五年级奥数:第14讲 余数问题

合集下载

人教版五年级下册数学奥数试题 余数和同余 (含答案)

人教版五年级下册数学奥数试题 余数和同余  (含答案)

余数和同余一、走进来:在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。

据说韩信的数学水平也非常高超,他在点兵的时候,为了不让敌人知道自己部队的实力,先令士兵从1至3报数,然后从1至5报数,最后令士兵从1至7 报数,分别记下每次最后一个士兵所报之数。

这样,他很快就算出了自己部队士兵的总人数,而敌人始终无法弄清他的部队究竟有多少名士兵。

这个故事中所说的韩信点兵的计算方法,最早提出并记叙这个数学问题的,是南北朝时期的数学著作《孙子算经》。

算经中载有此题之算法,后来的数学家把这种解法编成了如下的一首诗歌以便于记诵:“三人同行七十稀,五树梅花廿一枝。

七子团圆正半月,除百零五便得知。

”这道题就是利用余数的性质来求解。

这一章我们来共同探讨这样的问题。

二、一起做:【例1】2100除以一个两位数得到的余数是56,求这个两位数。

提示:如何使2100能被这个两位数整除?【例2】用一个自然数分别去除69、90、125,所得的余数都是6,求这个自然数。

提示:把“有余数”转化成“没有余数”,就能解决了。

【例3】60,90和125分别除以某个自然数时,余数相同,这个自然数最大是多少?提示:余数相同,可以通过“不同的两数相减”的方式去掉余数,进而求解。

【例4】有一个整数,用它去除91、119、155得到的三个余数之和是20,求这个数。

提示:先根据已知条件,确定这个数的大致范围。

然后通过“三个数的和减去余数的和”去掉余数,再分解质因数来求解。

【例5】一个数除以3余2,除以5余3,除以7余2,求满足条件的最小自然数。

提示:写出除以3余2的数,从中找出除以5余3的最小自然数,再写出满足前两个条件的数,从中找出除以7余2的最小数。

【例6】求71427×1379×5781的积除以7的余数。

提示:你可以利用这三个数分别除以7的余数,去研究71427×1379×5781除以7的余数。

五年级奥数.数论.中国剩余定理及弃九法(A

五年级奥数.数论.中国剩余定理及弃九法(A

五年级奥数.数论•中国剩余定理及弃九法(A【例门将1至2(X)8这2008个自然数,按从小到大的次序依次写出,得一个多位数; 12345678910111213 - 20072008,试求这个多位数除以9的余数.【考氏】弃九法【堆废】3冕【題型】解察【妙析】以19992000 IX个八伎数为例,它放9冷的余数等于(149厶949424040 + 0)被9除的余数,但是由于1999与(14-9 + 94-9)^ 9徐的余数相同,20CO与(2 4-04 04-0J被9除的余數相同,曲以19992000就与(iw 2(扌械9除的余数相同.由此可得.从1开於的自然数12345678910111213•- 2OO72OOS破9於的余数与荊2008个自然敷之和除以9的余秋相同.植猎等差数列求和公式,这个和为:(12008)、2008 =2017036 ,它秋9除的余數为1•另外还可以2利用连埃9个自然敛之和必能坡9楚冷逗个性质,籽腹多位数分成123456789, 101112131415161718・ ................... . 199920002001200220032004200520062007. 2008 爭数,可见它放 9除的余数与2008被9除的余数相同.因此,此数被9冷的余数为1・【答案】1I[矶固H连埃写出从I开始的自然敷,写到2009时停止,得到一个多位1234567891011-19992000, 请说明:这个多位数除以3,得到的余数是几?为什么?【考点】弁九法【难度】3星【题型】解答【关坡词】第六屈,希空杯[分析】因为连续3个白然歎可以被3整除,而且最后一个白產數祁是3的信数,因为1998是3的倍數,所以123456789101 1…W9M是3的倍数,又因为1234567«9101 1 I9992O<M)= 1234567X9101 1 199800:X)0000 + 199—丨斗 1 998 + 2 , 所以1234567891011 - 19992000 冷以3 ,得到的余效是0.【答案】0■例2)将12345678910111213……依次写到第2013个数字,组成一个2013位数,那么此数除以9的余数是 ___________ -【考支】卉九法【难度】3星【題型】填空【解析】本题第一步是实求出第2013个妓字是什么,牌对败牛求和・I〜9共有9个数字,10-99共有90 个两位数,共冇数字:90* 2 = 1X0 (个X 100—999共900个三位数•共有900*3= 2700 (个),所以教连续写.不会写到999•从100开始是3位數.每三个数字衷示一个數,(207 9180)-3 »即有608个三位数,从100开始的第608个三位数是707,因为连绫9个自然敷之和能被9整冷,所以排列起来的9个自然耿也能祓9駐除,707个歎能分成的纽数足:707 4-9 ■兀(纽)……5 ,依次排列后,列702仍轶能被9扭除,但703704705706707中7+3+7444-7+54.7+64-7+7.60, 6W=6.所以余数为 6【答隶】6「巩圍J右2个三位数相乘的积是一个五位数,枳的后四位是7037,第一个数各个位的数字之和是6第二个数的各个位数字之和足8,求两个二位数的和。

五年级奥数-数论之余数问题

五年级奥数-数论之余数问题

数论之余数问题余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨:一、带余除法的定义及性质:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.余数的加法定理0r =0r ≠a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m 同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。

小学五年级奥数数论之同余问题

小学五年级奥数数论之同余问题

一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a同余于b,模m。

由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:++++=例如:检验算式12341898189226789671789028899231234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

五年级的奥数余数问题解答

五年级的奥数余数问题解答

五年级的奥数余数问题解答1、(四中小升初选拔试题)被除数,除数,商与余数之和是2143,已知商是33,余数是52,求被除数和除数.分析: 方法1:通过对题意的理解我们可以得到:被除数=除数×商+余数=除数×33+52;又有被除数=2143-除数-商-余数=2143-除数-33-52=2058-除数;所以除数×33+52=2058-除数;则除数=(2058-52)÷34=59,被除数=2058-59=1999.方法2:此题也可以按这个思路来解:从被除数中减掉余数52后,被除数就是除数的33倍了,所以可以得到:2143-33-52-52= (33+1)×除数,求得除数=59 ,被除数=33×59+52=1999 .转化成整数倍问题后,可以帮助理解相关的性质.2、(美国长岛小学数学竞赛)写出所有的除109后余数为4的两位数.分析:还是把带有余数的问题转化成整除性的问题,也就是要找出能整除(109-4)的所有的两位数.进一步,要找出能整除105的两位数,很简单的方法就是把105分解质因数,从所得到的质因子中去凑两位数.109-4=105=3×5×7.因此这样的两位数是:15;35;21.3、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.4、数11…1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.5、求下列各式的余数:(1)2461×135×6047÷11 (2)2123÷6分析:(1)5;(2)6443÷19=339……2,212=4096 ,4096÷19余11 ,所以余数是11 .6、1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.7、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.8、(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313— 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .9、(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.10、已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a 和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.11.19941994…1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994÷15余14,19941994÷15余4,199419941994÷15余9,1994199419941994÷15余14,......,发现余数3个一循环,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400…0能被15整除,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4.12.a>b>c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c)×(a-b)×(b-c)除以11的余数是多少分析:(a+b+c)÷11的余数是7;(a—b)÷11的余数是1l+2—7=6;(b—c)÷11的余数是11+7—9=9.所求余数与7 6×9÷11的余数相同,是4.13.一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.14、自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+ (90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.15、求123456789101112……199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+…..9=45二位数数字之和是1×10+1+2+3+…….9 (10-19)2×10+1+2+3+…….9 (20-29)……9×10+1+2+3+…….9 (90-99) 余90,9余0,11余2故二位数总和为(1+2…..+9)×10+1+2…..+9=495100—199与1—99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3.16、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;、满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)17、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出÷7的余数就可以知道天后是星期几.≡52007(mod7),56≡1(mod7)2007≡3(mod6), ≡52007≡53≡6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是118、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194619、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2 倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A 的倍数;同理乙-2丙也同样没有余数,是A的倍数.939×2-603=1275,939-393×2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51 再实验得到A为17,余数分别为8,4,2.。

余数及同余问题小学五年级奥数

余数及同余问题小学五年级奥数

余数及同余问题⼩学五年级奥数余数及同余问题(⼀)1、310被⼀个两位数整除,余数是37,这个两位数是_________。

2、⼀个数除以23余数是2,把被除数扩⼤到4倍,余数是________。

3、某数⽤3除余1,⽤5除余3,⽤7除余5,此数最⼩是________。

4、378×196×251除以17的余数是________。

5、若871和633两个⾃然数都被同⼀个两位数相除,所得的余数都是4,除数是__________。

6、有⼀个整数,⽤它去除70,98,143得到的三个余数之和是29,则这个数是___________。

7、⼀个数除200余5,除300余1,除400余10,这个数是__________。

8、有⼀个等于1的整数,⽤它去除967,1000,2001,得到相同余数,那么这个整数是_______。

9、在1——3000之间同时被3,5,7除都余2的数有_______个。

10、数713,1103,830,947被⼀个数整除,所得余数相同(不为0),求这个除数_________。

11、⼀个数除以7余2,如果把被除数扩⼤9倍,那么余数是⼏?_________12、账本上记着买机器⽤去□□12元,其中千位数字和百位数字模糊不清,但采购员还记得这个数减去7能被7整除,减去8能被8整除,减去9能被9整除,你能算出买这台机器⽤去多少元吗?_________。

(⼆)1、如果某数除492,2241,3195都余15,那么这个数是________。

2、有⼀个数除以3余2,除以4余1,那么这个数除以12余_______。

3、乘积34×37×41×43除以13的余数是____________。

4、666…66(1999个6)除以7所得的余数是____________。

5、有⼀个三位数,其中个位上的数字是百位上的数字的3倍,且这个三位数除以5余4,除以11余3,这个三位数是_________。

五年级奥数余数问题

五年级奥数余数问题

五年级奥数余数问题一、题目。

1. 一个数除以3余2,除以5余3,除以7余2,求这个数最小是多少?解析:我们先列出除以3余2的数:2、5、8、11、14、17、20、23、26…再列出除以5余3的数:3、8、13、18、23、28…然后列出除以7余2的数:2、9、16、23、30…可以发现23同时满足这三个条件,所以这个数最小是23。

2. 有一个数,除以4余1,除以5余2,除以6余3,这个数最小是多少?解析:这个数加上3就能被4、5、6整除。

4、5、6的最小公倍数是4 = 2×2,5 = 5,6=2×3,最小公倍数LCM = 2×2×3×5 = 60。

所以这个数最小是60 3=57。

3. 一个数除以5余4,除以8余3,求这个数最小是多少?解析:设这个数为x。

根据除以5余4,可设x = 5a+4(a为整数)。

又因为除以8余3,所以5a + 4=8b+3(b为整数),即5a=8b 1。

通过试值法,当b = 2时,a = 3。

此时x=5×3 + 4=19,19除以8余3,所以这个数最小是19。

4. 一个数除以9余7,除以11余9,这个数最小是多少?解析:这个数加上2就能被9和11整除。

9和11互质,它们的最小公倍数是9×11 = 99。

所以这个数最小是99 2 = 97。

5. 某数除以7余1,除以8余2,除以9余3,求这个数最小是多少?解析:这个数加上6就能被7、8、9整除。

7、8、9的最小公倍数为7×8×9=504。

所以这个数最小是504 6 = 498。

6. 一个数除以3余1,除以5余2,除以7余3,这个数最小是多少?解析:中国剩余定理:先求5×7 = 35,35除以3余2,2×2 = 7,7除以3余1。

再求3×7=21,21除以5余1,1×2 = 2,2除以5余2。

然后求3×5 = 15,15除以7余1,1×3=3,3除以7余3。

小学奥数 数论 余数问题 同余问题.题库版

小学奥数  数论  余数问题     同余问题.题库版

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】2003年,人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数:第14讲余数问题
在整数的除法中,只有能整除与不能整除两种情况。

当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。

余数有如下一些重要性质(a,b,c均为自然数):
(1)余数小于除数。

(2)被除数=除数×商+余数;
除数=(被除数-余数)÷商;
商=(被除数-余数)÷除数。

(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。

例如,17与11除以3的余数都是2,所以17-11能被3整除。

(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。

例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。

注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。

例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。

(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c 的余数)。

例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。

注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。

例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。

性质(4)(5)都可以推广到多个自然数的情形。

例1 5122除以一个两位数得到的余数是66,求这个两位数。

分析与解:由性质(2)知,除数×商=被除数-余数。

5122-66=5056,
5056应是除数的整数倍。

将5056分解质因数,得到
5056=26×79。

由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。

例2 被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。

解:因为被除数=除数×商+余数
=除数×33+52,
被除数=2143-除数-商-余数
=2143-除数-33-52
=2058-除数,
所以除数×33+52=2058-除数,
所以除数=(2058-52)÷34=59,
被除数=2058-59=1999。

答:被除数是1999,除数是59。

例3 甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。

解:因为甲=乙×11+32,
所以甲+乙=乙×11+32+乙=乙×12+32=1088,
所以乙=(1088-32)÷12=88,
甲=1088-乙=1000。

答:甲数是1000,乙数是88。

例4 有一个整数,用它去除70,110,160得到的三个余数之和是50。

求这个数。

分析与解:先由题目条件,求出这个数的大致范围。

因为50÷3=16……2,所以三个余数中至少有一个大于16,推知除数大于16。

由三个余数之和是50知,除数不应大于70,所以除数在17~70之间。

由题意知(7+110+160)-50=290应能被这个数整除。

将290分解质因数,得到290=2×5×29,290在17~70之间的约数有29和58。

因为110÷58=1……52>50,所以58不合题意。

所求整数是29。

例5 求478×296×351除以17的余数。

分析与解:先求出乘积再求余数,计算量较大。

根据性质(5),可先分别计算出各因数除以17的余数,再求余数之积除以17的余数。

478,296,351除以17的余数分别为2,7和11,(2×7×11)÷17=9……1。

所求余数是1。

例6 甲、乙两个代表团乘车去参观,每辆车可乘36人。

两代表团坐满若干辆车后,甲代表团余下的11人与乙代表团余下的成员正好又坐满一辆车。

参观完,甲代表团的每个成员与乙代表团的每个成员两两合拍一张照片留念。

如果每个胶卷可拍36张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?
分析与解:甲代表团坐满若干辆车后余11人,说明甲代表团的人数(简称甲数)除以36余11;两代表团余下的人正好坐满一辆车,说明乙代表团余36-11=25(人),即乙代表团的人数(简称乙数)除以36余25;甲代表团的每个成员与乙代表团的每个成员两两合拍一张照片,共要拍“甲数×乙数”张照片,因为每个胶卷拍36张,所以最后一个胶卷拍的张数,等于“甲数×乙数”除以36的余数。

因为甲数除以36余11,乙数除以36余25,所以“甲数×乙数”除以36的余数等于11×25除以36的余数。

(11×25)÷36=7……23,
即最后一个胶卷拍了23张,还可拍36-23=13(张)。

由例6看出,将实际问题转化为我们熟悉的数学问题,有助于我们思考解题。

练习14
1.今天是星期六,再过1000天是星期几?
2.已知两个自然数a和b(a>b),已知a和b除以13的余数分别是5和9,求a+b,a-b,a×b,a2-b2各自除以13的余数。

3.2100除以一个两位数得到的余数是56,求这个两位数。

4.被除数、除数、商与余数之和是903,已知除数是35,余数是2,求被除数。

5.用一个整数去除345和543所得的余数相同,且商相差9,求这个数。

6.有一个整数,用它去除312,231,123得到的三个余数之和是41,求这个数。

7.2000年五月有5个星期三、4个星期四,这个月的一日是星期几?
答案与提示:
练习14
1.星期五。

2.1;9;6;9。

提示:由52÷13=1……12,92÷13=6……3知,a2-b2除以13的余数为12-3=9。

3.73
解:除数×商=被除数-余数=2100-56=2044,2044=22×7×73,
因为2044介于56~99之间的约数只有73,所以这个两位数是73。

4.842。

解:因为被除数=除数×商+余数=35×商+2,
被除数=903-35-2-商=866-商,
所以35×商+2=866-商,
所以商=24,
被除数=866-24=842。

5.22。

解:这个整数应能整除543-345,且商9,所以这个整数是(543-345)÷9=22。

6.25。

提示:这个整数应是(312+231+123)-41=625的约数。

7.星期一。

提示:五月有31天,31=7×4+3,所以有5天的星期数是星期一、二、三,5月1日是星期一。

相关文档
最新文档