这个问题的研究,一方面认识到方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标适宜方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示.[教师活动]问题二假设直线经过点A(-1,3),斜率为-2,点P在直线l上运动,1、假设点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是.2、假设点P在直线l上运动那么点P的坐标(x,y)满足什么关系[学生活动]学生分组讨论、交流、观察发现,得到当点P在直线l上运动时〔除点A外〕,点P与定点A(-1,3)所确定的直线的斜率恒等于-2,[教师活动]肯定学生转化条件、动手画图,大胆尝试的行为;提出“动中找静〞的思维策略.[设计意图]在问题一的根底上,师生一一共同探究问题二,同时引导学生注意为什么要把分式化简?〔假设不化简,就少一点〕;同时表达数学的简单美及对称美.还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上.把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深化,进入第二环节.〔二〕深化探究——获得新知[教师活动]问题三①假设直线l经过点P(x1,y1),且斜率为k,求直线l的方程.②直线的点斜式方程能否表示经过P(x1,y1)的所有直线?[学生活动]①学生报答案,教师板书.②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程.[设计意图]由特殊到一般的学习思路,培养学生的归纳概括才能.通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k 不存在时,不能用点斜式方程表示直线,培养思维的严谨性.这时直线l 与y 轴平行,它上面的每一点的横坐标都等于x1,直线l 的方程是:x=x1.[教师活动]问题四假设直线l 斜率为k ,与y 轴的交点是P(0,b),求直线l 的方程.[学生活动]学生独立完成.[设计意图]由一般到特殊,培养学生的推理才能,同时引出截距的概念及斜截式方程,使学生意识到截距不是间隔,可以大于零、小于零和等于零.得到直线点斜式、斜截式方程后,我设计了由浅入深的两个应用平台,进入第三环节.〔三〕应用举例——稳固进步I .直接应用内化新知[教师活动]问题五1.分别求经过点(2,3)P -且满足以下条件的直线l 的方程⑴斜率2k =;⑵倾斜角45α=︒;⑶与x 轴平行;⑷与x 轴垂直.2、一条直线与y 轴交于点(0,3),直线的斜率为2,求这条直线的方程.[学生活动]学生独立完成后口答.[设计意图]我设计了两个小问题,这两题比较简单,安排学生口答完成,目的是先让学生纯熟掌握方程,为后面探究问题作准备.II .灵敏应用提升才能[教师活动]问题六1.直线l 过(1,0)点,它的斜率与直线13+-=x y 的斜率相等,求直线l 的方程.2.直线l 过(1,0)点,它的倾斜角是直线13+-=x y 的倾斜角的一半,求直线l 的方程.3.直线l 过点(2,-1)和点(3,-3),求直线l 的方程.[学生活动]学生互相讨论,尝试自主完成.[教师活动]教师深化学生中,与学生交流,理解学生考虑问题的进展过程,投影学生的证明过程,纠正出现的错误,标准书写的格式.[设计意图]我设计了三个小问题,前面两个小题有了刚刚解决问题三的根底,学生会很快求出方程.第三个小题解决方法较多,我预设了公式法、等斜法、待定系数法,再一次为学生的发散思维创设了空间.最后我让学生由第三小题的解题过程进展反思、归纳求直线方程的方法.又一次模拟了真理发现的过程,使探究气氛到达高潮.另外它为下节课研究直线的两点式方程作了重要的准备.〔四〕反响训练——形成方法P75练习:1、2、3、4[设计意图]充分用好教材的习题,因为这些习题都是专家精心编排的,充分表达必要性及合理性;做到当堂反响,便于反思本节课的教学,指导下节课的安排.〔五〕小结反思——拓展引申1.课堂小结1、点斜式方程:()11x x k y y -=- 2、斜截式方程:b kx y +=3、求直线方程的方法:公式法、等斜法、待定系数法.2.分层作业必做题:习题2。
高中高二数学教案范文:直线的方程

高中高二数学教案范文:直线的方程一、教学目标1.知识与技能目标:使学生掌握直线方程的概念,理解直线的斜率与截距的意义,能够熟练地求出直线的方程。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生合作学习的精神,树立学生勇于探究、积极进取的信念。
二、教学重点与难点1.教学重点:直线方程的概念,直线方程的求法。
2.教学难点:直线方程的斜截式、两点式、点斜式之间的转化。
三、教学过程1.导入新课(1)引导学生回顾直线的一般式方程:Ax+By+C=0(A、B不同时为0)。
(2)提问:在平面直角坐标系中,如何表示一条直线?2.探究直线方程的概念(1)引导学生通过观察,发现直线上的点都满足某个方程。
(2)讲解直线方程的定义:在平面直角坐标系中,一条直线上的所有点都满足的方程,叫做这条直线的方程。
(3)举例说明:如直线y=2x+1,直线上的点(1,3)、(2,5)都满足方程y=2x+1。
3.探究直线方程的求法(1)讲解直线方程的斜截式:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。
(2)引导学生通过观察,发现斜率k是直线上任意两点的纵坐标之差与横坐标之差的比值,即k=(y2-y1)/(x2-x1)。
(3)讲解直线方程的两点式:y-y1=k(x-x1),其中(x1,y1)是直线上的一点,k是直线的斜率。
(4)讲解直线方程的点斜式:y-y1=k(x-x1),其中(x1,y1)是直线上的一点,k是直线的斜率。
(5)举例说明:如直线y=2x+1,斜率k=2,截距b=1。
4.练习巩固(1)让学生独立完成教材上的练习题,巩固直线方程的概念和求法。
(2)教师选取部分题目进行讲解,纠正学生的错误。
5.小结(2)强调直线方程的斜截式、两点式、点斜式之间的转化。
6.作业布置(1)教材上的练习题。
(2)补充练习题:已知直线上的两点A(1,2)和B(3,4),求直线的方程。
四、教学反思本节课通过引导学生观察、分析、归纳,使学生掌握了直线方程的概念和求法。
直线与方程教案

公开课教案高考第一轮复习——§9.1直线与方程林秋林 2012.12.14一.考纲要求(教学目标):1、在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
2、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
3、能根据两条直线的斜率判定这两条直线平行或垂直。
4、掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
5、能用解方程组的方法求两条相交直线的交点坐标。
6、掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
二.教学重点:1、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
2、掌握直线方程的几种形式,掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
教学难点:化归与转化思想,函数与方程思想,数形结合思想等数学思想方法。
三.教学内容:(一)近几年福建高考数学解析几何题回顾:(09理题13)过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________ 。
(09理题19)已知A,B 分别为曲线C : 22x a+2y =1(y ≥0,a>0)与x 轴的左、右两个交点,直线l 过点B,且与x 轴垂直,S 为l 上 异于点B 的一点,连结AS 交曲线C 于点T.(1)若曲线C 为半圆,点T 为圆弧AB 的三等分点,试求出点S 的坐标;(II )如图,点M 是以SB 为直径的圆与线段TB 的交点,试问:是否存在a ,使得O,M,S 三点共线?若存在,求出a 的值,若不存在,请说明理由。
(10理题2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A.22x +y +2x=0 B. 22x +y +x=0 C. 22x +y -x=0 D. 22x +y -2x=0(10理题7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A. [3-23,)+∞B. [323,)++∞C. 7[-,)4+∞D. 7[,)4+∞(10理题8)设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A.285B.4C. 125D.2(10理题17)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。
《直线与方程》教案例题精析

《直线与方程》教案例题精析一、教学目标1. 让学生理解直线的斜截式、点斜式、一般式等方程的定义及表示方法。
2. 培养学生运用直线方程解决实际问题的能力。
3. 通过对典型例题的解析,提高学生分析问题、解决问题的能力。
二、教学内容1. 直线的斜截式方程:y = kx + b(k为斜率,b为截距)2. 直线的点斜式方程:y y1 = k(x x1)(k为斜率,(x1, y1)为直线上的一点)3. 直线的一般式方程:Ax + By + C = 0(A、B、C为常数,且A、B不为0)4. 直线的斜率与倾斜角的关系:k = tanθ(θ为直线的倾斜角)5. 直线与坐标轴的交点:x轴交点为(-b/k, 0),y轴交点为(0, b)三、教学方法1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生掌握直线方程的基本概念和求解方法。
2. 利用多媒体课件,形象地展示直线方程的图象,增强学生对直线方程的理解。
3. 设计具有代表性的例题,引导学生运用所学知识解决实际问题。
4. 组织学生进行小组讨论,鼓励学生发表自己的见解,提高学生的合作能力。
四、教学准备1. 准备PPT课件,包括直线方程的图象、典型例题及解题步骤。
2. 准备相关练习题,用于巩固学生对直线方程的掌握。
3. 准备黑板、粉笔,用于板书直线方程的重要知识点。
五、教学过程1. 导入新课:回顾一次函数的图象和性质,引导学生过渡到直线方程的学习。
2. 讲解直线方程的基本概念:斜截式、点斜式、一般式,以及斜率与倾斜角的关系。
3. 演示直线方程的图象,让学生直观地理解直线方程表示的直线在坐标平面上的位置。
4. 解析典型例题:引导学生运用直线方程解决实际问题,如求直线与坐标轴的交点、直线与直线的交点等。
5. 练习环节:让学生独立完成相关练习题,巩固对直线方程的掌握。
六、教学评估1. 课堂问答:通过提问学生,了解他们对直线方程的理解程度和掌握情况。
2. 练习题解答:检查学生完成练习题的情况,评估他们对直线方程的应用能力。
教案直线与直线的方程

且这个顶点分EF成5:1时,草坪面积最大.
返回目录
名师伴你行
用解析法解决实际问题,就是在实际问题中建立直 角坐标系,用坐标表示点,用方程表示曲线,从而把问题转 化为代数问题,利用代数的方法使问题得到解决.
返回目录
*对应演练*
名师伴你行
过点P(2,1)作直线l分别与x,y轴正半轴交于A,B两点. (1)当△AOB面积最小时,求直线l的方程; (2)当|OA|+|OB|取最小值时,求直线l的方程; (3)当|PA|·|PB|取最小值时,求直线l的方程.
返回目录
名师伴你行
(1)解法一:设直线l的方程为
xy +
ab
=1
(a>0,b>0),则|OA|=a,|OB|=b,
∴S△AOB =
1ab, 2
2
又点P在直线l上,∴ a +
1 b =1.
∵a>0,b>0,∴ 2+ 1≥2
2,
ab
ab
即2 2 ≤1,∴ab≥8.
ab 即S△AOB最小值为4,当且仅当
名师伴你行
返回目录
在求直线方程时,应先选择适当的直线方程的形式, 并注意各种形式的适用条件,用斜截式及点斜式时,直线 的斜率必须存在,而两点式不能表示与坐标轴垂直的直 线,截距式不能表示与坐标轴垂直或经过原点的直线,故 在解题时,若采用截距式,应注意分类讨论,判断截距是否 为零;若采用点斜式,应先考虑斜率不存在的情况.
k
由已知3-
2 =2-3k,解得k=-1或k=
k
2 3
,
∴直线l的方程为:
2
y-2=-(x-3)或y-2= 3 (x-3),
即x+y-5=0或2x-3y=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章解析几何初步【课题】第一节直线的倾斜角与斜率【教学目标】1.知识与技能:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.2.情感、态度、价值观:(1)培养学生观察、探索能力,运用数学语言表达能力。
(2)帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神3.过程与方法:通过启发引导、讨论等方法,理解直线的倾斜角与斜率的概念,掌握由直线上两点的坐标求直线的倾斜角和斜率的方法。
掌握直线的点斜式方程,会实现直线方程的各种形式之间的互化。
【教学重点难点】1.教学重点:直线的倾斜角和斜率的概念,过两点的直线的斜率公式2.教学难点:斜率概念的学习,过两点的直线的斜率公式【教法学法】启发式教学法、对话式教学法【教学准备】多媒体、实物模型【教学安排】2课时【教学过程】一、复习引入:直线和圆都是最常见的简单几何图形,在生产实践和实际生活中有广泛的应用。
初中几何对直线和圆的基本性质作了比较系统的研究,初中代数研究了一次函数图象及其性质,高一数学研究了三角函数、平面向量,直线和圆的方程的内容以上述知识为基础,直线和圆的方程是解析几何的基础知识,在解决实际问题中有广泛的应用。
本节要研究的是直线的两个基本概念,即直线的倾斜角和斜率。
⑴回顾一次函数的图象及性质形如y=kx+b(k≠0)叫做一次函数;它的图象是一条直线;当k>0时,在R上是增函数,当k<0时,在R上是减函数。
⑵画出下列一次函数的图象①y = 2x + 4 ② y = -2x + 2小结:作一次函数图象的方法-由于两点确定一条直线,故可在直线上任取两点,通常取点(0 , b)与(-b/k , 0)。
研究两点(-2,0)、(0,4)与函数式y = 2x + 4的关系是:这两点就是满足函数式的两对x、y的值。
由作图知满足函数式y = 2x + 4的每一对x、y的值都是函数y = 2x + 4上的点;这条直线上的点的坐标都满足函数式y = 2x + 4。
小结:一次函数y=kx+b(k≠0)的图象是一条直线,它是以满足y=kx+b(k≠0)的每一对x、y的值为坐标的点构成的。
由于函数式y=kx+b(k≠0)也可以看成二元一次方程,所以我们说,这个方程的解和直线上的点存在这样的对应关系。
二、讲授新课:⑴直线方程的概念以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程叫做这条直线的方程,这条直线叫做这个方程的直线。
在平面直角坐标系中研究直线时,就是利用直线和方程的这种关系,建立直线的方程,并通过方程来研究直线的有关问题,为此,我们先研究直线的倾斜角,理解直线的倾斜角和斜率的定义,并注和斜率。
正面请同学们阅读教材P34-35意它们的变化范围。
(5分钟)⑵直线的倾斜角 ①定义:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线和x 轴平行或重合时,我们规定直线的倾斜角为0º。
②范围:0º≤α<180ºαo x o x⑶直线的斜率定义:倾斜角不是90º的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示,即(4)过两点的直线的斜率公式、形式特点 方向向量:1α o x o x 直线上的向量21P P 及与它平行的向量都称为直线的方向向量。
直线P 1P 2的方向向量21P P 的坐标是(x 2-x 1,y 2-y 1),其中P 1(x 1,y 1),P 2(x 2,y 2);当直线P 1P 2与x 轴不垂直时,x 2≠x 1,此时21121P P x x -也是直线P 1P 2的方向向量,且它的坐标是),(1121212y y x x x x ---,即(1,k ),其中k 为直线P 1P 2的斜率。
注:方向向量与x 轴所成的最小正角与直线l 的倾斜角相等。
(5)斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的斜率公式是: )(211212x x x x y y k ≠--= 推导如下:设直线P 1P 2的倾斜角为α,斜率为k ,向量的方向是向上的21P P (如下图),向量21121221P P OP ),y y ,x x P P = 过原点作向量--=(,则点P (x 2-x 1 , y 2-y 1),而且直线OP 的倾斜角也是α,根据正切函数的定义有)(tan 121212x x x x y y ≠--=α,即)(121212x x x x y y k ≠--=。
同样,当向量同样的公式。
的方向是向下时,也有21P P 小结:斜率公式的形式特点⑴斜率公式与两点的顺序无关,即两点的纵坐标和横坐标在公式中的前后次序可同时颠倒。
⑵斜率公式表明,直线对于x 轴的倾斜程度,可以通过直线上任意两点坐标表示,而不需要求出直线的倾斜角。
⑶斜率公式中,当x 1=x 2时不适用,此时直线和x 轴垂直,直线的倾斜角α=90°。
3、应用举例例1 如图,直线l 1的倾斜角为α1=l 2的斜率。
解:l 1的斜率k 1=tan α1=tan30°=3 ∵l 1⊥l 2∴l 2的倾斜角α2=90°+30∴l2的斜率k2=tan120°=-3α1α2o x例2直线过点A(-2,0), B(-5,3),求直线AB的斜率。
解:k=(3-0)/[(-5)-(-2)]=-1又α∈[0°,180°)∴α=135°因此,这条直线的斜率是-1,倾斜角是135°巩固练习P37练习4、54、归纳总结数学思想:数形结合、分类讨论数学方法:图象法、公式法三、内容、方法小结:本节介绍了直线的倾斜角和斜率的定义,以及斜率的两种求法,教学中运用图像法和公式法使得内容更易理解。
四、课后作业P89 2 3五、板书设计:1.倾斜角和斜率倾斜角定义:例1斜率定义:两点式求斜率例2作业:六、教学反思:【课题】第二节两条直线平行与垂直的判定【教学目标】1.知识与技能: 掌握斜率存在的两条直线平行或垂直的充要条件;能用解析法解决平面几何问题。
2.情感、态度、价值观:(1)通过创设的问题情境,引导学生探究平面内两条直线的平行或垂直关系的充要条件激发学生学习数学的兴趣(2)通过数学探究活动,使学生能用联系的观点看问题,掌握代数化处理几何问题的方法及数学地思考问题的方法,体会唯物辩证法在数学中的体现。
3.过程与方法: 在初中平面几何的直线平行或垂直关系的基础上,本节将从新的角度来研究平面内两条直线的平行或垂直关系,理解数形结合的数学思想。
【教学重点难点】1.教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直2.教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件)【教法学法】讲解、练习、演示、探究【教学准备】计算机、投影仪、三角板.【教学安排】2课时【教学过程】一、复习引入:上课前我们先来看这样一个故事:魔术师的地毯一位魔术师拿了一块边长为1.3米的地毯去找地毯匠,要求把这块正方形的地毯改制成宽0.8米,长2.1米的矩形.地毯匠对魔术师说:“难道你连小学算术都没学过吗?边长为1.3米的正方形的面积是1.69平方米,而宽0.8米、长2.1米的矩形面积只有1.68平方米。
两者并不相等呀!”而魔术师只给了地毯匠一幅图,让他照着做就是了。
地毯匠照做了,缝好一量,果真可以,魔术师得意洋洋地取走了地毯,可地毯匠却很纳闷,百思不得其解,那0.01平方米的地毯去哪了?你能帮他解开疑团吗?现在大家可能不知道从何下手,那我们就带着这个问题来学习这节课的内容,看看能否利用我们下面学习的知识来解决这个问题.引入课题: 两条直线的平行与垂直的判定二、讲授新课:师:上节课我们学习了斜率,谁能告诉我斜率是什么?生:斜率是一条直线倾斜角的正切值.师:那什么是倾斜角?生:倾斜角是一条直线向上的部分与x轴正半轴所夹的角.师:两条直线的平行与垂直与这两条直线的倾斜角与斜率有什么关系呢?下面我们就一起来实验探究这个问题.大家打开几何画板,完成实验报告.给学生10分钟时间完成实验报告师:下面我们请两位同学来汇报一下你的实验结果学生1:实验1,我实验探究的结果是当两条直线互相平行时, 他们的斜率是相等的,当两条直线的斜率相等的时候,这两条直线是平行的.有没有同学补充?若没有,老师提问:当这两条直线都与y轴平行时,这两条直线的斜率也相等吗?让大家再动手操作一下.老师再问,若两条直线的斜率相等,这两条直线除了平行还有没有其它的位置关系?重合.因此,我们实验一的最终结论应该是:两条直线....,...而.且不重合....都.有斜率如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即学生2:实验2,我实验探究的结果是当两条直线互相垂直时,他们的斜率的乘积都等于-1,当两条直线的斜率乘积等于-1的时候,这两条直线是互相垂直的.有没有同学补充?若没有,老师提问:当这两条直线有一条与y轴平行时,上面的结论还成立吗?让大家再动手操作一下.因此,我们实验一的最终结论应该是:两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数(即乘积为-1);反之,如果它们的斜率互为负倒数,那么它们互相垂直,即师:上面是我们利用几何画板实验探究的结果,还没有经过理论验证.大家能否利用所学的知识证明这两个结论呢?首先我们先证明结论一.已知L1∥L2(图1-29),它们的斜率分别为k1,k2,求证它们的斜率相等. 证明:因为L1∥L2,所以α1=α2.∴tg α1=tg α2. 即 k1=k2.反过来,已知k1=k2,k1,k2分别为不重合的直线L1,L2的斜率,求证:L1∥L2证明:因为k1=k2,所以tg α1=tg α2由于0°≤α1<180°, 0°≤α<180°, ∴α1=α2. 又∵两条直线不重合, ∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.下面我们一起来证明两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x 轴上方;乙图的特征是L1与L2的交点在x 轴下方;丙图的特征是L1与L2的交点在x 轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0。